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Among all linear operators on Hilbert spaces, the compact ones (defined below) are the simplest, and most
closely imitate finite-dimensional operator theory. In addition, compact operators are important in practice.
We prove a spectral theorem for self-adjoint compact operators, which does not use broader discussions
of properties of spectra, only using the Cauchy-Schwarz-Bunyakowsky inequality and the definition of self-
adjoint compact operator. The argument follows the Rayleigh-Ritz argument for finite-dimensional self-
adjoint operators.

The simplest naturally occurring compact operators are the Hilbert-Schmidt operators, discussed below.

1. Compact operators

A set in a topological space is pre-compact if its closure is compact. [1] A linear operator T : X → Y on
Hilbert spaces is compact when it maps the unit ball in X to a pre-compact set in Y . Equivalently, T is
compact if and only if it maps bounded sequences in X to sequences in Y with convergent subsequences.

[1.1] Remark: The same definition makes sense for operators on Banach spaces, but many good features
of compact operators on Hilbert spaces are not shared by compact operators on Banach spaces.

[1.2] Proposition: An operator-norm limit of compact operators is compact.

Proof: Let Tn → T in uniform operator norm, with compact Tn. Given ε > 0, let n be sufficiently large
such that |Tn − T | < ε/2. Since Tn(B) is pre-compact, there are finitely many y1, . . . , yt such that for any
x ∈ B there is i such that |Tnx− yi| < ε/2. By the triangle inequality

|Tx− yi| ≤ |Tx− Tnx|+ |Tnx− yi| < ε

Thus, T (B) is covered by finitely many balls of radius ε. ///

A continuous linear operator is of finite rank if its image is finite-dimensional. A finite-rank operator is
compact, since all balls are pre-compact in a finite-dimensional Hilbert space.

[1.3] Theorem: A compact operator T : X → Y with X,Y Hilbert spaces is an operator norm limit of
finite rank operators.

Proof: Let B be the closed unit ball in X. Since T (B) is pre-compact it is totally bounded, so for given
ε > 0 cover T (B) by open balls of radius ε centered at points y1, . . . , yn. Let p be the orthogonal projection
to the finite-dimensional subspace F spanned by the yi and define Tε = p ◦ T . Note that for any y ∈ Y and
for any yi

|p(y)− yi| ≤ |y − yi|

[1] Beware, sometimes pre-compact has a more restrictive meaning than having compact closure.
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since y = p(y) + y′ with y′ orthogonal to all yi. For x in X with |x| ≤ 1, by construction there is yi such
that |Tx− yi| < ε. Then

|Tx− Tεx| ≤ |Tx− yi|+ |Tεx− yi| < ε+ ε

Thus, TεT in operator norm as ε→ 0. ///

[1.4] Remark: An operator that is an operator-norm limit of finite-rank operators is sometimes called
completely continuous. Thus, we see that for operators in Hilbert spaces, the class of compact operators is
the same as that of completely continuous operators.

[1.5] Remark: The equivalence of compactness and complete continuity is false in Banach spaces, although
the only example known to this author (Per Enflo, Acta Math., vol. 130, 1973) is complicated.

2. Hilbert-Schmidt operators

[2.1] Hilbert-Schmidt operators given by integral kernels

Originally Hilbert-Schmidt operators on function spaces L2(X) arose as operators given by integral kernels:
for X and Y σ-finite measure spaces, and for integral kernel K ∈ L2(X ×Y ), the associated Hilbert-Schmidt

operator [2]

T : L2(X) −→ L2(Y )

is

Tf(y) =

∫
X

K(x, y) f(x) dx

By Fubini’s theorem and the σ-finiteness, for orthonormal bases ϕα for L2(X) and ψβ for L2(Y ), the collection
of functions ϕα(x)ψβ(y) is an orthonormal basis for L2(X × Y ). Thus, for some scalars cij ,

K(x, y) =
∑
ij

cij ϕi(x) ψj(y)

Square-integrability is ∑
ij

|cij |2 = |K|2L2(X×Y ) < ∞

The indexing sets may as well be countable, since an uncountable sum of positive reals cannot converge.
Given f ∈ L2(X), the image Tf is in L2(Y ), since

