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There is some recapitulation here of earlier ideas, perhaps conveniently so. In particular, on the circle
T = R/Z, the spaces of test functions, Schwartz functions, and smooth functions are all the same, in
significant contrast to the real line. Exponentials and/or sines and cosines are in L2, unlike the real line.

1. Fourier’s treatment of the heat equation

The heat equation on [0, 1]× [0,+∞), thinking x ∈ [0, 1] as the physical coordinate and t ∈ [0,+∞) as time,
is

∆xu =
∂

∂t
u with u(x, 0) = f(x) prescribed

Fourier solved this equation by expressing [1]

u(x, t) =
∑
n

cn(t) e2πinx

Assuming we can differentiate termwise in x,

∆u(x, t) = = ∆x

∑
n

cn(t) e2πinx =
∑
n

cn(t) ∆xe
2πinx =

∑
n

(2πin)2 · cn(t) e2πinx

Differentiating term-wise in t, apparently the differential equation is∑
n

(2πin)2 · cn(t) e2πinx =
∂

∂t

∑
n

cn(t) e2πinx =
∑
n

c′n(t) e2πinx

Assuming uniqueness of Fourier expansions, we find

c′n(t) = (−2πin)2 · cn(t) (for all n ∈ Z)

This first-order constant-coefficient differential equation has a one-dimensional solution space [2]

cn(t) = bn · e−4π
2n2t (for some constant bn)

[1] Naturally, Fourier used sines and cosines, not complex exponentials.

[2] The Mean Value Theorem proves uniqueness.
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The initial condition u(x, 0) = f(x) gives

∑
n

bn e
2πinx = f(x)

That is, the constants bn are determined by the Fourier coefficients of the initial condition data f .

The Fourier coefficients f̂(n) of a function are the coefficients in a Fourier expansion

f(x) =
∑
n

f̂(n) e2πinx (convergence in what sense???)

Even before Fourier, Euler and others already knew a formula for the Fourier coefficients, and this formula
can be derived under the assumption that f has such a Fourier expansion. Namely, integrate against e−2πinox,
assuming we can exchange the sum and integral:

∫ 1

0

e−2πinox f(x) dx =

∫ 1

0

e−2πinox
∑
n

f̂(n) e2πinx dx =
∑
n

f̂(n)

∫ 1

0

e−2πinox e2πinx dx = f̂(no)

because of the orthonormality

∫ 1

0

e−2πimx e2πinx =

 1 (for m = n)

0 (for m 6= n)

This discussion already raises many issues. One further issue was raised by the goal of showing that with a
point source as the initial condition, the heat is asymptotically evenly distributed. From our viewpoint, this
is asking how to express a version of Dirac’s δ in Fourier series.

2. Issues

The exponentials ecx are eigenvectors/eigenfunctions for the differential operator d/dx. Among them, the
exponentials ψn(x) = e2πinx are exactly the those that are periodic in the sense that ψn(x+ `) = ψn(x) for
` ∈ Z. Thus, to the extent everything makes sense, a Fourier series naturally gives the periodic extension
(denoted here by the same symbol) of a function f on [0, 1] by defining f(x + n) = f(x) for n ∈ Z and
x ∈ [0, 1].

Therefore, here and in the sequel, to examine Fourier series of functions, we consider functions on the interval
[0, 1] as being extended by periodicity. Yes, there is potential conflict in the definition at endpoints/integers!

Yes, a function f that is continuous on [0, 1] will produce a non-continuous periodic extension unless
f(0) = f(1). A function f that is C1 on [0, 1] will produce a non-C1 extension unless f(0) = f(1) and
f ′(0) = f ′(1), and so on. Attention to these distinctions is necessary, since the behavior of Fourier series of
a function f on [0, 1] reflects the behavior of its periodic extension.
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Some even-more-fundamental issues are: [3]

In what sense(s) can a function be expressed as a Fourier series?

Do Fourier series give pointwise values of functions?

Can a Fourier series be differentiated term-by-term?

How cautious must we be in differentiating functions that are only piecewise differentiable?

What will derivatives of discontinuous functions be?

What is the Fourier expansion of the periodic version of Dirac’s δ?

Several further issues are implicit, and the best answers need viewpoints created first in 1906 by Beppo Levi,
1907 by G. Frobenius, in the 1930’s by Sobolev, and Schwartz post-1949, enabling legitimate discussion of
generalized functions (also known as distributions). [4]

There are natural technical questions, like

Why define generalized functions as dual spaces?

In brief, Schwartz’ 1940’s insight to define generalized functions as dual spaces is a natural consequence of one
natural relaxation of the notion of function. Rather than demand that functions produce pointwise values,
which precipitated endless classical discussion of what to do with jump discontinuities, instead declare that
functions in the broadest sense are merely things that can be integrated against. For given ϕ, the map that
integrates against ϕ,

f −→
∫
f(x)ϕ(x) dx

is a functional (a C-valued linear map), and is, or ought to be, probably continuous in a reasonable topology.
To consider the collection of all continuous linear functionals is a reasonable way to enlarge the collection of
functions, as things to be integrated against.

From the other side, it might have been that this generalization of function is needlessly extravagant, but it
turns out that every distribution on the circle T is a high-order derivative of a continuous function. Thus,
since we do want to be able to take derivatives indefinitely, there is no waste.

Further, in any of the several natural topologies on distributions, very nice ordinary functions are dense, and
the space of distributions is complete in a sense subsuming that for metric spaces. Thus, taking limits yields
all distributions, and produces no excess.

This discussion is easiest on the circle T, or products Tn of circles, making use of Fourier series, and clarifying
many technical questions about Fourier series. [5] This story is a prototype for more complicated examples.

[3] At about the time Fourier was promoting Fourier series, Abel proved that convergent power series can be

differentiated term-by-term in the interior of their interval (on R) or disk (in C) of convergence, and are infinitely-

differentiable functions. Abel’s result fit the optimistic expectations of the time, but created unreasonable expectations

for the behavior of Fourier series.

[4] K. Friedrichs’ important 1934-5 discussions of semi-bounded unbounded operators on Hilbert spaces used norms

defined in terms of derivatives, but only internally in proofs, while for Levi, Frobenius, and Sobolev these norms were

significant objects themselves.

[5] The classic reference is A. Zygmund, Trigonometric Series, I, II, first published in Warsaw in 1935, reprinted

several times, including a 1959 Cambridge University Press edition. The present discussion neglects many interesting

details, but is readily adaptible to more complicated situations, so necessarily our treatment is different from

Zygmund’s.
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There is an important auxiliary technical point. Natural spaces of functions do not have structures of Hilbert
spaces, but typically, of Banach spaces. Nevertheless, the simplicity of Hilbert spaces motivates comparisons
of natural function spaces with related Hilbert spaces. Such comparisons are Levi-Sobolev imbeddings or
Levi-Sobolev inequalities.

The present discussion presumes acquaintance with the basics of Fourier series, namely, the Fourier-Dirichlet
kernel, the theorem of Fourier-Dirichlet on pointwise convergence for finitely-piecewise-continuous at points
with left derivative and right derivative, Féjer’s kernel, Féjer’s theorem on the density of finite Fourier series
in Co(T), and completeness of exponentials in L2(T).

We also presume that the notion of (projective) limit of Banach spaces is appreciated to some degree, at
least in examples such as the nested intersection

C∞(T) =
⋂
k

Ck(T) = lim
k
Ck(T)

We recall this, and introduce colimits, especially in the case of ascending unions of spaces of duals of limits.

3. Provocative example

Let s(x) be the sawtooth function [6]

s(x) = x− 1
2 (for 0 ≤ x < 1)

and made periodic by demanding s(x + n) = s(x) for all n ∈ Z. In other words, letting [[x]] be the greatest
integer less than or equal x,

s(x) = x − [[x]] − 1
2 (for x ∈ R)

Away from x ∈ Z, the sawtooth function is infinitely differentiable, with derivative 1. At x ∈ Z the sawtooth
jumps down from value 1

2 to value − 1
2 . There is no reason to worry about defining a value at x ∈ Z.

The exponential functions ψn(x) = e2πinx are an orthonormal basis for the Hilbert space L2[0, 1].

Anticipating that Fourier coefficients f̂(n) of Z-periodic functions f are computed [7] by integrating against
ψn(x) = e2πinx (conjugated):

f̂(n) =

∫ 1

0

f(x) e−2πinx dx

integration by parts gives

ŝ(n) =

∫ 1

0

s(x) · e−2πinx dx =


1

−2πin
(for n 6= 0)

0 (for n = 0)

Thus, in whatever sense a function is its Fourier expansion, we anticipate that

s(x) ∼
∑
n∈Z

ŝ(n) · e2πinx =
∑
n 6=0

1

−2πin
· e2πinx

[6] One may also take s(x) = x for − 1
2 < x < 1

2 and extend by periodicity. This definition avoids the subtraction of
1
2 , and has the same operational features. In the end, it doesn’t matter.

[7] Apparently at first Fourier did not have this expression for the Fourier coefficients!
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Even though this series does not converge absolutely for any value of x, we already know (by Fourier-
Dirichlet) that it does converge to the value of s(x) for x 6∈ Z. Since s(x) has discontinuities at Z anyway,
this is hardly surprising. Nothing disturbing has happened.

Now differentiate. The sawtooth function is differentiable away from Z, with value 1, and with uncertain value
at Z. With exogenous reasons to differentiate the Fourier series term-by-term, with or without confidence
in doing so, and the blatant differentiability of s(x) away from Z suggests it’s not entirely ridiculous to
differentiate term-by-term. Then

s′(x) =

 1 (for x 6∈ Z)

? (for x ∈ Z)
∼ −

∑
n 6=0

e2πinx

The right-hand side is hard to interpret, certainly as having pointwise values. On the other hand, reasonably
interpreted, it is still ok to integrate against this sum: letting f̂(n) be the nth Fourier coefficient of a smooth
function f , and not worrying about justifications,∫ 1

0

f(x)
(
−
∑
n 6=0

e2πinx
)
dx = −

∑
n 6=0

∫ 1

0

f(x) e2πinx dx = −
∑
n 6=0

f̂(−n)

= f̂(0)−
∑
n∈Z

f̂(n) e2πin·0 = f̂(0)− f(0) =

∫ 1

0

f(x) dx − f(0)

The map

f −→
∫ 1

0

f(x) dx − f(0)

has a sense for continuous f , and gives a functional. That the derivative of the sawtooth is mostly 1 gives
the integral of f (against 1) over [0, 1]. Further, the −f(0) term forcefully suggests that the derivative of
the discontinuity of the sawtooth function is the (periodic) evaluation-at-0 functional f → f(0) multiplied by

−1. [8]

[3.1] Remark: A truly disastrous choice at this point would be to think that since s′(x) is almost everywhere
1 (in a measure-theoretic sense) that its singularities are somehow removable, and thus pretend that s′(x) = 1.
This would give s′′(x) = 0, and make the following worse than it is, and impossible to explain.

