(January 5, 2020)

08f. Poisson summation by distribution theory

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

This document is

http://www.math.umn.edu/~garrett/m/real/notes_2019-20/08f_distributional_Poisson_summation.pdf]

Let $\psi(y) = e^{2\pi i y}$ and $\psi_x(y) = \psi(xy)$. The additive group \mathbb{R} acts on \mathscr{S} and on \mathcal{D} continuously by the regular representation $R_g f(x) = f(x+g)$. The natural duality gives the (continuous) dual or contragredient representation on \mathscr{S}^* and \mathcal{D}^* by

$$(R_q^* u)(f) = u(R_{q^{-1}}f)$$

There are two fundamental identities regarding this regular representation and Fourier transforms (for $f \in \mathscr{S}$):

$$(R_x f)^{\widehat{}} = \psi_x \widehat{f} \qquad \qquad (\psi_x \cdot f) = R_{-x} \widehat{f}$$

From these and from the definition of Fourier transform for tempered distributions, the same identities hold for tempered distributions, as well.

For a collection Φ of smooth functions on \mathbb{R} with common zero set Z, and a distribution u such that $\varphi u = 0$ for all $\varphi \in \Phi$, spt $u \subset Z$. In particular, for Φ a subset of $C_o^{\infty}(\mathbb{R})$ having a single point $\{0\}$ as common zero set. Let \mathcal{O}_0 be the ring of germs of smooth functions at 0, and let \mathbf{m} be its unique maximal ideal, consisting of smooth functions vanishing at 0. Suppose that the image in \mathcal{O}_0 of the ideal generated by Φ in $C_o^{\infty}(\mathbb{R})$ is exactly \mathbf{m}^n . That is, we suppose that all functions in Φ vanish at 0 to order at least n, and every germ of a smooth function at 0 vanishing to order at least n is a linear combination over \mathcal{O}_0 of elements of Φ . Let ube a distribution so that $\varphi u = 0$ for all $\varphi \in \Phi$. Then u is a complex linear combination of $\delta_0, \ldots, \delta_0^{(n-1)}$.

Consider the tempered distributions

$$u(f) = \sum_{n \in \mathbf{Z}} f(n)$$
 $v(f) = \sum_{n \in \mathbf{Z}} \hat{f}(n)$

The Poisson summation formula asserts that u = v. We will identify properties possessed by both u and v, and prove that there is a unique tempered distribution with these properties.

Certainly $u(\psi_n f) = u(f)$ for $n \in \mathbb{Z}$, and $u(R_n f) = u(f)$ for $n \in \mathbb{Z}$. Thus,

 $\psi_n u = u \qquad R_n u = u \qquad \text{(for all } n \in \mathbb{Z}\text{)}$

The two identities above which *intertwine* Fourier transform and the regular representation imply that v has the same properties. Further, letting $\gamma(x) := e^{-\pi x^2}$, we have $\hat{\gamma} = \gamma$, and so $u(\gamma) = v(\gamma)$.

Now we prove that the space of tempered distributions w such that

 $\psi_n w = w \qquad R_n w = w \qquad \text{(for all } n \in \mathbb{Z}\text{)}$

is one-dimensional over \mathbb{C} . This, together with the evaluation of both u and v on γ , will prove the Poisson summation formula.

The common zero set of the collection $\Phi = \{\psi_n - 1 : n \in \mathbb{Z}\}$ is \mathbb{Z} , so any distribution w annihilated by multiplication by all $\psi_n - 1$ must be supported on \mathbb{Z} . Let $\varphi \in C_o^{\infty}(\mathbb{R})$ be such that spt $\varphi \cap \mathbb{Z} = \{0\}$ and $\varphi = \equiv 1$ on some neighborhood of 0. Then $\operatorname{spt}(\varphi w) = \{0\}$. Further, since the $\psi_n - 1$ generate the whole maximal ideal in the ring of germs of smooth functions at 0, we conclude that φw is a constant multiple of δ . By use of a partition of unity to localize the issues, we find that

$$w = \sum c_n \, \delta_n$$

for some constants c_n . The translation invariance of w implies that all the constants c_n are the same. Thus, there is a constant c so that

$$w = c \sum \delta_n$$

This is the desired uniqueness (one-dimensionality) assertion.