Tf(y) =
∑
ij

cij〈f, ϕi〉ψj(y)

has L2(Y ) norm easily estimated by

|Tf |2L2(Y ) ≤
∑
ij

|cij |2|〈f, ϕi〉|2 |ψj |2L2(Y ) ≤ |f |
2
L2(X)

∑
ij

|cij |2 |ϕi|2L2(X) |ψj |
2
L2(Y )

= |f |2L2(X)

∑
ij

|cij |2 = |f |2L2(X) · |K|
2
L2(X×Y )

The adjoint T ∗ : L2(Y )→ L2(X) has kernel

K∗(y, x) = K(x, y)

[2] The σ-finiteness is necessary to make Fubini’s theorem work as expected.
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by computing

〈Tf, g〉L2(Y ) =

∫
Y

(∫
X

K(x, y)f(x) dx
)
g(y) dy =

∫
X

f(x)
(∫

Y

K(x, y) g(y) dy
)
dx

[2.2] Intrinsic characterization of Hilbert-Schmidt operators

The intrinsic characterization of Hilbert-Schmidt operators V → W on Hilbert spaces V,W is as the
completion of the space of finite-rank operators V → W with respect to the Hilbert-Schmidt norm, whose
square is

|T |2HS = tr(T ∗T ) (for T : V →W and T ∗ : W ∗ → V ∗)

The trace of a finite-rank operator from a Hilbert space to itself can be described in coordinates and then
proven independent of the choice of coordinates, or trace can be described intrinsically, obviating need for
proof of coordinate-independence. First, in coordinates, for an orthonormal basis ei of V , and finite-rank
T : V → V , define

tr(T ) =
∑
i

〈Tei, ei〉 (with reference to orthonormal basis {ei})

With this description, one would need to show independence of the orthonormal basis. For the intrinsic
description, consider the map from V ⊗ V ∗ to finite-rank operators on V induced from the bilinear map [3]

v × λ −→
(
w → λ(w) · v

)
(for v ∈ V and λ ∈ V ∗)

Trace is easy to define in these terms [4]

tr(v ⊗ λ) = λ(v)

and
tr
(∑
v,λ

v ⊗ λ
)

=
∑
v,λ

λ(v) (finite sums)

Expression of trace in terms of an orthonormal basis {ej} is easily obtained from the intrinsic form: given a
finite-rank operator T and an orthonormal basis {ei}, let λi(v) = 〈v, ei〉. We claim that

T =
∑
i

Tei ⊗ λi

Indeed, (∑
i

Tei ⊗ λi
)

(v) =
∑
i

Tei · λi(v) =
∑
i

Tei · 〈v, ei〉 = T
(∑

i

ei · 〈v, ei〉
)

= Tv

[3] The intrinsic characterization of the tensor product V ⊗k W of two k-vectorspaces is that it is a k-vectorspace

with a k-bilinear map b : V ×W → V ⊗k W such that for any k-bilinear map B : V ×W → X there is a unique

linear β : V ⊗W → X giving a commutative diagram

V ⊗k W
∃!

##
V ×W

b

OO

∀B //___ X

[4] In some contexts the map v ⊗ λ→ λ(v) is called a contraction.
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Then the trace is

trT = tr
(∑

i

Tei ⊗ λi
)

=
∑
i

tr(Tei ⊗ λi) =
∑
i

λi(Tei) =
∑
i

〈Tei, ei〉

Similarly, adjoints T ∗ : W → V of maps T : V → W are expressible in these terms: for v ∈ V , let λv ∈ V ∗
be λv(v

′) = 〈v′, v〉, and for w ∈W let µw ∈W ∗ be µw(w′) = 〈w′, w〉. Then

(w ⊗ λv)∗ = v ⊗ µw (for w ∈W and v ∈ V )

since
〈(w ⊗ λv)v′, w′〉 = 〈λv(v′)w,w′〉 = 〈v′, v〉〈w,w′〉 = 〈v′, 〈w′, w〉 · v〉 = 〈v′, (v ⊗ µw)w′〉

Since it is defined as a completion, the collection of all Hilbert-Schmidt operators T : V → W is a Hilbert
space, with the hermitian inner product

〈S, T 〉 = tr(T ∗S)

[2.3] Proposition: The Hilbert-Schmidt norm | |HS dominates the uniform operator norm | |op, so Hilbert-
Schmidt operators are compact.