Still, s′(x) is differentiable away from Z, and by repeated differentiation

s(k+1)(x) =

 0 (for x 6∈ Z)

? (for x ∈ Z)
∼ −(2πi)k

∑
n 6=0

nk · e2πinx

By now the right-hand sides are vividly not convergent. The summands do not go to zero, in fact, are
unbounded.

One can continue differentiating in this symbolic sense, but the meaning is unclear.

One reaction is to simply object to differentiating a non-differentiable function, even if its discontinuities are
mild. This is not productive.

Another unproductive viewpoint is to deny that Fourier series reliably represent the functions that produced
their coefficients.

[8] The jump is downward rather than upward.
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A happier and more useful response is to suspect that the above computation is correct, though the question
mark needs explanation, and that the right-hand side is correct and meaningful, despite its divergence in
classical senses. The question is what meaning to attach. This requires preparation.

We will establish a context in which the derivatives of the sawtooth, and derivatives of other discontinuous
functions, are things to integrate against, rather than things to evaluate pointwise, and see that termwise
differentiation of Fourier series does capture an extended notion of function and derivative.

4. Natural function spaces on the circle T = R/Z
We review natural families of functions. In all cases, the object is to give the vector space of functions a
metric (if possible) which makes it complete, to allow taking limits inside the same class of functions. For
example, pointwise limits of continuous functions easily fail to be continuous, but uniform pointwise limits
of continuous functions are continuous. [9]

[4.1] Continuous functions and sup-norm

First, we care about continuous complex-valued functions. Although we have in mind continuous functions
on the circle T = R/Z, the basic result depends only upon the compactness of R/Z.

As usual, we give the set Co(K) of (complex-valued) continuous functions on a compact topological space
K the metric

d(f, g) = sup
x∈K

|f(x)− g(x)|

The sup is finite because K is compact and f − g is continuous. The right-hand side of this last equation
arises from the (sup) norm

|f |∞ = |f |Co = sup
x∈K

|f(x)|

and d(f, g) = |f − g|Co . A main feature of continuous functions is that they have pointwise values. Recall
the unsurprising but important

[4.2] Claim: With the Co(K) topology, for x ∈ K the evaluation functional [10] Co(K) → C by f → f(x)
is continuous.

Proof: The inequality

|f(x)− g(x)| ≤ sup
y∈K
|f(y)− g(y)| (for f, g ∈ Co(K))

proves the continuity of evaluation. ///

Also, recall, yet again, the iconic

[4.3] Theorem: The space Co(K) of (complex-valued) continuous functions on a compact topological space
K is complete.

[4.4] Remark: Thus, being complete with respect to the metric arising in this fashion from a norm, by
definition Co(K) is a Banach space.

[9] Awareness of such possibilities and figuring out how to avoid them was the fruit of embarrassing errors and

experimentation throughout the 19th century. Unifying abstract notions such as metric space and general topological

space only became available in the early 20th century, with the work of Hausdorff, Fréchet, and others.

[10] As usual, a (continuous) functional is a (continuous) linear map to C.
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Proof: This is a typical three-epsilon argument. The point is the completeness, namely that a Cauchy
sequence of continuous functions has a pointwise limit which is a continuous function. First we observe that
a Cauchy sequence fi does have a pointwise limit. Given ε > 0, choose N large enough such that for i, j ≥ N
we have |fi − fj | < ε. Then, for any x in K, |fi(x) − fj(x)| < ε. Thus, the sequence of values fi(x) is a
Cauchy sequence of complex numbers, so has a limit f(x). Further, given ε′ > 0, choose j ≥ N sufficiently
large such that |fj(x)− f(x)| < ε′. Then for all i ≥ N

|fi(x)− f(x)| ≤ |fi(x)− fj(x)|+ |fj(x)− f(x)| < ε+ ε′

Since this is true for every positive ε′

|fi(x)− f(x)| ≤ ε (for all i ≥ N)

This holds for every x in K, so the pointwise limit is uniform in x.

Now prove that f(x) is continuous. Given ε > 0, let N be large enough so that for i, j ≥ N we have
|fi − fj | < ε. From the previous paragraph

|fi(x)− f(x)| ≤ ε (for every x and for i ≥ N)

Fix i ≥ N and x ∈ K, and choose a small enough neigborhood U of x such that |fi(x)− fi(y)| < ε for any
y in U . Then

|f(x)− f(y)| ≤ |f(x)− fi(x)|+ |fi(x)− fi(y)|+ |f(y)− fi(y)| < ε+ ε+ ε

Thus, the pointwise limit f is continuous at every x in U . ///

[4.5] Differentiation on T = R/Z
To talk about differentiability return to the concrete situation of R and its quotient T = R/Z.

The continuous quotient map q : R → R/2πZ yields continuous functions under composition f ◦ q for
f ∈ Co(T) = Co(R/Z). More is true, namely, that a continuous function F on R is of the form f ◦ q if and
only if F is periodic in the sense that F (x+n) = F (x) for all x ∈ R and n ∈ Z. Indeed, the periodicity gives
a well-defined function f on R/Z. Then the continuity of f follows immediately from the definition of the
quotient topology on T = R/Z.

As usual, a real-valued or complex-valued function f on R is continuously differentiable if it has a derivative
itself a continuous function. That is, the limit

df

dx
(x) = f ′(x) = lim

h→0

f(x+ h)− f(x)

h

is required to exist for all x, and the function f ′ is in Co(R). Let f (1) = f ′, and inductively define

f (i) =
(
f (i−1)

)′
(for i > 1)

when the corresponding limits exist.

We can make explicit the expectation that differentiation on the circle T = R/Z is descended from
differentiation on the real line. That is, characterize differentiation on T = R/Z in terms of such a
compatibility relation. Thus, for f ∈ Ck(T), require that the differentiation D on T be related to the
differentiation on R by

(Df) ◦ q =
d

dx
(f ◦ q)

7



Paul Garrett: 08d. Generalized functions (distributions) on circles (January 5, 2020)

Via the quotient map q : R → R/Z, make a preliminary definition of the collection of k-times continuously
differentiable functions on T, with a topology, by

Ck(T) = {f on T : f ◦ q ∈ Ck(R)}

with the Ck-norm [11]

|f |Ck =
∑

0≤i≤k

|(f ◦ q)(i)|∞ =
∑

0≤i≤k

sup
x
|(f ◦ q)(i)(x)|

where F (i) is the (continuous!) ith derivative of F on R. The associated metric on Ck(T) is

d(f, g) = |f − g|Ck

[4.6] Remark: Among other features, the norm on the spaces Ck makes continuity of the differentiation
map Ck → Ck−1 clear.

[4.7] Remark: Implicit in this definition is that, viewed as functions on [0, 1], the values and derivatives
must agree at the endpoints: f(0) = f(1 for f continuous on T, f ′(0) = f ′(1) for f ∈ C1(T), and so on. This
is not whimsical, but is intrinsic to the structure of T.

An often-seen equivalent version of the norm is

|f |varCk = sup
0≤i≤k

|(f ◦ q)(i)|∞ = sup
0≤i≤k

sup
x
|(f ◦ q)(i)(x)|

These two norms give the same topology, since for complex numbers a0, . . . , ak

sup
0≤i≤k

|ai| ≤
∑

0≤i≤k

|ai| ≤ (k + 1) · sup
0≤i≤k

|ai|

[4.8] Claim: There is a unique, well-defined, continuous (differentiation) map D : Ck(T)→ Ck−1(T) giving
a commutative diagram

Ck(R)
d/dx // Ck−1(R)

Ck(T)
D //

−◦q

OO

Ck−1(T)

−◦q

OO

[4.9] Remark: One might feel that the following proof is needlessly complicated. However, it is worthwhile
to do it this way. This approach applies broadly, and is as terse as possible without ignoring important
details.

Proof: The point is that differentiation of periodic functions yields periodic functions. That is, we claim
that, for f ∈ Ck(T), the pullback f ◦q has derivative d

dx (f ◦q) which is the pullback g ◦q of a unique function
g ∈ Ck−1(T). To see this, first recall that, by definition of the quotient topology, a continuous function F
on R descends to a continuous function on T = R/Z if and only if it is Z-invariant, that is F (x+ n) = F (x)
for all x ∈ R and n ∈ Z. Then, from our definition of Ck(T), a function F ∈ Ck(R) is a pullback via q from

[11] Granting that the sup norm on continuous functions is a norm, verification that the Ck-norm is a norm is

straightforward.
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Ck(R/Z) exactly when F (i)(x+n) = F (i)(x) for all x ∈ R, n ∈ Z, and 0 ≤ i ≤ k, since then these continuous
functions descend to the circle. Let

(TyF )(x) = F (x+ y) (for x, y ∈ R)

Since d
dx is a linear, constant-coefficient differential operator, the operations Ty and d

dx commute, that is,
∂F
∂x (x+ y) = ∂

∂x (F (x+ y)), which is to say

Ty ◦
d

dx
=

d

dx
◦ Ty

In particular, for n ∈ Z,

Tn(
d

dx
(f ◦ q)) =

d

dx
(Tn(f ◦ q)) =

d

dx
(f ◦ q)

This shows that a (continuous) derivative is periodic when the (continuously differentiable) function is
periodic.

From the definition of the Ck-norm,
|Df |Ck−1 ≤ |f |Ck

so differentiation is continuous. ///

[4.10] Remark: In light of the uniqueness of differentiation on T, from now on write d/dx for the
differentiation D on T, and f (k) for Dkf , and rewrite the description of Ck(T) more simply, as

Ck(T) = {f on T : f ◦ q ∈ Ck(R)}

with the Ck-norm
|f |Ck =

∑
0≤i≤k

|f (i)|∞ =
∑

0≤i≤k

sup
x
|f (i)(x)|

where f (i) is the (continuous!) ith derivative of f . The associated metric on Ck(T) still is

d(f, g) = |f − g|Ck

There is the alternative norm

|f |varCk = sup
0≤i≤k

sup
x
|f (i)(x)| = sup

0≤i≤k
|f (i)|∞

These two norms give the same topology for the same reason as before.

We recall the argument for

[4.11] Claim: With the topology above, the space Ck(T) is complete, so is a Banach space.

Proof: The case k = 1 illustrates all the points. For a Cauchy sequence {fn} in C1(T), both {fn} and {f ′n}
are Cauchy in Co(T), so converge uniformly pointwise: let

f(x) = lim
n
fn(x) g(x) = lim

n
f ′n(x)

The convergence is uniformly pointwise, so f and g are Co. If we knew that f were pointwise differentiable,
then the demonstrated continuity of d

dx : C1(T)→ Co(T) gives the expected conclusion, that f ′ = g.

What could go wrong? One issue is whether f is differentiable at all, and why its derivative is g.
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By the fundamental theorem of calculus, for any index i, since fi is continuous, [12]

fi(x)− fi(a) =

∫ x

a

f ′i(t) dt

Interchanging limit and integral [13] shows that the limit of the right-hand side is

lim
i

∫ x

a

f ′i(t) dt =

∫ x

a

lim
i
f ′i(t) dt =

∫ x

a

g(t) dt

Thus, the limit of the left-hand side is

f(x)− f(a) =

∫ x

a

g(t) dt

from which f ′ = g. That the derivative f ′ of the limit f is the limit of the derivatives is not a surprise, since
if f is differentiable, what else could its derivative be? The point is that f is differentiable, ascertained by
computing its derivative, which happens to be g. ///

[4.12] Remark: Again, the differentiation map C1(T)→ Co(T) is continuous by design. Thus, if a limit of
C1 functions fn is differentiable, its derivative must be the obvious thing, namely, the limit of the derivatives
f ′n. The issue was whether the limit of the fn is differentiable. The proof shows that it is differentiable by
computing its derivative via the Mean Value Theorem.

