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1. Boundary value problem u′′ − λu = f , u(0) = 0 = u(2π)
2. The Green’s function

Essentially the only general device to prove that a collection {un} of functions on [a, b] is an orthogonal basis
for L2[a, b] is to find a self-adjoint compact operator T on L2[a, b] such that the eigenvectors of T are the
functions un.

The explicit Fourier-Dirichlet and Fejer arguments for ordinary Fourier series do not easily generalize. One
family of natural extensions is to Sturm-Liouville boundary-value problems (1830s), but there already we
see the necessity of the spectral theory of self-adjoint compact operators on Hilbert spaces, even though such
ideas and proofs had to wait almost 60 years (1890s), for Bocher and Steklov, and then Hilbert and Schmidt
and others a few years later.

As a non-trivial but relatively simple example, we prove that the functions un(x) = sin nx
2 give an orthogonal

basis of L2[0, 2π]. This does not follow in any easy way from the corresponding fact for {einx} or for sinnx
and cosnx, despite some mythology to the contrary.

1. Boundary value problem u′′ − λu = f , u(0) = 0 = u(2π)

Consider the boundary-value problem u′′ − λu = f with u(0) = u(2π) = 0 on [0, 2π], and λ ∈ C. Naively
formulated, given a function f on [0, 2π], this asks to solve u′′ − λu = f subject to the boundary conditions
u(0) = u(2π) = 0. This formulation is naive because we have not specified what kind of functions f and u
should be, apart from the apparent requirement that requiring vanishing of u at endpoints has sense to it,
and that u admits derivatives of some sort.

The eigenvectors for u→ u′′ are not hard to find: the differential equation u′′ = λ ·u has linearly independent

solutions u(x) = e±
√
λ·x for λ 6= 0, and u(x) = ax+ b for λ = 0. In fact, these are also the only distributional

eigenvectors.

The Dirichlet boundary conditions (that is, vanishing at endpoints) exclude the λ = 0 eigenvectors. For
λ = s2 6= 0, the requirement is to find constants A,B (not both 0) such that

Aes·0 +Be−s·0 = 0 = Aes·2π +Be−s·2π

Thus, B = −A, and es·2π − e−s·2π = 0. Equivalently, e2s·2π = 1. Thus, s ∈ 1
2 · Z. That is, un(x) = sin n

2x
for n = 1, 2, 3, . . . are all the eigenvectors of u → u′′ meeting the Dirichlet boundary conditions, and have
eigenvalues = n2/4.

These eigenvectors are mutually orthogonal, either by direct computation, or by using an orthogonality
property of eigenvectors for symmetric operators with different eigenvalues. The symmetry of u → u′′ via
integration by parts needs the boundary conditions to succeed: with v(0) = 0 = v(2π),

〈u′′, v〉 =

∫ 2π

0

u′′(x) · v(x) dx =
[
u′(x)v(x)

]2π
0
−
∫ 2π

0

u′(x) · v′(x) dx = −
∫ 2π

0

u′(x) · v′(x) dx

Symmetrically, with u(0) = 0 = u(2π), this is also equal to 〈u, v′′〉. Thus, at least heuristically, on general
principles the eigenvalues of Tu = u′′ are real: for u a non-zero λ-eigenvector,

λ〈u, u〉 = 〈Tu, u〉 = 〈u, Tu〉 = 〈u, λu〉 = λ · 〈u, u〉
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For λ 6= µ and corresponding eigenvalues u, v,

λ · 〈u, v〉 = 〈Tu, v〉 = 〈u, Tv〉 = 〈u, µv〉 = µ · 〈u, v〉 = µ · 〈u, v〉

Thus, 〈u, v〉 = 0. A potential problem in this proof of orthogonality is that u → u′′ is not exactly a
map L2[0, 2π] → L2[0, 2π]. We need not worry about this for the moment, since we can also prove the
orthogonality by direct computation.

The immediate question is of completeness: are the functions un(x) = sin n
2x an orthogonal Hilbert space

basis for L2[0, 2π]?

2. The Green’s function

In one dimension, as we are here, the idea is to solve the differential equation ∆u = f with boundary-value
conditions u(0) = 0 = u(2π) by finding a Green’s function G(x, y) on [0, 2π]× [0, 2π], that is, such that

d2

dx2

∫ 2π

0

G(x, y) f(y) dy = f(x)

for f in L2[0, 2π] and meeting the boundary conditions (in a suitable sense).

In particular, when G(x, y) is in L2
(
[0, 2π]× [0, 2π]

)
, then the operator

f −→
∫ 2π

0

G(x, y) f(y) dy

is Hilbert-Schmidt, hence compact. When also G(y, x) = G(x, y), the operator is self-adjoint, and the
spectral theorem applies. That is, the topological closure of the algebraic span of the eigenvectors is the
whole L2[0, 2π]. That is, the eigenvectors are complete.

The spectral theorem has further important parts: eigenspaces for distinct eigenvalues are mutually
orthogonal, eigenspaces for non-zero eigenvalues are finite-dimensional, and there are only finitely-many
eigenvalues larger than a given bound.

In the case at hand, following the general Sturm-Liouville prescription for Green’s functions, we want G(x, y)

to be annihilated by d2

dx2 away from 0, y, 2π, G(0, y) = 0 = G(2π, y), and G(x, y) is continuous at x = y. The
last requirement is that the difference in slopes of x → G(x, y) to the left of y increases by 1 to the right
of y. Here, the part of G in 0 < x < y is of the form x → ax, in in 2π > x > y is x → b(2π − x), and the
continuity and slope-difference conditions give

G(x, y) =

x · ( y
2π − 1) (in 0 < x < y)

y · ( x2π − 1) (in 2π > x > y)

From more modern viewpoint, the previous function satisfies

d2

dx2
G(x, y) = δx−y − δ0

And we should have extended G(x, y) by 2π-periodicity, or, equivalently, look at [0, 2π] as parametrizing the
circle T = R/2πZ, to avoid counting the endpoints twice in computations.

Thus, assuming we can more the differential operator inside the integral, and writing integrals involving δ
functions when we should really be writing pairings on Sobolev spaces Hs(T)×H−s(T),

d2

dx2

∫
T
G(x, y) f(y) dy =

∫
T

d2

dx2
G(x, y) f(y) dy =

∫
T

(δx−y − δ0) f(y) dy = f(x)− f(0)
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For f(0) = 0 in a suitable sense, this shows that this G(x, y) does solve the boundary-value problem.

The solution map is compact and self-adjoint, so there is an orthogonal basis of eigenfunctions. Applying
d2/dx2 to an eigenvalue equation ∫

T
G(x, y)u(y) dy = µ · u(x)

gives
u− u(0) = µ · u′′

With u(0) = 0, and taking λ = µ−1, we recover the differential equation explicitly solved earlier by elementary
methods.

Thus, the functions sin nx
2 give an orthogonal basis for L2[0, 2π]. ///
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