Proof: Given ε > 0, let e1 be a vector with |e1| ≤ 1 such that |Tv1| ≥ |T |op − ε. Extend {e1} to an
orthonormal basis {ei}. Then

|T |2op = sup
|v|≤1

|Tv|2 ≤ |Tv1|2 + ε ≤ ε+
∑
j

|Tvj |2 = |T |2HS

Thus, Hilbert-Schmidt norm limits of finite-rank operators are operator-norm limits of finite-rank operators,
so are compact. ///

[2.4] Integral kernels yield Hilbert-Schmidt operators

It is already nearly visible that the L2(X × Y ) norm on kernels K(x, y) is the same as the Hilbert-Schmidt
norm on corresponding operators T : V →W , yielding

[2.5] Proposition: Operators T : L2(X) → L2(Y ) given by integral kernels K ∈ L2(X × Y ) are Hilbert-
Schmidt, that is, are Hilbert-Schmidt norm limits of finite-rank operators.

Proof: To prove properly that the L2(X × Y ) norm on kernels K(x, y) is the same as the Hilbert-Schmidt
norm on corresponding operators T : V → W , T should be expressed as a limit of finite-rank operators Tn
in terms of kernels Kn(x, y) which are finite sums of products ϕ(x)⊗ ψ(y). Thus, first claim that

K(x, y) =
∑
i

ϕi(x)Tϕi(y) (in L2(X × Y ))

Indeed, the inner product in L2(X × Y ) of the right-hand side against any ϕi(x)ψj(y) agrees with the inner
product of the latter against K(x, y), and we have assumed K ∈ L2(X × Y ). With K =

∑
ij cijϕi ⊗ ψj ,

Tϕi =
∑
j

cij ψj

Since
∑
ij |cij |2 converges,

lim
i
|Tϕi|2 = lim

i

∑
j

|cij |2 = 0
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and
lim
n

∑
i>n

|Tϕi|2 = lim
n

∑
i>n

|cij |2 = 0

so the infinite sum
∑
i ϕi ⊗ Tϕi converges to K in L2(X × Y ). In particular, the truncations

Kn(x, y) =
∑

1≤i≤n

ϕi(x)Tϕi(y)

converge to K(x, y) in L2(X × Y ), and give finite-rank operators

Tnf(y) =

∫
X

Kn(x, y) f(x) dx

We claim that Tn → T in Hilbert-Schmidt norm. It is convenient to note that by a similar argument
K(x, y) =

∑
i T
∗ψi(x)ψi(y). Then

|T − Tn|2HS = tr
(

(T − Tn)∗ ◦ (T − Tn)
)

=
∑
i,j>n

tr
((
T ∗ψi ⊗ ψi

)
◦
(
ϕj ⊗ Tϕj

))

=
∑
i,j>n

〈T ∗ψi, ϕj〉L2(X) · 〈Tϕj , ψi〉L2(Y ) =
∑
i,j>n

|cij |2 −→ 0 (as n→∞)

since
∑
ij |cij |2 converges. Thus, Tn → T in Hilbert-Schmidt norm. ///

[2.6] Remark: With σ-finiteness, the argument above is correct whether K is measurable with respect to
the product sigma-algebra or only with respect to the completion.

3. Spectral theorem for self-adjoint compact operators

The λ-eigenspace Vλ of a self-adjoint compact operator T on a Hilbert space T is

Vλ = {v ∈ V : Tv = λ · v}

We have already shown that eigenvalues, if any, of self-adjoint T are real.

[3.1] Theorem: Let T be a self-adjoint compact operator on a non-zero Hilbert space V .
• The completion of ⊕Vλ is all of V . In particular, there is an orthonormal basis of eigenvectors.
• The only possible accumulation point of the set of eigenvalues is 0. For infinite-dimensional V , 0 is an
accumulation point.
• Every eigenspaces Xλ for λ 6= 0 is finite-dimensional. The 0-eigenspace may be {0} or may be infinite-
dimensional.
• (Rayleigh-Ritz) One or the other of ±|T |op is an eigenvalue of T .