By construction, and from the corresponding result for Co,

[4.13] Claim: With the Ck-topology, for x ∈ T and integer 0 ≤ i ≤ k, the evaluation functional Ck(T)→ C
by

f −→ f (i)(x)

is continuous. ///

This applies to Fourier series, without any claim about what functions are representable as Fourier series.
With ψn(x) = e2πinx,

[4.14] Claim: For complex numbers cn, when∑
n

|cn| · |n|k < +∞

the Fourier series
∑
cn ψn converges to a function in Ck(T), and its derivative is computed by termwise

differentiation
d

dx

∑
cn ψn =

∑
(in) cn ψn ∈ Ck−1(T)

Proof: The Co(T) norm of a Fourier series is easily estimated, by∣∣∣∣∣∣
∑
|n|≤N

cn ψn(x)

∣∣∣∣∣∣ ≤
∑
|n|≤N

|cn| (for all x ∈ T)

[12] The fundamental theorem of calculus for integrals of continuous functions needs only the simplest notion of an

integral, for example, Riemann integrals.

[13] For example, interchange of limit and integral is justified by the simplest form of Lebesgue’s Dominated

Convergence Theorem. Also, for uniform pointwise limits of continuous functions, this can be proven directly.
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The right-hand side is independent of x ∈ T, so bounds the sup over x ∈ T. Similarly, estimate derivatives
(of partial sums) by ∣∣∣∣∣∣∣

 ∑
|n|≤N

cn ψn

(k)
∣∣∣∣∣∣∣ ≤

∑
|n|≤N

|cn|nk

Thus, the hypothesis of the claim implies that the partial sums form a Cauchy sequence in Ck. The partial
sums of a Fourier series are finite sums, so can be differentiated term-by-term. Thus, we have a Cauchy
sequence of Ck functions, which converges to a Ck function, by the completeness of Ck. That is, the given
estimate assures that the Fourier series converges to a Ck function.

Further, since differentiation is a continuous map Ck → Ck−1, it maps Cauchy sequences to Cauchy
sequences. In particular, the Cauchy sequence of derivatives of partial sums converges to the derivative
of the limit of the original Cauchy sequence. ///

We want the following to hold. Unsurprisingly, it does:

[4.15] Claim: The inclusion Ck(T) ⊂ Ck−1(T) is continuous. [14]

Proof: The point is that, for f ∈ Ck(T) the obvious inequality

|f |Ck−1 ≤ |f |Ck

gives an explicit estimate for the continuity. ///

5. Topology on C∞(T)
Next, we care about infinitely differentiable [15] functions, that is, smooth functions, denoted C∞(T). At
least as sets (or vector spaces),

C∞(T) =
⋂
k

Ck(T)

However, this space C∞(T) of smooth functions provably does not have a structure of Banach space.
Observing that a descending intersection is a (projective) limit we should declare that

C∞(T) = lim
k
Ck(T)

That is, for every topological vector space V and compatible [16] family of continuous linear maps
fk : V → Ck(T), there is a unique f : V → C∞(T) such that all triangles commute in the diagram

C∞(T)
** ''

. . . // C1(T) // Co(T)

V

f1
<<x

x
x

x
x

fo

55kkkkkkkkk
f

cc

[14] In fact, the image of Ck in Ck−1 is dense, but, we will prove this later as a side-effect of sharper results.

[15] Use of infinitely here is potentially misleading, but is standard. Sometimes the phrase indefinitely differentiable

is used, but this also offers its own potential for confusion. A better (and standard) contemporary usage is smooth.

[16] As earlier, for the maps fk to be compatible means that, naming the inclusion ik : Ck(R) → Ck−1(R),

ik ◦ fk = fk−1. That is, all the triangles in the relevant diagram commute.
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Unfortunately, we may be temporarily insufficiently sophisticated about what kind of object this limit might
be. In particular, we do not know what kind of auxiliary objects to use in the very definition of limit.

Too optimistic speculation about what the limit might be leads to trouble: as it happens, this limit is
provably not a Banach space (nor Hilbert space). [17] As we have seen, a limit of topological spaces has a
unique topology, whatever it may be, by the categorical characterization of this topology.

[5.1] Remark: There is also the disquieting question of what test objects V we should consider in the
diagrammatic characterization, with compatible mappings V → Ck(T) to characterize the limit.

The broadest necessary class of vector spaces with topologies is the following. A topological vector space is
what one would reasonably imagine, namely, a (complex) vector space V with a topology such that

V × V → V by v × w → v + w is continuous

and such that

C× V → V by α× v → α · v is continuous

and such that the topology is Hausdorff. [18] We require that the topological vector spaces be locally convex
in the sense that there is a local basis at 0 consisting of convex sets. [19] It is easy to prove that Hilbert and
Banach spaces are locally convex, which is why the issue is invisible in that context. Dismayingly, there are
easily constructed complete (invariantly) metrized topological vector spaces which are not locally convex.
[20]

Returning to the discussion of limits of topological vector spaces: since the continuity requirements for a
topological vector space are of the form A×B → C (rather than having the arrow going the other direction),
there is a diagrammatic argument that the continuous algebraic operations on the limitands induce continuous
algebraic operations on the limit, in the limit topology (as limit of topological spaces).

[5.2] Claim: Products and limits of topological vector spaces exist. Products and limits of locally convex
spaces are locally convex. (Proof in appendix.)

[5.3] Remark: As usual, if they exist at all, then products and limits are unique up to unique isomorphism.

[17] The non-Banach-ness of C∞(T) is not the main point, but it is reasonable to wonder how this is proven. Briefly,

with a definition of topological vector space, we will prove that a topological vector space is normable if and only if

there is a local basis at 0 consisting of bounded opens. This is independent of completeness. The relevant sense of

bounded cannot be the usual metric sense. Instead, a set E in a topological vector space is bounded when, for every

open neighborhood U of 0, there is t > 0 such that E ⊂ z · U for all complex z with |z| ≥ t. That is, sufficiently

large dilates of opens eventually contain E. But we will eventually that open balls in Ck(T) are not contained in any

dilate of any open ball in Ck+1(T). The definition of the limit topology then shows that C∞(T) is not normable. A

more detailed discussion will be given later.

[18] In fact, soon after giving the definition, one can show that the weaker condition that points are closed, implies

the Hausdorff condition in topological spaces which are vector spaces with continuous vector addition and scalar

multiplication. Indeed, the inverse image of {0} under x× y → x− y is the diagonal.

[19] This sense of convexity is the usual: a set X in a vector space is convex when, for all tuples x1, . . . , xn of points

in X and all tuples t1, . . . , tn of non-negative reals with Σiti = 1, the sum Σitixi is again in X.

[20] The simplest examples of complete metric topological vector spaces which are not locally convex are spaces `p

with 0 < p < 1. The metric comes from a norm-like function which is not a norm: |{cn}|p =
∑
n |cn|

p. No, there is

no pth root taken, unlike the spaces `p with p ≥ 1, and this causes the function | |p to lose the homogeneity it would

need to be a norm. Nevertheless, such a space is complete. It is an amusing exercise to prove that it is not locally

convex.
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Thus, C∞(T) has a (limit) topology for general reasons. As proven earlier for such spaces on intervals [a, b],

[5.4] Claim: Differentiation f → f ′ is a continuous map C∞(T)→ C∞(T).

[5.5] Remark: Of course differentiation maps the smooth functions to themselves. Continuity of
differentiation in the limit topology is less clear.

Proof: Differentiation d/dx gives a continuous map Ck(T) → Ck−1(T). Differentiation is compatible with
the inclusions among the Ck(T). Thus, we have a commutative diagram

C∞(T)
)) ))

. . . Ck(T) // Ck−1(T) // . . .

C∞(T)
66 55

. . . Ck(T) //

d
dx

::ttttttttt
Ck−1(T) //

d
dx

;;wwwwwwwwww
. . .

Composing the projections with d/dx gives (dashed) induced maps from C∞(T) to the limitands, inducing
a unique (dotted) map to the limit, as in

C∞(T)
)) ))

. . . Ck(T) // Ck−1(T) // . . .

C∞(T)

66llllllll

33ggggggggggggg

22eeeeeeeeeeeeeeeeeeee

d
dx

OO

66 55
. . . Ck(T) //

::ttttttttt
Ck−1(T) //

;;wwwwwwwwww
. . .

This proves the continuity of differentiation, in the limit topology. ///

[5.6] Corollary: When a Fourier series
∑
n cn ψn satisfies∑

m

|cn| |n|N < +∞ (for every N)

the series is a smooth function, which can be differentiated term-by-term, and its derivative is∑
m

cn · in · ψn

Proof: The hypothesis assures that the Fourier series lies in Ck for every k. Differentiation is continuous
in the limit topology on C∞. ///

[5.7] Remark: This continuity is necessary to define differentiation of distributions below.
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6. Distributions: generalized functions

Although much amplification is needed, having an appropriate topology on C∞(T) allows the bare definition:

a distribution or generalized function [21] on T is a continuous linear functional [22]

u : C∞(T) −→ C

Why a dual space? Unsurprisingly, especially with a precise intrinsic notion of integral on T in the next
section, a function ϕ ∈ Co(T) gives rise to a distribution uϕ by integration against ϕ,

uϕ(f) =

∫
T
f(x)ϕ(x) dx (for f ∈ C∞(T))

Thus, we relax our notion of function, no longer requiring pointwise values, but only that a function can be
integrated against. Then it may make sense to declare functionals in a dual space to be generalized functions.
The vector space of distributions is denoted

distributions = continuous dual of C∞(T) = Homo
C(C∞(T),C) = C∞(T)∗

That is, given a reasonable notion of integral, we have a continuous imbedding

Co(T) ⊂ C∞(T)∗ by ϕ −→ uϕ where (again) uϕ(f) =

∫
T
f(x)ϕ(x) dx (f ∈ C∞(T))

Typically, the dual of a limit of topological vector spaces is not the colimit of the duals of the limitands.
Duals of colimits do behave well, in the sense that in reasonable situations

Hom(colimiXi, Z) ≈ limiHom(Xi, Z)

But C∞(T) is a limit, not a colimit. Luckily, the dual of a limit of Banach spaces is the colimit of the duals:

[6.1] Theorem: Let X = limiBi be a limit of Banach spaces Bi with projections pi : X → Bi. Any
λ ∈ X∗ = Homo

C(X,C) factors through some Bi. That is, there is λj : Bj → C such that

λ = λj ◦ pj : X → C

Therefore,

(limiBi)
∗ ≈ colimiB

∗
i

Proof: Without loss of generality, each Bi is the closure of the image of X, since otherwise replace of each
Bi by that closure.

[21] What’s in a name? In this case, generalized function expresses the intention to think of distributions as extensions

of ordinary functions, not as abstract things in a dual space.

[22] The standard usage is that a functional on a complex vector space V is a C-linear map from V to C. Continuity

may or may not be required, and the topology in which continuity is required may vary. It is in this sense that there

is a subject functional analysis.
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Let U be an open neighborhood of 0 in X = limiBi such that λ(U) is inside the open unit ball at 0 in C,

by the continuity at 0. By properties of the limit topology [23] there are finitely-many indices i1, . . . , in and
open neighborhoods Vit of 0 in Bit such that

n⋂
t=1

p−1it Vit ⊂ U (projections pi from the limit X)

To have λ factor (continuously) through a limitand Bj , we need a single condition to replace the conditions

from i1, . . . , in. Let j be any index [24] with j ≥ it for all t, and

V ′j =

n⋂
t=1

p−1it,jVit ⊂ Bj

By the compatibility
p−1it = p−1j ◦ p

−1
it,j

we have a single sufficient condition, namely p−1j V ′j ⊂ U . By the linearity of λ, for ε > 0

λ(ε · p−1j Vj) = ε · λ(p−1j Vj) ⊂ ε-ball in C

By continuity [25] of scalar multiplication on Bj , ε · V ′j is an open containing 0 in Bj .

We claim that λ factors through pjX with the subspace topology from Bj . This makes pjX a normed space,

if not Banach. [26] Simplifying notation, let λ : X → C and p : X → N be continuous linear to a normed
space N , with

λ(p−1V ) ⊂ unit ball in C (for some neighborhood V of 0 in N)

We claim that λ factors through p : X → N as a (continuous) linear map. Indeed, by the linearity of λ,

λ(
1

n
· p−1V ) ⊂ 1

n
-ball in C

so

λ

(⋂
n

1

n
· p−1V

)
⊂ 1

m
-ball (for all m)

Then

λ

(⋂
n

1

n
· p−1V

)
⊂
⋂
m

1

m
-ball = {0}

[23] Recall that X = limiBi is the closed subspace (with the subspace topology) of the product Y = ΠiBi of all

tuples {bi} in which pij : bi → bj for i > j under the transition maps pij : Bi → Bj . A local basis at 0 in the product

consists of products V = ΠiVi of opens Vi in Bi with Vi = Bi for all but finitely-many i, say i1, . . . , in.

[24] The index set need not be the positive integers, but must be a poset (partially ordered set), directed, in the sense

that for any two indices i, j there is an index k such that k > i and k > j.

[25] Multiplication by a non-zero scalar is a homeomorphism: scalar multiplication by ε 6= 0 is continuous,

scalar multiplication by ε−1 is continuous, and these are mutual inverses, so these scalar multiplications are

homeomorphisms.

[26] Recall that a normed space is a topological vector with topology given by a norm | | as in a Banach space,

but without the requirement that the space is complete with respect to the metric d(x, y) = |x − y|. This slightly

complicated assertion is correct: in most useful situations pjX is rarely all of Bj , even when Bj is a completion of

pjX.
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Thus, ⋂
n

p−1(
1

n
· V ) =

⋂
n

1

n
· p−1V ⊂ kerλ

For x, x′ in X with px = px′, certainly px− px′ ∈ 1
n V for all n = 1, 2, . . .. Therefore,

x− x′ ∈
⋂
n

p−1(
1

n
V ) ⊂ kerλ

and λx = λx′. This proves the subordinate claim that λ factors through p : X → N via a (not necessarily
continuous) linear map µ : N → C. For the continuity of µ, by its linearity

µ(ε · V ) = ε · µV ⊂ ε-ball in C

proving the continuity of µ : N → C. [27] This proves the claim.

The claim gives continuous linear λj : pjX → C through which λ factors.

Then λj : pjX → C extends by continuity [28] to the closure of pjX in Bj , which is Bj , giving the desired
map. ///

[6.2] Remark: The same proof shows that a continuous linear map from a limit of Banach spaces to a
normed space factors through a limitand, when the images of projections are dense in the limitands.

[6.3] Corollary: The space of distributions on T is the ascending union (colimit)

C∞(T)∗ =
(
lim kC

k(T)
)∗

= colimkC
k(T)∗ =

⋃
kC

k(T)∗

of duals of the Banach spaces Ck(T). ///

The order of a distribution u is the smallest k such that u ∈ Ck(T)∗. Since for the circle the space of all

distributions is exactly this colimit, the order of a distribution is well-defined. [29]

Distributions as generalized functions should be differentiable, compatibly with the differentiation of
functions. The idea is that differentiation of distributions should be compatible with integration by parts for
distributions given by integration against C1 functions. Assuming an integral on T as in the next section,
for functions f, g, by integration by parts,∫

T
f(x) g′(x) dx = −

∫
T
f ′(x) g(x) dx

[27] Here we need V to be open, not merely a set containing 0. Continuity at 0 is all that is needed for continuity of

linear maps, since |λ(x)| < ε for |x| < δ gives |λ(x− x′)| < ε for |x− x′| < δ.

[28] The extension by continuity is unambiguous, since λj is linear. In more detail: for λ a continuous linear function

on a dense subspace Y of a topological vector space X, given ε > 0, take convex neighborhood U of 0 in X such

that |λy| < ε for y ∈ U . We may suppose U = −U by replacing U by −U ∩ U . Let yi be a Cauchy net approaching

x ∈ X. For yi and yj inside x+ 1
2U , |λyi − λyj | = |λ(yi − yj)|, using the linearity. By the symmetry U = −U , since

yi − yj ∈ 1
2 · 2U = U , this gives |λyi − λyj | < ε. Then unambiguously define λx to be the limit of the λyi.

[29] The Riesz representation theorem asserts that the dual of Co(T) is Borel measures on T, so order-zero distributions

are Borel measures. For example, elements η of L2(T) are Borel measures, by giving integrals f →
∫
T f(x) η(x) dx for

f ∈ Co(T). Thus, integrating continuous functions against Borel measures is a semi-classical instance of generalizing

functions in our present style, integrating against measures. However, the duals of the higher Ck(T)’s don’t have

such a classical interpretation. The fact that C1(T) can be construed as distributional derivatives of Borel measures

is not strongly related to Radon-Nikodym derivatives of measures, because, for example, the distributional derivative

of a point-mass measure is not a measure.
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with no boundary terms because T has empty boundary. Note the negative sign. Motivated by this, define
the distributional derivative u′ of u ∈ C∞(T)∗ to be another distribution defined by

u′(f) = −u(f ′) (for any f ∈ C∞(T))

The continuity of differentiation d
dx : C∞(T)→ C∞(T) assures that u′ is a distribution, since

u′ = −(u ◦ d

dx
) : C∞(T)→ C

7. Invariant integration, periodicization

We an (invariant) integral on the circle T = R/2πZ. The main property required is translation invariance,
meaning that, for a (for example) continuous function f on T,∫

T
f(x+ y) dx =

∫
T
f(x) dx (for all y ∈ T)

This invariance is sufficient to prove that various important integrals vanish.

For example, let ψm(x) = eimx. As an instance of an important idea, without explicit calculus-like
computations,

[7.1] Claim: (Cancellation Lemma) For m 6= n, for any reasonable translation-invariant integral on T∫
T
ψm(x)ψn(x) dx = 0

Proof: For m 6= n, the function f(x) = ψm(x)ψn(x) is a non-trivial (not identically 1) continuous group
homomorphism T→ C×, meaning that there is y ∈ T such that f(y) 6= 1. The change of variables x→ x+y
in the integral does not change the overall value of the integral, so∫

T
f(x) dx =

∫
T
f(x+ y) dx =

∫
T
f(x) · f(y) dx = f(y)

∫
T
f(x) dx

Thus, the integral I has the property that I = t · I where t 6= 1. This gives (1 − t) · I = 0, so I = 0 since
t 6= 1. ///

[7.2] Remark: This vanishing trick is impressive, since nothing specific about the continuous group
homomorphism f or topological group (T here) is used, apart from the finiteness of the total measure
of the group, which comes from its compactness. That is, the same proof would show that integrals over
compact groups of non-trivial group homomorphisms are 0. However, a notion of invariant measure [30] for
general groups requires effort. Nevertheless, with an invariant measure, the same argument succeeds.

Less critically than the invariance, we want a normalization∫
T

1 dx = vol (T) = vol (R/Z) = 1

[30] Translation-invariant measures on topological groups are called Haar measures. General proof of their existence

takes a little work, and invokes the Riesz representation theorem. Uniqueness can be made to be an example of a

more general argument about uniqueness of invariant functionals.
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Then ∫
T
|ψn(x)|2 dx =

∫
T

1 dx = 1

Thus, without any explicit presentation of the integral or measure, we have proven that the distinct
exponentials are an orthonormal set with respect to the inner product

〈f, g〉 =

∫
T
f(x) g(x) dx

An integration by parts formula should be expected, with no boundary terms since T = R/Z has empty
boundary. Indeed, without constructing the invariant integral, we prove what we want from its properties:

[7.3] Claim: Let f →
∫
T f(x) dx be an invariant integral on T, for f ∈ Co(T). Then for f ∈ C1(T)∫

T
f ′(x) dx = 0

and we have the integration by parts formula for f, g ∈ C1(T)∫
T
f(x) g′(x) dx = −

∫
T
f(x)′ g(x) dx

[7.4] Remark: Vanishing of integrals of derivatives does not depend on the particulars of the situation.
The same argument succeeds on an arbitrary group possessing (translation) invariant differentiation(s) and
an invariant integral. Thus, the specific geometry of the circle is not needed to argue that

∫
T f
′(x)dx =∫ 1

0
f(x) dx = f(2π)− f(0) = 0 because f is periodic. The latter classical argument is valid, but fails to show

a generally applicable mechanism. The same independence of particulars applies to the integration by parts
rule.

Proof: The translation invariance of the integral makes the integral of a derivative 0, by direct computation,
as follows. We interchange a differentiation and an integral. [31]∫

T
f ′(x) dx =

∫
T

∂

∂t
|t=0 f(x+ t) dx =

d

dt
|t=0

∫
T
f(x+ t) dx =

d

dt
|t=0

∫
T
f(x) dx = 0

by changing variables in the integral. Then apply this to the function (f · g)′ = f ′g + fg′ to obtain∫
T
f ′(x) g(x) dx+

∫
T
f(x) g′(x) dx = 0

which gives the integration by parts formula. ///

The usual (Lebesgue) integral on the uniformizing R has the corresponding property of translation invariance.

Since we present the circle as a quotient R→ R/Z = T of R we expect a compatibility [32]

∫
R
F (x) dx =

∫
R/Z

∑
n∈Z

F (x+ n)

 dx

[31] The argument bluntly demands this interchange of limit and differentiation, so justification of it is secondary to

the act itself. In the near future this and many other necessary interchanges are definitively justified via Gelfand-

Pettis (also called weak) integrals. In the present concrete situation elementary (but opaque) arguments could be

invoked, but we do not do this.