A slightly-clever alternative expression for the operator norm is needed:

[3.2] Lemma: For T a self-adjoint continuous linear operator on a non-zero Hilbert space X,

|T |op = sup
|x|≤1

|〈Tx, x〉|

Proof: Let s be that supremum. By Cauchy-Schwarz-Bunyakowsky, s ≤ |T |op. For any x, y ∈ Y , by
polarization

2|〈Tx, y〉+ 〈Ty, x〉| = |〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉|
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≤ |〈T (x+ y), x+ y〉|+ |〈T (x− y), x− y〉| ≤ s|x+ y|2 + s|x− y|2 = 2s(|x|2 + |y|2)

With y = t · Tx with t > 0, because T = T ∗,

〈Tx, y〉 = 〈Tx, t · Tx〉 = t · |Tx|2 ≥ 0 (for y = t · Tc with t > 0)

and

〈Ty, x〉 = 〈t · T 2x, t · x〉 = t · 〈Tx, Tx〉 = t · |Tx|2 ≥ 0 (for y = t · Tc with t > 0)

Thus,

|〈Tx, y〉|+ |〈Ty, x〉| = 〈Tx, y〉+ 〈Ty, x〉 = |〈Tx, y〉+ 〈Ty, x〉| (for y = t · Tc with t > 0)

From this, and from the polarization identity divided by 2,

|〈Tx, y〉|+ |〈Ty, x〉| = |〈Tx, y〉+ 〈Ty, x〉| ≤ s(|x|2 + |y|2) (with y = t · Tx)

Divide through by t to obtain

|〈Tx, Tx〉|+ |〈T 2x, x〉| ≤ s

t
· (|x|2 + |Tx|2)

Minimize the right-hand side by taking t2 = |Tx|/|x|, and note that 〈T 2x, x〉 = 〈Tx, Tx〉, giving

2|〈Tx, Tx〉| ≤ 2s · |x| · |Tx| ≤ 2s · |x|2 · |T |op

Thus, |T |op ≤ s. ///

Now the proof of the theorem:

Proof: The last assertion of the theorem is crucial. To prove it, use the expression

|T | = sup
|x|≤1

|〈Tx, x〉|

and use the fact that any value 〈Tx, x〉 is real. Choose a sequence {xn} so that |xn| ≤ 1 and |〈Tx, x〉| → |T |.
Replacing it by a subsequence if necessary, the sequence 〈Tx, x〉 of real numbers has a limit λ = ±|T |.

Then
0 ≤ |Txn − λxn|2 = 〈Txn − λxn, Txn − λxn〉

= |Txn|2 − 2λ〈Txn, xn〉+ λ2|xn|2 ≤ λ2 − 2λ〈Txn, xn〉+ λ2

The right-hand side goes to 0. By compactness of T , replace xn by a subsequence so that Txn converges to
some vector y. The previous inequality shows λxn → y. For λ = 0, we have |T | = 0, so T = 0. For λ 6= 0,
λxn → y implies

xn −→ λ−1y

For x = λ−1y,
Tx = λx

and x is the desired eigenvector with eigenvalue ±|T |. ///

Now use induction. The completion Y of the sum of non-zero eigenspaces is T -stable. We claim that the
orthogonal complement Z = Y ⊥ is T -stable, and the restriction of T to is a compact operator. Indeed, for
z ∈ Z and y ∈ Y ,

〈Tz, y〉 = 〈z, Ty〉 = 0

6



Paul Garrett: 09b. Compact operators (March 12, 2020)

proving stability. The unit ball in Z is a subset of the unit ball B in X, so has pre-compact image TB∩Z in
X. Since Z is closed in X, the intersection TB ∩ Z of Z with the pre-compact TB is pre-compact, proving
T restricted to Z = Y ⊥ is still compact. Self-adjoint-ness is clear.