[32] In contrast to many sources, this compatibility is not about choosing representatives in [0, 1) or anywhere else for

\T . Rather, this compatibility would be required for a topological group G (here R), a discrete subgroup Γ (here Z),

and the quotient G/Γ (here T), whether or not that quotient is otherwise identifiable. This compatibility is a sort of

Fubini theorem. The usual Fubini theorem applies to products X × Y , whose quotients (X × Y )/X ≈ Y are simply

the factors, but another version applies to quotients that are not necessarily factors.
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for at least compactly-supported continuous functions F on R.

Indeed, we can define integrals of functions on T by this compatibility relation, by expressing a continuous
function f on T as a periodicization (or automorphization)

f(x) =
∑
n∈Z

F (x+ n)

of a compactly supported continuous function F on R, and define∫
T
f(x) dx =

∫
R
F (x) dx

We still need to prove that this value is independent of the choice of F for given f .

The properties required of an integral on T are clear. Sadly, we are not in a good position (yet) either to
prove uniqueness or to give a construction as gracefully as these ideas deserve.

Postponing a systematic approach, we neglect any proof of uniqueness, and for a construction revert to an
ugly-but-tangible reduction of the problem to integration on an interval. That is, note that in the quotient
q : R → R/Z = T the interval [0, 1] maps surjectively, with the endpoints being identified (and no other

points identified). In traditional terminology, [0, 1] is a fundamental domain [33] for the action of Z on R.
Then define the integral of f on T by ∫

T
f(x) dx =

∫ 1

0

(f ◦ q)(x) dx

with usual (Lebesgue) measure on the unit interval. Verification of the compatibility with integration on R
is silly, from this viewpoint.

This (bad) definition does allow explicit computations, but makes translation invariance harder to prove,

since the unit interval gets pushed off itself by translation. But we can still manage the verification. [34]

Take y ∈ R, and compute∫
T
f(x+ y) dx =

∫ 1

0

(f ◦ q)(x+ y) dx =

∫ 1−y

−y
(f ◦ q)(x) dx

=

∫ 0

−y
(f ◦ q)(x) dx+

∫ 1−y

0

(f ◦ q)(x) dx =

∫ 0

−y
(f ◦ q)(x− 1) dx+

∫ 1−y

0

(f ◦ q)(x) dx

since (f ◦ q)(x) = (f ◦ q)(x− 1) by periodicity. Then, replacing x by x+ 1 in the first integral, this is∫ 1

1−y
(f ◦ q)(x) dx+

∫ 1−y

0

(f ◦ q)(x) dx =

∫ 1

0

(f ◦ q)(x) dx

[33] The notion of fundamental domain for the action of a group Γ on a set X has an obvious appeal, at least that it

is more concrete than the notion of quotient Γ\X. However, it is rarely possible to determine an exact fundamental

domain, and one eventually discovers that the details are seldom useful even if this is possible. Instead, the quotient

should be treated directly.

[34] While suppressing our disgust.
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8. Levi-Sobolev inequalities, Levi-Sobolev imbeddings

The simplest L2 theory of Fourier series addresses neither continuity nor differentiability. [35] Yet it would be
advantageous on general principles to be able to talk about differentiability in the context of Hilbert spaces,
since Hilbert spaces have easily understood dual spaces. Beppo Levi, Frobenius, and Sobolev made useful
comparisons. The idea is to compare Ck norms to norms coming from Hilbert spaces whose inner products
refer to derivatives, the Levi-Sobolev spaces.

[8.1] Levi-Sobolev inequalities

First, we have an easy estimate for a variant Ck norm:∣∣∣∣∣∣
∑
|n|≤N

cn e
2πinx

∣∣∣∣∣∣
Ck

= sup
0≤j≤k

sup
x

∣∣∣∣∣∣
∑
|n|≤N

cn (2πin)j e2πinx

∣∣∣∣∣∣
C

≤
∑
|n|≤N

|cn| · (1 + 4π2n2)k/2

all for elementary reasons. [36] Perhaps surprisingly, rather try to directly obtain a sup norm estimate on
this sum, Cauchy-Schwarz-Bunyakowsky is invoked: for any s ∈ R∣∣∣∣∣∣

∑
|n|≤N

cn e
2πinx

∣∣∣∣∣∣
Ck

≤
∑
|n|≤N

|cn| · (1 + 4π2n2)s/2 · 1

(1 + 4π2n2)(s−k)/2

≤

 ∑
|n|≤N

|cn|2 · (1 + 4π2n2)s

1/2

·

 ∑
|n|≤N

1

(1 + 4π2n2)s−k

1/2

Convergence of the elementary sum is easy to understand:∑
n∈Z

1

(1 + 4π2n2)s−k
< +∞ (for s > k + 1

2 )

Thus, for any s > k + 1
2 we have a Levi-Sobolev inequality∣∣∣∣∣∣

∑
|n|≤N

cn ψn

∣∣∣∣∣∣
Ck

≤

∑
n∈Z

1

(1 + 4π2n2)s−k

1/2

·

 ∑
|n|≤N

|cn|2 · (1 + 4π2n2)s

1/2

≤

∑
n∈Z

1

(1 + 4π2n2)s−k

1/2

·

∑
n∈Z
|cn|2 · (1 + 4π2n2)s

1/2

which is summarized as∣∣∣∣∣∣
∑
n∈Z

cn ψn

∣∣∣∣∣∣
Ck

≤

∑
n∈Z

1

(1 + 4π2n2)s−k

1/2

·

∑
n∈Z
|cn|2 · (1 + 4π2n2)s

1/2

(for s > k + 1
2 )

[35] It was not until the mid-20th century that L. Carleson showed, in L. Carleson, On convergence and growth of

partial sums of Fourier series, Acta Math. 116 (1966), 135-157, that Fourier series of L2 functions do converge

pointwise almost everywhere. But this is a fragile sort of result.

[36] The awkward expression (1 + 4π2n2)1/2 is essentially a uniform constant multiple of n. However, for n = 0 we

cannot divide by n, and replacing n by (1 + 4π2n2)1/2 is one traditional device stunt to avoid this annoyance.
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Existence of this comparison makes the right side interesting. Taking away from the right-hand side the
uniform constant

ωs−k =

∑
n∈Z

1

(1 + 4π2n2)s−k

1/2

gives the sth Levi-Sobolev norm

sth Levi-Sobolev norm =
∣∣∣∑
n∈Z

cn ψn

∣∣∣
Hs

=

∑
n∈Z
|cn|2 · (1 + 4π2n2)s

1/2

Paraphrasing, we have proven the dominance relation

| |Ck ≤ ωs−k · | |Hs (for any s > k + 1
2 )

[8.2] Levi-Sobolev imbeddings

For s ≥ 0, the sth Levi-Sobolev space is [37]

Hs(T) = {f ∈ L2(T) :
∑
n

|f̂(n)|2 · (1 + 4π2n2)s < +∞}

The inner product on Hs(T) is〈∑
n

an ψn,
∑
n

bn ψn

〉
= 2π

∑
n

an bn (1 + 4π2n2)s

The factor 4π2 plays no significant role, and is often normalized away.

[8.3] Remark: This definition of Hs(T) defines a useful space of functions or generalized functions only for
s ≥ 0, since for s < 0 the constraint f ∈ L2(T) is stronger (from the Plancherel theorem) than the condition
defining Hs(T) in the previous display.

[8.4] Remark: The 0th Levi-Sobolev space is just L2(T).

[8.5] Corollary: For s > k + 1
2 there is a continuous inclusion

Hs(T) ⊂ Ck(T)

Proof: For s > k + 1
2 , whenever a Fourier series has a finite Levi-Sobolev norm

∣∣∣∑
n

cn ψn

∣∣∣
Hs

=

∑
n∈Z
|cn|2 · (1 + 4π2n2)s

1/2

< +∞

the partial sums of the Fourier series are Cauchy in Hs, hence Cauchy in Ck, so converge in the Banach
space Ck: ∑

n

cn ψn = Ck function on T

[37] This definition is fine for s ≥ 0, but not sufficient for s < 0. We will give the broader definition below. Keep in

mind that L2(T) contains Co(T) and all the Ck(T)’s.
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Proof: Apply the Levi-Sobolev inequality |f |Ck ≤ ω · |f |Hs to finite linear combinations f of exponentials.
Such finite linear combinations are Ck, and the inequality implies that an infinite sum of such, convergent
in Hs(T), has sequence of partial sums convergent in Ck(T). That is, by the completeness of Ck(T), the
limit is still k times continuously differentiable. Thus, we have the containment. Given the containment, the
inequality of norms implies the continuity of the inclusion. ///

[8.6] Levi-Sobolev Hilbert spaces

[8.7] Claim: The sth Levi-Sobolev space Hs(T) (with 0 ≤ s ∈ R) is a Hilbert space. In particular, the
sequences of Fourier coefficients of functions in Hs(T) are all two-sided sequences {cn : n ∈ Z} of complex
numbers meeting the condition ∑

n

|cn|2 · (1 + 4π2n2)s < +∞

[8.8] Remark: It is clear that the exponentials ψn are an orthogonal basis for Hs(T), although their norms
depend on the index s. In particular, the collection of finite linear combinations of exponentials is dense in
Hs(T).

[8.9] Remark: Again, we do want to define these positively-indexed Levi-Sobolev spaces as subspaces of
genuine spaces of functions, not as sequences of Fourier coefficients meeting the condition, and then prove
the second assertion of the claim. This does leave open, for the moment, the question of how to define
negatively-indexed Levi-Sobolev spaces.

Proof: In effect, this is the space of L2 functions on which the Hs-norm is finite. If we prove the second
assertion of the claim, then invoke the usual proof that L2 spaces are complete to know that Hs(T) is
complete, since it is simply a weighted L2-space. Given a two-sided sequence {cn} of complex numbers such
that ∑

n

|cn|2 · (1 + 4π2n2)s < +∞

since s ≥ 0, ∑
n

|cn|2 < +∞

and, by Plancherel, ∑
n

cn ψn ∈ L2(T)

This shows that Hs(T) is a Hilbert space for s ≥ 0. ///

[8.10] Remark: Insisting on viewing L2(T) as equivalence classes of functions may mislead us into making a
needlessly complicated assertion about Levi-Sobolev imbeddings Hs(T) ⊂ Ck(T) for s > k + 1

2 , by insisting
that Hs(T) consists of almost-everywhere equivalence classes of L2(T) functions, only one of which is in
Ck(T). This is not a genuine issue.

[8.11] Levi-Sobolev norms in terms of derivatives

[8.12] Remark: Apart from having the virtue of giving inner-product structures, the expressions appearing
in these Levi-Sobolev norms are natural because they have meaning in terms of L2-norms of derivatives. For
f =

∑
cn ψn ∈ Ck(T), by Plancherel

(norm via derivatives) = |f |2 + |f ′|2 + |f ′′|2 + . . .+ |f (k)|2

=
∑
n

|cn|2 · (1 + (2πn)2 + (2πn)4 + . . .+ (2πn)2k) ≤
∑
n

|cn|2 · (1 + 4π2n2)k
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Conversely,

(1 + 4π2n2)k ≤ Ck · (1 + (2πn)2 + (2πn)4 + (2πn)6 + . . .+ (2πn)2k) (for some constant Ck)

so

(norm via Fourier coefficients) =
∑
n

|cn|2 · (1 + 4π2n2)k ≤ Ck ·
(
|f |2 + |f ′|2 + |f ′′|2 + . . .+ |f (k)|2

)
Thus, the two definitions of Levi-Sobolev norms, in terms of weighted L2 norms of Fourier series, or in
terms of L2 norms of derivatives, give comparable Hilbert space structures. In particular, the topologies are
identical.

[8.13] Corollary: For k ≥ 0,
Ck(T) ⊂ Hk(T)

Proof: For k = 0, the assertion is that Co(T) ⊂ L2(T), which holds because T is compact. Similarly, the
relevant derivatives of f ∈ Ck(T) are in L2(T), so f ∈ Hk(T). ///

[8.14] Remark: One can work out the corresponding inequalities for Fourier series in several variables,
proving that (k + n

2 + ε)-fold L2 differentiability (for any ε > 0) in dimension n is needed to assure k-fold
continuous differentiability. This is L2 Levi-Sobolev theory.

[8.15] Uniform pointwise convergence, convergence in Ck(T)
At this moment it is very easy to give a straightforward, if not sharp, result about convergence of Ck functions
on T, via the Levi-Sobolev spaces:

[8.16] Corollary: The Fourier series of f ∈ Ck(T) converges to f in Ck−1(T).

Proof: A function in Ck(T) is in the Hilbert space Hk(T), meaning that the finite partial sums of the
Fourier expansion converge to f in Hk(T). The Hk(T) norm dominates that of Ck−1(T), so the Fourier
series converges to f in Ck−1(T). ///

[8.17] Remark: It may seem mildly peculiar that the Fourier series of a Ck function can converge to it only
in Ck−1.

[8.18] L2-differentiation

[8.19] Claim: For every s ≥ 0, the differentiation map

d

dx
: finite Fourier series −→ finite Fourier series

is continuous when the source is given the Hs(T) topology and the target is given the Hs−1(T) topology.

Proof: This continuity is by design:∣∣∣ d
dx

∑
|n|≤N

cn e
2πinx

∣∣∣2
Hs−1

=
∣∣∣ ∑
|n|≤N

cn 2πin e2πinx
∣∣∣2
Hs−1

≤
∑
|n|≤N

|2πncn|2 · (1 + 4π2n2)s−1

≤
∑
|n|≤N

|cn|2 · (1 + 4π2n2)s =
∣∣∣ ∑
|n|≤N

cn e
2πinx

∣∣∣2
Hs
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proving the continuity on finite Fourier series. ///

Therefore, we can extend d
dx by continuity to obtain continuous linear maps

(L2-differentiation) = (extension by continuity of)
d

dx
: Hs(T) −→ Hs−1(T)

[8.20] Remark: In these terms, extra L2-differentiability is needed to assure comparable classical continuous
differentiability. Specifically, (k+ 1

2 + ε)-fold L2-differentiability (for any ε > 0) suffices for k-fold continuous
differentiability, in this one-dimensional example. The comparable computations on (T)×n show that the gap
widens as the dimension grows.

9. C∞ = limCk = limHs = H∞

For larger purposes, the specific comparisons of indices in the containments

Hs(T) ⊂ Ck(T) (for s > k + 1
2 )

Ck(T) ⊂ Hs(T) (for k ≥ s)

are secondary, since we are more interested in smooth functions C∞(T) than functions with limited continuous
differentiability.

Thus, the point is that the Levi-Sobolev spaces and Ck(T) spaces are cofinal under taking descending
intersections. That is, letting H∞(T) be the intersection of all the Hs(T), as sets we have

C∞(T) =
⋂
k

Ck(T) =
⋂
s≥0

Hs(T) = H∞(T)

Since descending nested intersections are limits, the topologies behave well for trivial reasons:

[9.1] Theorem: As topological vector spaces

C∞(T) = lim
k
Ck(T) = lim

s≥0
Hs(T) = H∞(T)

Proof: The cofinality of the Ck’s and the Hs’s gives a natural isomorphism of the two limits, since they
can be combined in a larger limit in which each is cofinal. ///

Again, in general duals of limits are not colimits, but we did show earlier that the dual of a limit of Banach
spaces is the colimit of the duals of the Banach spaces. Thus,

[9.2] Corollary: The space of distributions on T is

C∞(T)∗ = colimkC
k(T)∗ = colims≥0H

s(T)∗ = H∞(T)∗

(and the duals Hs(T)∗ admit further explication, below). ///

Expressing C∞(T) as a limit of the Hilbert spaces Hs(T), as opposed to its more natural expression as a

limit of the Banach spaces Ck(T), is convenient when taking duals, since by the Riesz-Fischer theorem [38]

we have explicit expressions for Hilbert space duals. We exploit this possibility below.

[38] The Riesz-Fischer theorem asserts that the (continuous) dual V ∗ of a Hilbert space V is C-conjugate linearly

isomorphic to V . The isomorphism from V to V ∗ attaches the linear functional v → 〈v, w〉 to an element w ∈ V .

Since our hermitian inner products 〈, 〉 are conjugate-linear in the second argument, the map w → 〈 , w〉 is conjugate

linear.
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10. Distributions, generalized functions, again

We will see that distributions on T have Fourier expansions, greatly facilitating their study. [39]

The exponential functions ψn are in C∞(T), so for any distribution u we can compute Fourier coefficients
of u by

(nth Fourier coefficient of u) = û(n) = ·u(ψ−n)

Write
u ∼

∑
n

û(n) · ψn

even though pointwise convergence of the indicated sum is certainly not expected. Define Levi-Sobolev spaces
for all s ∈ R by

Hs(T) = {u ∈ C∞(T)∗ :
∑
n

|u(ψ−n)|2 · (1 + 4π2n2)s <∞}

and the sth Levi-Sobolev norm |u|Hs is

|u|2Hs =
∑
n

|u(ψ−n)|2 · (1 + 4π2n2)s

For 0 ≤ s ∈ Z, this definition is visibly compatible with the previous definition via derivatives.

[10.1] Remark: The formation of the Levi-Sobolev spaces of both positive and negative indices portrays the
classical functions of various degrees of (continuous) differentiability together with distributions of various
orders as fitting together as comparable objects. By contrast, thinking only in terms of the spaces Ck(T)
does not immediately suggest a comparison with distributions.

For convenience, define a weighted version `2,s of (a two-sided version of) the classical Hilbert space `2 by

`2,s = {{cn : n ∈ Z} :
∑
n∈Z
|cn|2 · (1 + 4π2n2)s <∞}

with the weighted version of the usual hermitian inner product, namely,

〈{cn}, {dn}〉 =
∑
n∈Z

cn dn · (1 + 4π2n2)s

[10.2] Claim: The complex bilinear pairing

〈, 〉 : `2,s × `2,−s −→ C

by

〈{cn}, {dn}〉 =
∑
n

cn d−n

identifies these two Hilbert spaces as mutual duals, where

`2,−s −→ (`2,s)∗ by {dn} → λ{dn} where λ{dn}({cn}) =
∑
n

cn d−n

[39] In contrast, discussion of distributions on the real line R is more complicated, due to the non-compactness of R.

Not every distribution on R is the Fourier transform of a function. Distributions which admit Fourier transforms,

tempered distributions, constitue a proper subset of all distributions on R.
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[10.3] Remark: The minus sign in the subscript in the last formula is not the main point, but is a necessary
artifact of our change from a hermitian form to a complex bilinear form. It is (thus) necessary to maintain
compatibility with the Plancherel theorem for ordinary functions.

Proof: The Cauchy-Schwarz-Bunyakowsky inequality gives the continuity of the functional attached to {dn}
in `2,−s by ∣∣∣∑

n

cn · d−n
∣∣∣ ≤ ∑

n

|cn| (1 + 4π2n2)s/2 · |d−n| (1 + 4π2n2)−s/2

≤

(∑
n

|cn|2 (1 + 4π2n2)s

)1/2

·

(∑
n

|dn|2 (1 + 4π2n2)−s

)1/2

= |{cn}|`2,s · |{dn}|`2,−s

proving the continuity. To prove the surjectivity we adapt the Riesz-Fischer theorem by a renormalization.
That is, given a continuous linear functional λ on `2,s, by Riesz-Fischer there is {an} ∈ `2,s such that

λ({cn}) = 〈{cn}, {an}〉`2,s =
∑
n

cn · an · (1 + 4π2n2)s

Take
dn = a−n · (1 + 4π2n2)s

Check that this sequence of complex numbers is in `2,−s, by direct computation, using the fact that
{an} ∈ `2,s,∑

n

|dn|2 · (1 + 4π2n2)−s =
∑
n

|a−n · (1 + 4π2n2)s|2 · (1 + 4π2n2)−s =
∑
n

|an|2 · (1 + 4π2n2)s < +∞

Thus, `2,−s is (isomorphic to) the dual of `2,s. ///

[10.4] Claim: The map u→ {û(n)} on Hs(T) by taking Fourier coefficients is a Hilbert-space isomorphism

Hs(T) ≈ `2,s

Proof: That the two-sided sequence of Fourier coefficients u(ψ−n) is in `2,s is part of the definition of Hs(T).
The more serious question is surjectivity.

Let {cn} ∈ `2,s. For s ≥ 0, the sth Levi-Sobolev norm dominates the 0th, so distributions in Hs(T) are at
least L2(T)-functions. The definition of Hs(T) in this case makes Hs(T) a Hilbert space, and we directly
invoke the Plancherel theorem, using the orthonormal basis ψn√

2π
· (1 + 4π2n2)−s/2 for Hs(T). This gives the

surjectivity Hs(T)→ `2,s for s ≥ 0.

For s < 0, to prove the surjectivity, for {cn} in `2,s we will define a distribution u lying in Hs(T), by

u(f) =
∑
n

f̂(n) · c−n (f ∈ C∞(T))

By Cauchy-Schwarz-Bunyakowsky,

|
∑
n

f̂(n) · c−n| ≤
∑
n

|f̂(n)| (1 + 4π2n2)−s/2 · |cn| (1 + 4π2n2)s/2

≤

(∑
n

|f̂(n)|2 (1 + 4π2n2)−s

)1/2

·

(∑
n

|cn|2 (1 + 4π2n2)s

)1/2

= |f |H−s · |{cn}|`2,s
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This shows that u is a continuous linear functional on H−s(T). For s < 0, the test functions C∞(T) imbed
continuously into H−s(T), so u gives a continuous functional on C∞(T), so is a distribution. This proves
that the Fourier coefficient map is a surjection to `2,s for s < 0. ///

[10.5] Remark: After this preparation, the remainder of this section is completely unsurprising. The
following corollary is the conceptual point of this story.

[10.6] Corollary: For any s ∈ R, the complex bilinear pairing

〈, 〉 : Hs ×H−s → C by f × u→ 〈f, u〉 =
∑
n

f̂(n) · û(−n)

gives an isomorphism
H−s ≈ (Hs)∗

by sending u ∈ H−s to λu ∈ (Hs)∗ defined by

λu(f) = 〈f, u〉 (for f ∈ Hs(T))

[10.7] Remark: The pairing of this last claim is unsymmetrical: the left argument is from Hs while the
right argument is from H−s.