By construction, the restriction T1 of T to Z has no eigenvalues on Z, since any such eigenvalue would also
be an eigenvalue of T on Z. Unless Z = {0} this would contradict the previous argument, which showed
that ±|T1| is an eigenvalue on a non-zero Hilbert space. Thus, it must be that the completion of the sum of
the eigenspaces is all of X. ///

To prove that eigenspaces Vλ for λ 6= 0 are finite-dimensional, and that there are only finitely-many
eigenvalues λ with |λ| > ε for given ε > 0, let B be the unit ball in

Y =
∑
|λ| > ε

Xλ

The image of B by T contains the ball of radius ε in Y . Since T is compact, this ball is pre-compact, so Y
is finite-dimensional. Since the dimensions of the Xλ are positive integers, there can be only finitely-many
of them with |λ| > ε, and each is finite-dimensional. It follows that the only possible accumulation point of
the set of eigenvalues is 0, and, for X infinite-dimensional, 0 must be an accumulation point. ///

4. The Fredholm alternative

Here, we prove the simplest Fredholm alternative. An analogue exists for Banach spaces, as well. This also
gives a spectral theorem for not-necessarily self-adjoint compact operators.

[4.1] Theorem: For Hilbert space X, for compact T : X −→ X and 0 6= λ ∈ C, T − λ has closed image of
codimension equal to the dimension of its kernel. (Proof in the sequel.)

[4.2] Corollary: For λ 6= 0, either T − λ is a bijection, or λ is an eigenvalue. ///

[4.3] Corollary: The only non-zero spectrum of a compact operator is point spectrum. [5] ///

[4.4] Corollary: Either λ is an eigenvalue, or (T − λ)u = v is solvable for u for all v ∈ X. ///

This result complements the spectral theorem for self-adjoint compact operators on a Hilbert space, where
there is an orthonormal basis of eigenvectors. For not-necessarily-self-adjoint (or not-necessarily-normal)
compact operators, it can happen that there are no non-zero eigenvalues. This is not a pathology: the
Volterra operator

V f(x) =

∫ x

0

f(y) dy (for f ∈ L2[0, 1])

is Hilbert-Schmidt, hence compact, but has no non-zero eigenvalues.

[4.5] Compact operators invertible only on finite-dimensional

For compact T : X → X with continuous inverse T−1, the boundedness of T−1 gives a constant C such
that |T−1x| ≤ C · |x| for all x ∈ Y . Invertibility implies that TX = X, and |x| ≤ C · |Tx| for all x ∈ X.
Thus, the image by T of the unit ball in X contains an open ball in X. Compactness implies that X is
finite-dimensional.

[5] Recall that the eigenvalues or point spectrum of an operator T on a Hilbert space X consists of λ ∈ C such that

T −λ fails to be injective. The continuous spectrum consists of λ with T −λ injective and with dense image, but not

surjective. The residual spectrum consists of λ with T − λ injective but (T − λ)X not dense.
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[4.6] Generalized eigenspaces finite-dimensional for λ 6= 0

For compact T : X → X and λ 6= 0, the kernel of T − λ is finite-dimensional, since any restriction of T to a
subspace is still compact, and T acts by a scalar on ker(T − λ).

By induction on n, the operator T − λ maps ker(T − λ)n+1 to the finite-dimensional space ker(T − λ)n, so
is finite-rank. On ker(T − λ)n−1,

compact = finite-rank = T − λ = compact− λ (on ker(T − λ)n+1)

Thus, λ 6= 0 is compact on ker(T − λ)n+1, implying that this kernel is finite-dimensional. ///

[4.7] T compact if and only if T ∗ compact

Proof: First, the adjoint map T → T ∗ is continuous in the operator-norm topology. Indeed, |T ∗| = |T |,
because

|T ∗|2 = sup
|x|≤1

|T ∗x|2 = 〈T ∗x, T ∗x〉 = 〈TT ∗x, x〉 ≤ |TT ∗x| · |x| ≤ |T | · |T ∗| · |x| · |x| = |T | · |T ∗|

Dividing through by |T ∗| gives |T ∗| ≤ |T |. Symmetrically, |T | ≤ |T ∗|. Compact T is an operator-norm limit
of finite-rank operators Tn. Then T ∗ is the operator-norm limit of the finite-rank T ∗n . ///

[4.8] Im(T − λ) is closed for λ 6= 0

Proof: Let (T − λ)xn → y. First consider the situation that {xn} is bounded. Compactness of T yields a
convergent subsequence of Txn, and we replace xn by the corresponding subsequence. Then −λxn = y−Txn
converges to y − limTxn, so xn is convergent to xo ∈ X, since λ 6= 0, and Txo = y.