Proof: This pairing via Fourier coefficients is simply the composition of the maps Hs(T) ≈ `2,s and
H−s(T) ≈ `2,−s with the pairing of `2,s and `2,−s given just above. ///

[10.8] Corollary: The space of all distributions on T is

distributions = C∞(T)∗ =
⋃
s≥0

Hs(T)∗ =
⋃
s≥0

H−s(T) = colims≥0H
−s(T)

thus expressing C∞(T)∗ as an ascending union of Hilbert spaces. ///

[10.9] Corollary: A distribution u ∼
∑
n cn ψn can be evaluated on f ∈ C∞(T) by

u(f) =
∑
n

f̂(n) · û(−n)

Proof: Since u lies in some H−s(T), it gives a continuous functional on Hs(T), which contains C∞(T). The
Plancherel-like evaluation formula above gives the equality. ///

A collection of Fourier coefficients {cn} is of moderate growth when there is a constant C and an exponent
N such that

|cn| ≤ C · (1 + 4π2n2)N (for all n ∈ Z)

[10.10] Corollary: Let {cn} be a collection of complex numbers of moderate growth. Then there is a
distribution u with those as Fourier coefficients, that is, there is u with

u(ψ−n) = cn

Proof: For constant C and exponent N such that |cn| ≤ C · (1 + n2)N ,∑
n

|cn|2 · (1 + 4π2n2)−(2N+1) ≤
∑
n

C2 · (1 + 4π2n2)2N · (1 + 4π2n2)−(2N+1) = C2 ·
∑
n

(1 + 4π2n2)−1 < ∞
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That is, from the previous discussion, the sequence gives an element of H−(2N+1)(T) ⊂ C∞(T)∗. ///

[10.11] Corollary: For u ∼
∑
n cn ψn ∈ Hs(T) the derivative (for any s ∈ R) is

u′ ∼
∑
n

2πin · cn · ψn ∈ Hs−1

Proof: Invoke the definition (compatible with integration by parts) of the derivative of distributions, and

integrating by parts to see that f̂ ′(n) = 2πin · f̂(n) for f ∈ C∞(T) = H∞(T),

u′(f) = −u(f ′) = −
∑
n

f̂ ′(n) · û(−n) = −
∑
n

2πin f̂(n) · û(−n) =
∑
n

f̂(n) · −2πin û(−n)

as claimed. The Fourier coefficients −in · û(n) do satisfy∑
n

|2πin û(n)|2 · (1 + 4π2n2)s−1 �
∑
n

(1 + 4π2n2) |û(n)|2 · (1 + 4π2n2)s−1

=
∑
n

|û(n)|2 · (1 + 4π2n2)s = |u|2Hs <∞

which proves that the differentiation maps Hs to Hs−1 continuously. ///

[10.12] Remark: In the latter proof the sign in the subscript in the definition of the pairing `2,s × `2,−s
was essential.

[10.13] Corollary: The collection of finite linear combinations of exponentials ψn is dense in every Hs(T),
for s ∈ R. In particular, C∞(T) is dense in every Hs(T), for s ∈ R.

Proof: The exponentials are an orthogonal basis for every Levi-Sobolev space. ///

[10.14] Remark: The topology of colimit of Hilbert spaces is the finest of several reasonable topologies on
distributions. Density in a finer topology is a stronger assertion than density in a coarser topology.

11. The provocative example explained

The classically confusing example of the sawtooth function is clarified in the context we’ve developed. By now,
we know that Fourier series whose coefficients satisfy sufficient decay conditions are classically differentiable.
Even when the coefficients do not decay, but only grow moderately, the Fourier series is that of a generalized
function. In other words, we can always differentiate Fourier series term by term, if the coefficients are of at
worst polynomial growth, if we can tolerate the outcome being a generalized function, rather than necessarily
a classical function.

Again, s(x) is the sawtooth function

s(x) = x− 1
2 (for 0 ≤ x < 1)

made periodic by demanding s(x + n) = s(x) for all n ∈ Z. Away from Z, this function is infinitely
differentiable, with derivative 1. At integers it jumps down from value 1

2 to value − 1
2 . We do not attempt

to define a value at points in Z.

We want to differentiate this function compatibly with integration by parts, and compatibly with term-by-
term differentiation of Fourier series.
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The sawtooth function is well-enough behaved to give a distribution by integrating against it, over R/Z.
Therefore, as we saw above, it can be differentiated as a distribution, and be correctly differentiated as (as
a distribution) by differentiating its Fourier expansion termwise.

A earlier, Fourier coefficients are computed by integrating against e−2πinx

∫ 1

0

s(x) · e−2πinx dx =


1

−2πin
(for n 6= 0)

0 (for n = 0)

Thus, at least as a distribution, its Fourier expansion is

s(x) =
1

−2πi

∑
n 6=0

1

n
· e2πinx

The series does converge pointwise to s(x) for x away from (images of) integers, as we proved happens at
left and right differentiable points for piecewise Co functions, following Fourier and Dirichlet.

We are entitled to differentiate, at worst within the class of distributions, within which we are assured of
a reasonable sense to our computations. Further, we are entitled (for any distribution) to differentiate the
Fourier series term-by-term. That is, as distributions,

s′(x) = −
∑
n 6=0 e

2πinx

s′′(x) = −
∑
n 6=0 2πin e2πinx

· · ·

s(k)(x) = −
∑
n 6=0 (2πin)k−1 e2πinx

and so on, just as successive derivatives of smooth functions f(x) =
∑
n cn e

2πinx are obtained by termwise
differentiation

f (k)(x) =
∑
n 6=0

(2πin)k cn e
2πinx

The difficulty of interpreting the right-hand side of the Fourier series for s(k) as having pointwise values is
irrelevant.

More to the point, these Fourier series are things to integrate smooth functions against, by an extension of the
Plancherel formula for inner products of L2 functions. Namely, for any smooth function f(x) ∼

∑
n cn e

2πinx,
the imagined integral of f against s(k) should be expressible as the sum of products of Fourier coefficients

imagined 〈f, s(k)〉 =
∑
n6=0

cn ·
(

(2πin)k

−2πin

)conj

(where α→ αconj is complex conjugation) and the latter expression should behave well when rewritten in a
form that refers to the literal function s. Indeed,

∑
n 6=0

cn ·
(

(2πin)k

−2πin

)conj

= (−1)k
∑
n 6=0

(2πin)k cn ·
(

1

−2πin

)conj

= (−1)k
∫
T
f (k)(x) s(x) dx

by the Plancherel theorem applied to the L2 functions f (k) and s. Let u be the distribution given by
integration against s. Then, by the definition of differentiation of distributions, we have computed that

(−1)k
∫
T
f (k)(x) s(x) dx = (−1)ku(f (k)) = u(k)(f)
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It is in this sense that the sum
∑
n 6=0 cn ·

(2πin)k

−2πin is integration of s against f .

Further, for f a smooth function with support away from the discontinuities of s, it is true that u′′(f) = 0,
giving s′′ a vague pointwise sense of being 0 away from the discontinuities of s. This was clear at the outset,
but now is given precise meaning.

Thus, as claimed at the outset of the discussion of functions on the circle, we can differentiate s(x)
legitimately, and the differentiation of the Fourier series of the sawtooth function s(x) correctly represents
this differentiation, viewing s(x) and its derivatives as distributions.

12. Appendix: products and limits of topological vector spaces

Here we recall the diagrammatical proof that products and limits of topological vector spaces exist, and are
locally convex when the factors or limitands are locally convex. Nothing surprising happens.

[12.1] Claim: Products and limits of topological vector spaces exist. In particular, limits are closed (linear)
subspaces of the corresponding products. When the factors or limitands are locally convex, so is the product
or limit.

[12.2] Remark: Part of the point is that products and limits of locally convex topological vector spaces in
the larger category of not-necessarily locally convex topological vector spaces are nevertheless locally convex.
That is, enlarging the category in which we take test objects does not change the outcome, in this case. By
contrast, coproducts and colimits in general are sensitive to local convexity of the test objects. [40]

Proof: After we construct products, limits are constructed as closed subspaces of them.

Let Vi be topological vector spaces. We claim that the topological-space product V = ΠiVi (with projections
pi) (with the product topology) is a topological vector space product. Let αi : Vi × Vi → Vi be the addition
on Vi. The family of composites αi ◦ (pi × pi) : V × V → Vi induces a map α : V × V → V as in

V × V

pi×pi
��

α //___ V

pi

��
Vi × Vi αi

// Vi

This defines what we will show to be a vector addition on V . Similarly, the scalar multiplications
si : C× Vi → Vi composed with the projections pi : V → Vi give a family of maps

si ◦ (1× pi) : C× V −→ Vi

which induce a map s : C× V → V which we will show to be a scalar multiplication on V . That these maps
are continuous is given us by starting with the topological-space product.

That is, we must prove that vector addition is commutative and associative, that scalar multiplication is
associative, and that the two have the usual distributivity. All these proofs are the same in form. For

[40] For example, there are problems with uncountable coproducts in the category of not-necessarily locally convex

topological vector spaces, essentially because the not-locally-convex spaces `p with 0 < p < 1 exist.
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commutativity of vector addition, consider the diagram

Vi × Vi
v×w→v+w // Vi

V × V

pi×pi
99sssssssss

v×w→w×v
��

v×w→v+w
**e b _ \ Y V

v×w→w+v
44Y \ _ b e h V

pi
??�������

pi ��@
@@

@@
@@

@

V × V
pi×pi // Vi × Vi

v×w→w+v // Vi

The upper half of the diagram is the induced-map definition of vector addition on V , and the lower half is
the induced map definition of the reversed-order vector addition. The commutativity of addition on each
Vi implies that going around the top of the diagram from V × V to Vi yields the same as going around the
bottom. Thus, the two induced maps V × V → V must be the same, since induced maps are unique.

The proofs of associativity of vector addition, associativity of scalar multiplication, and distributivity, use
the same idea. Thus, products of topological vector spaces exist.

We should not forget to prove that the product is Hausdorff, since we implicitly require this of topological
vector spaces. This is immediate, since a (topological space) product of Hausdorff spaces is readily shown
to be Hausdorff.

Consider now the case that each Vi is locally convex. By definition of the product topology, every
neighborhood of 0 in the product is of the form ΠiUi where Ui is a neighborhood of 0 in Vi, and all
but finitely many of the Ui are the whole Vi. Since Vi is locally convex, we can shrink every Ui that is not Vi
to be a convex open containing 0, while each whole Vi is convex. Thus, the product is locally convex when
every factor is.

To construct limits, reduce to the product.

[12.3] Claim: Let Vi be topological vector spaces with transition maps ϕi : Vi → Vi−1. The limit V = limi Vi
exists, and, in particular, is the closed linear subspace (with subspace topology) of the product ΠiVi (with
projections pi) defined by the (closed) conditions

lim
i
Vi = {v ∈ ΠiVi : (ϕi ◦ pi)(v) = pi−1(v), for all i}

Proof: (of claim) Constructing the alleged limit as a closed subspace of the product immediately yields the
desired properties of vector addition and scalar multiplication, as well as the Hausdorff-ness. What we must
show is that the construction does function as a limit.

Given a compatible family of continuous linear maps fi : Z → Vi, there is induced a unique continuous linear
map F : Z → ΠiVi to the product, such that pi ◦ f = fi for all i. The compatibility requirement on the fi
exactly asserts that f(Z) sits inside the subspace of ΠiVi defined by the conditions (ϕi ◦ pi)(v) = pi−1(v).
Thus, f maps to this subspace, as desired.

Further, for all limitands locally convex, we have shown that the product is locally convex. The local
convexity of a linear subspace (such as the limit) follows immediately. ///
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13. Appendix: Fréchet spaces and limits of Banach spaces

A class of topological vector spaces arising in practice, larger than the class of Banach spaces, is the class of
Fréchet spaces. In the present context, we can give a nice definition: a Fréchet space is a countable limit of
Banach spaces. [41] Thus, for example,

C∞(T) =
⋂
k

Ck(T) = lim
k
Ck(T)

is a Fréchet space, by (this) definition.

Despite its advantages, the present definition is not the usual one. [42] We make a comparison, and elaborate
on the features of Fréchet spaces.

Recall that a metric d(, ) on a vector space V is invariant (implicitly, under addition), when

d(x+ z, y + z) = d(x, y) (for all x, y, z ∈ V )

All metrics we’ll care about on topological vector spaces will be invariant in this sense.

[13.1] Claim: A Fréchet space (a countable limit of Banach spaces) is locally convex and complete

metrizable. [43]

Proof: Let V = limiBi be a countable limit of Banach spaces Bi, where ϕi : Bi → Bi−1 are the transition
maps and pi : V → Bi are the projections. From the appendix, the limit is a closed linear subspace of the
product, and the product is the cartesian product with the product topology and component-wise vector
addition. Recall that a product of a countable collection of metric spaces is metrizable, and is complete if
each factor is complete. A closed subspace of a complete metric space is complete metric. Thus, limiBi is
complete metric.

As in the previous appendix, any product or limit of locally convex spaces is locally convex, whether or not
it has a countable cofinal family. Thus, the limit is Fréchet. ///

Addressing the comparison between local convexity and limits of Banach spaces, we have

[13.2] Theorem: Every locally convex topological vector space is a subspace of a limit of Banach spaces
(and vice-versa).

[41] Of course, it suffices that a limit have a countable cofinal subfamily.

[42] A common definition, with superficial appeal, is that a Fréchet space is a complete (invariantly) metrized space

that is locally convex. This has the usual disadvantage that there are many different metrics that can give the

same topology. This also ignores the manner in which Fréchet spaces usually arise, as countable limits of Banach

spaces. There is another common definition that does halfway acknowledge the latter construction, namely, that a

Fréchet space is a complete topological vector space with topology given by a countable collection of seminorms. The

latter definition is essentially equivalent to ours, but requires explanation of the suitable notion of completeness in a

not-necessarily metric situation, as well as explanation of the notion of seminorm and how topologies are specified

by seminorms. We skirt the latter issues for the moment.

[43] As is necessary to prove the equivalence of the various definitions of Fréchet space, the converse of this claim is

true, namely, that every locally convex and complete (invariantly) metrizable topological vector space is a countable

limit of Banach spaces. Proof of the converse requires work, namely, development of ideas about seminorms. Since

we don’t need this converse at the moment, we do not give the argument.
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[13.3] Remark: This little theorem encapsulates the construction of semi-norms to give a locally convex
topology. It can also be used to reduce the general Hahn-Banach theorem for locally convex spaces to the
Hahn-Banach theorem for Banach spaces.

Proof: In one direction, we already know that a product or limit of Banach spaces is locally convex, since
Banach spaces are locally convex.

In the Banach or normed-space situation, the topology comes from a metric d(v, w) = |v − w| defined in
terms of a single function v → |v| with the usual properties

|α · v| = |α|C · |v| (homogeneity)

|v + w| ≤ |v|+ |w| (triangle inequality)

|v| ≥ 0, (equality only for v = 0) (definiteness)

By contrast, for more general (but locally convex) situations, we consider a family Φ of functions p(v) for
which the definiteness condition is weakened slightly, so we require

p(α · v) = |α|C · p(v) (homogeneity)

p(v + w) ≤ p(v) + p(w) (triangle inequality)

p(v) ≥ 0 (semi-definiteness)

Such a function p() is a semi-norm. For Hausdorff-ness, we further require that the family Φ is separating
in the sense that, given v 6= 0 in V , there is p ∈ Φ such that p(v) > 0.

A separating family Φ of semi-norms on a complex vector space V gives a locally convex topology by taking
as local sub-basis [44] at 0 the sets

Up,ε = {v ∈ V : p(v) < ε} (for ε > 0 and p ∈ Φ)

Each of these is convex, because of the triangle inequality for the semi-norms.

[13.4] Remark: The topology obtained from a (separating) family of seminorms may appear to be a
random or frivolous generalization of the notion of topology obtained from a norm. However, it is the
correct extension to encompass all locally convex topological vector spaces, as we see now. [45]

For a locally convex topological vector space V , for every open U in a local basis B at 0 of convex opens,
try to define a seminorm

pU (v) = inf{t > 0 : t · U 3 v}

We discover some necessary adjustments, and then verify the semi-norm properties.

First, we show that for any v ∈ V the set over which the inf is taken is non-empty. Since scalar multiplication
C × V → V is (jointly!) continuous, for given v ∈ V , given a neighborhood U of 0 ∈ V , there are
neighborhoods W of 0 ∈ C and U ′ of v such that

α · w ∈ U (for all α ∈W and w ∈ U ′)

[44] Again, a sub-basis for a topology is a set of opens such that finite intersections form a basis. In other words,

arbitrary unions of finite intersections give all opens.

[45] The semi-norms we construct here are sometimes called Minkowski functionals, even though they are not

functionals in the sense of being continuous linear maps.
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In particular, since W contains a disk {|α| < ε} for some ε > 0, we have t · v ∈ U for all 0 < t < ε. That is,

v ∈ t · U (for all t > ε−1)

Semi-definiteness of pU is built into the definition.

To avoid nagging problems, we should verify that, for convex U containing 0, when v ∈ t · U then v ∈ s · U
for all s ≥ t. This follows from the convexity, by

s−1 · v =
t

s
· (t−1 · v) =

t

s
· (t−1 · v) +

s− t
s
· 0 ∈ U

since t−1 · v and 0 are in U .

The homogeneity condition p(α v) = |α| p(v) already presents a minor issue, since convex sets containing 0
need have no special properties regarding multiplication by complex numbers. That is, the problem is that,
given v ∈ t · U , while α v ∈ α · t · U , we do not know that this implies αv ∈ |α| · t · U . Indeed, in general,
it will not. To repair this, to make semi-norms we must use only convex opens U which are balanced in the
sense that

α · U = U (for α ∈ C with |α| = 1)

Then, given v ∈ V , we have v ∈ t · U if and only if α v ∈ t · αU , and now

t αU = t |α| α
|α|

U = t |α|U

by the balanced-ness.

Now we have an obligation to show that there is a local basis (at 0) of convex balanced opens. Fortunately,
this is easy to see, as follows. Given a convex U containing 0, from the continuity of scalar multiplication,
since 0 · v = 0, there is ε > 0 and a neighborhood W of 0 such that α · w ∈ U for |α| < ε and w ∈W . Let

U ′ = {α · w : |α| ≤ ε

2
, w ∈W} =

⋃
|α|≤ε/2

α ·W

Being a union of the opens α · W , this U ′ is open. It is inside U by arrangement, and is balanced by
construction. That is, there is indeed a local basis of convex balanced opens at 0.

For the triangle inequality for pU , given v, w ∈ V , let t1, t2 be such that v ∈ t ·U for t ≥ t1 and w ∈ t ·U for
t ≥ t2. Then, using the convexity,

v + w ∈ t1 · U + t2 · U = (t1 + t2) ·
(

t1
t1 + t2

· U +
t2

t1 + t2
· U
)
⊂ (t1 + t2) · U

This gives the triangle inequality
pU (v + w) ≤ pU (v) + pU (w)

Finally, we check that the semi-norm topology is the original one. This is unsurprising. It suffices to check
at 0. On one hand, given an open W containing 0 in V , there is a convex, balanced open U contained in W ,
and

{v ∈ V : pU (v) < 1} ⊂ U ⊂ W

Thus, the semi-norm topology is at least as fine as the original topology. On the other hand, given convex
balanced open U containing 0, and given ε > 0,

{v ∈ V : pU (v) < ε} ⊃ ε

2
· U

34



Paul Garrett: 08d. Generalized functions (distributions) on circles (January 5, 2020)

Thus, each sub-basis open for the semi-norm topology contains an open in the original topology. We conclude
that the two topologies are the same.

A summary so far: for a locally convex topological vector space, the semi-norms attached to convex balanced
neighborhoods of 0 give a topology identical to the original, and vice-versa.

Before completing the proof of the theorem, recall that a completion of a set with respect to a pseudo-metric
can be defined much as the completion with respect to a genuine metric. This is relevant because a semi-norm
may only give a pseudo-metric, not a genuine metric.

Let Φ be a (separating) family of seminorms on a vector space V . For a finite subset i of Φ, let Xi be the
completion of V with respect to the semi-norm

pi(v) =
∑
p∈i

p(v)

with natural map fi : V → Xi. Order subsets of Φ by i ≥ j when i ⊃ j. For i > j we have

pi(v) =
∑
p∈i

p(v) ≥
∑
p∈j

p(v) = pj(v)

so we have natural continuous (transition) maps

ϕij : Xi −→ Xj (for i > j)

We claim that each Xi is a Banach space, that V with its semi-norm topology has a natural continuous
inclusion to the limit X = limiXi, and that V has the topology given by the subspace topology inherited
from the limit.

The maps fi form a compatible family of maps to the Xi, so there is a unique compatible map f : V → X.
By the separating property, given v 6= 0, there is p ∈ Φ such that p(v) 6= 0. Then for all i containing p, we
have fi(v) 6= 0 ∈ Xi. The subsets i containing p are cofinal in this limit, so f(v) 6= 0. Thus, f is an inclusion.

Since the limit is a (closed) subspace of the product of the Xi, it suffices to prove that the topology on V
(imbedded in ΠiXi via f) is the subspace topology from ΠiXi. Since the topology on V is at least this fine
(since f is continuous), we need only show that the subspace topology is at least as fine as the semi-norm
topology. To this end, consider a semi-norm-topology sub-basis set

{v ∈ V : pU (v) < ε} (for ε > 0 and convex balanced open U containing 0)

This is simply the intersection of f(V ) with the sub-basis set

Πp 6={pU}Xi × {v ∈ X{pU} : pU (v) < ε}

with the last factor inside X{pU}. Thus, by construction, the map f : V → X is a homeomorphism of V to
its image. ///
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