To reduce the general case to the previous, first reduce to the case that T − λ is injective: from
above, ker(T − λ) is finite-dimensional. Let V be the orthogonal complement to ker(T − λ). Since
(T − λ)V = (T − λ)X, to prove the image is closed it suffices to consider V , or, equivalently, that T − λ
is injective on X. Since T − λ is a continuous bijection to its image, by the open mapping theorem it is an
isomorphism to its image. Thus, there is δ > 0 such that |(T − λ)x| ≥ δ|x|.

Returning to the main argument, suppose that (T − λ)xn → yo. Then (T − λ)(xm − xn) → 0. For T − λ
injective, xm − xn → 0, so xn is bounded, reducing to that case. ///

[4.9] T − λ injective ⇐⇒ surjective for λ 6= 0

Proof: Suppose T −λ is injective. Let Vn = (T −λ)nX. Since images under T −λ for compact T and λ 6= 0
are closed, by induction these are closed subspaces of X. For x 6∈ (T − λ)X and any y ∈ X,

(T − λ)nx− (T − λ)n+1y = (T − λ)n
(
x− (T − λ)y

)
Injectivity of T − λ implies that of (T − λ)n, so this is not 0. That is, (T − λ)nx 6∈ (T − λ)n+1X. Thus, the
chain of subspaces Vn is strictly decreasing.

Take vn ∈ Vn such that |vn| = 1 and away from Vn, say by

inf
y∈Vn+1

|vn − y| ≥ 1
2

The effect of T is

Tvm − Tvm+n = λvm + (T − λ)vm − Tvm+n ∈ λvm + Vn+1 (integers m ≥ 1 and n ≥ 1)
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since Vm+1 is T -stable. Thus,
|Tvm − Tvm+n| ≥ |λ| · 12

This is impossible, since compact T maps the bounded set {vn} to a pre-compact set. Thus, the chain of
subspaces Vn cannot be strictly decreasing, and have surjectivity (T − λ)X = X.

On the other hand, suppose T − λ is surjective. Then the adjoint (T − λ)∗ is injective. Since adjoints of
compact operators are compact, we already know that (T − λ)∗ is surjective. Then T − λ = (T − λ)∗∗ is
injective. ///

[4.10] dimker(T − λ) = dim coker(T − λ) for λ 6= 0, T compact

That is, such operators are Fredholm operators of index 0.

Proof: The compactness of T entails the finite-dimensionality of ker(T − λ) for λ 6= 0. Dually, for
y1, . . . , yn ∈ X linearly independent modulo (T −λ)X, by Hahn-Banach there are η1, . . . , ηn ∈ X∗ vanishing
on the image (T − λ)X and ηi(yj) = δij . Such ηi are in the kernel of the adjoint (T − λ)∗. We know T ∗ is
compact, so ker(T − λ)∗ is finite-dimensional.

We’ve proven that injectivity and surjectivity of T − λ are equivalent, and that the kernel and cokernel are
finite-dimensional. Let x1, . . . , xm (with m ≥ 1) span the kernel, and let (the images of) y1, . . . , yn (with
n ≥ 1) span the cokernel, and show that m = n.

For m ≤ n, let X ′ be a closed complementary subspace to the kernel of T − λ, for example, its orthogonal
complement. Let F be the finite-rank operator which is 0 on X ′ and Fxi = yi. The adjusted operator
T ′ = T + F is compact. For (T ′ − λ)x = 0,

(T − λ)x = Fx ∈ (T − λ)X ∩ span y1, . . . , yn = {0}

That is, T ′ − λ is injective, so is surjective, so m = n. In the opposite case m ≥ n, let Fxi = yi for i ≤ n,
and Fxi = yn for i ≥ n. With T ′ = T +F again, in this case T ′ − λ is surjective, so is injective, and m = n.

///

[4.11] Discreteness of spectrum of compact operators

[4.12] Claim: For T a compact operator on a Hilbert the non-zero spectrum (if any) is point spectrum.
The number of eigenvalues λ outside a given disk |λ| ≤ r is finite for r > 0, and always 0 is in the spectrum.

Proof: For λ not an eigenvalue, we know that T − λ is injective and surjective, so by the open mapping
theorem it is an isomorphism. Thus, indeed, the only non-zero spectrum consists of eigenvalues. We also
know that eigenspaces are finite-dimensional, for non-zero eigenvalues.

For infinite-dimensional Hilbert spaces, 0 inevitably lies in the spectrum, otherwise T would be invertible.
Then 1 = T ◦T−1 is the composition of a compact operator and a continuous operator, so is compact, which
is possible only in finite-dimensional spaces.

Suppose there were infinitely-many different eigenvalues λ1, λ2, . . . outside the closed disk |λ| ≤ r with r > 0,
with corresponding eigenvectors xi with |xi| = 1. First, the xi are linearly independent: let

∑
i ci xi = 0 be

a non-trivial linear dependence relation with fewest non-zero ci’s, and apply T : for an index io with cio 6= 0,
we obtain a shorter relation by suitable subtraction,

0 =
∑
i

λi ci xi − λio
∑
i

ci xi =
∑
i 6=io

(λi − λio) ci xi

Thus, there can be no non-trivial linear dependence. With Vn the span of x1, x2, . . . , xn, this implies that
the containments Vn ⊂ Vn+1 are strict. Thus, there exist unit vectors yi ∈ Vi with the distance from yi to

9
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Vi−1 at least 1
2 . Then for i > j

Tyi − Tyj = λiyi + (T − λi)yi − Tyj ∈ λiyi + Vi+1

and, thus, |Tyi − Tyj | ≥ |λ| · 12 . However, this contradicts the compactness of T . We conclude that there
can be only finitely-many eigenvalues larger than r > 0. ///

5. Simplest Rellich compactness lemma

One characterization of the sth Levi-Sobolev space of functions Hs(A) on a product A = (S1)×n of circles
S1 = R/2πZ is as the closure of the function space of finite Fourier series with respect to the Levi-Sobolev
norm (squared)∣∣∣ ∑

ξ∈Zn

cξ e
iξ·x
∣∣∣2
Hs

=
∑
ξ∈Zn

|cξ|2 · (1 + |ξ|2)s (s ∈ R, on finite Fourier series)

The standard orthonormal basis for Hs(A) is

1

(2π)n/2
· eiξ·x

(1 + |ξ|2)s/2
(with ξ ∈ Zn)

By the Plancherel theorem, the map from L2(Zn) (with counting measure) to L2(A) by

{cξ : ξ ∈ Zn} −→ 1

(2π)n/2

∑
ξ∈Zn

cξ
eiξ·x

(1 + |ξ|2)s/2

is an isometric isomorphism.

For s > t, there is a continuous inclusion Hs(A) → Ht(A). In terms of these orthonormal bases, there is a
commutative diagram

L2(A)
T //

≈
��

L2(A)

≈
��

Hs(A)
inc
// Ht(A)

given by

{cξ}
T //

≈

��

{
(1 + |ξ|2)

t−s
2 · cξ

}
≈
��

1

(2π)n/2

∑
ξ

cξ
eiξ·x

(1 + |ξ|2)s/2 inc
// 1

(2π)n/2

∑
ξ

(1 + |ξ|2)
t−s
2 · cξ

eiξ·x

(1 + |ξ|2)t/2

Since s > t, the number λξ = (1 + |ξ|2)
t−s
2 are bounded by 1, and have unique limit point 0. In particular,

T : L2(A)→ L2(A) is compact.

Thus, we have the simplest instance of Rellich’s compactness lemma: the inclusion Hs(A) → Ht(A) is
compact for s > t.

6. Appendix: topologies on finite-dimensional spaces

10
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In the proof that Hilbert-Schmidt operators are compact, we needed the fact that finite-dimensional subspaces
of Hilbert spaces are linearly homeomorphic to Cn with its usual topology. In fact, it is true that any finite
dimensional topological vector space is linearly homeomorphic to Cn. That is, we need not assume that the
space is a Hilbert space, a Banach space, a Fréchet space, locally convex, or anything else. However, the
general argument is a by-product of the development of the general theory of topological vector spaces, and
is best delayed. Thus, we give more proofs that apply to Hilbert and Banach spaces.

[6.1] Lemma: Let W be a finite-dimensional subspace of a pre-Hilbert space V . Let w1, . . . , wn be a C-basis
of W . Then the continuous linear bijection

ϕ : Cn →W

by

ϕ(z1, . . . , zn) =
∑
i

zi · wi

is a homeomorphism. And W is closed.

Proof: Because vector addition and scalar multiplication are continuous, the map ϕ is continuous. It is
obviously linear, and since the wi are linearly independent it is an injection.

Let v1, . . . , vn be an orthonormal basis for W . Consider the continuous linear functionals

λi(v) = 〈v, vi〉

As intended, we have λi(vj) = 0 for i 6= j, and λi(vi) = 1. Define continuous linear ψ : W → Cn by

ψ(v) = (λ1(v), . . . , λn(v))

The inverse map to ψ is continuous, because vector addition and scalar multiplication are continuous. Thus,
ψ is a linear homeomorphism W ≈ Cn.

Generally, we can use Gram-Schmidt to create an orthonormal basis vi from a given basis wi. Let e1, . . . , en
be the standard basis of Cn. Let fi = ψ(wi) be the inverse images in Cn of the wi. Let A : Cn → Cn be a
linear homeomorphism Cn → Cn sending ei to fi, that is, Aei = fi. Then

ϕ = ψ−1 ◦A : Cn →W

since both ϕ and ψ−1 ◦A send ei to wi. Both ψ and A are linear homeomorphisms, so the composition ϕ is
also.

Since Cn is a complete metric space, so is its homeomorphic image W , so W is necessarily closed. ///

Now we give a somewhat different proof of the uniqueness of topology on finite-dimensional normed spaces,
using the Hahn-Banach theorem. Again, invocation of Hahn-Banach is actually unnecessary, since the same
conclusion will be reached (later) without local convexity. The only difference in the proof is the method of
proving existence of sufficiently many linear functionals.

[6.2] Lemma: Let W be a finite-dimensional subspace of a normed space V . Let w1, . . . , wn be a C-basis
of W . Then the continuous linear bijection

ϕ : Cn →W

by

ϕ(z1, . . . , zn) =
∑
i

zi · wi

11
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is a homeomorphism. And W is closed.

Proof: Let v1 be a non-zero vector in W , and from Hahn-Banach let λ1 be a continuous linear functional
on W such that λ1(v1) = 1. By the (algebraic) isomorphism theorem

image λ1 ≈W/ kerλ1

so dimW/ kerλ1 = 1. Take v2 6= 0 in kerλ1 and continuous linear functional λ2 such that λ2(v2) = 1.
Replace v1 by v1 − λ2(v1)v2. Then still λ1(v1) = 1 and also λ2(v1) = 0. Thus, λ1 and λ2 are linearly
independent, and

(λ1, λ2) : W → C2

is a surjection. Choose v3 6= 0 in kerλ1 ∩ kerλ2, and λ3 such that λ3(v3) = 1. Replace v1 by v1 − λ3(v1)v3
and v2 by v2 − λ3(v2)v3. Continue similarly until⋂

kerλi = {0}

Then we obtain a basis v1, . . . , vn for W and an continuous linear isomorphism

ψ = (λ1, . . . , λn) : W → Cn

that takes vi to the standard basis element ei of Cn. On the other hand, the continuity of scalar multiplication
and vector addition assures that the inverse map is continuous. Thus, ψ is a continuous isomorphism.

Now let fi = ψ(wi), and let A be a (continuous) linear isomorphism Cn → Cn such that Aei = fi. Then
ϕ = ψ−1 ◦A is a continuous linear isomorphism.

Finally, since W is linearly homeomorphic to Cn, which is complete, any finite-dimensional subspace of a
normed space is closed. ///

[6.3] Remark: The proof for normed spaces works in any topological vector space in which Hahn-Banach
holds. We will see later that Hahn-Banach holds for all locally convex spaces. Nevertheless, as we will see,
this hypothesis is unnecessary, since finite-dimensional subspaces of arbitrary topological vector spaces are
linearly homeomorphic to Cn.
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