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1. Variant Green’s function
2. ...

A discussion of Fourier series as a consequence of the spectral theorem for self-adjoint compact operators on
Hilbert spaces is anachronistic. Nevertheless, it does offer some insights.

As we may know, essentially the only general device to prove that a collection {un} of functions on an
interval [a, b] is an orthogonal basis for L2[a, b] is to find a self-adjoint compact operator T on L2[a, b] such
that the eigenvectors of T are the functions un. The same applies to most Hilbert spaces of functions.

The explicit Fourier-Dirichlet and Fejer arguments for ordinary Fourier series do not easily generalize, for
more than one reason. As we know, one family of natural extensions is to Sturm-Liouville boundary-value
problems (1830s), where we already see the necessity of the spectral theory of self-adjoint compact operators
on Hilbert spaces, even though such ideas and proofs had to wait almost 60 years (1890s), for Bocher and
Steklov, and then Hilbert and Schmidt and others a few years later.

The simplest Green’s function prescription for Sturm-Liouville problems does not immediately apply to
Fourier series, that is, to the fact that exponentials {x → einx : n ∈ Z}, or trigonometric functions
{1, sinnx, cosnx : n = 1, 2, 3, . . .}, form orthogonal bases for L2[0, 2π]. But a slightly abstracted version
does, again using the spectral theory of compact self-adjoint operators and some distribution theory, proves
that the exponentials or trigonometric functions give orthogonal bases.

1. Variant Green’s function

We want k on T = R/2πZ such that

∆k = δ + (something innocuous) (δ = δZ ∈ D(T)∗)

where, ideally, the leftover is in L2(T) or better. Then we would make a Hilbert-Schmidt-Schwartz kernel

K(x, y) = k(x− y) (for x, y ∈ T)

Among other possibilities, since application of ∆ to piecewise quadratic functions, up to a constant to be
determined subsequently, we take k(x) = −(x− π)2 on [0, 2π] and extend by 2πZ-periodicity:

∆k(x) =
d

dx
(−2(x− π))(at first on [0, 2π], then periodicized) = −2 + 4πδ

since the jump on this sawtooth function is upward by 2π. Thus, replacing k(x) by k(x)/4π,

∆k = δ − 1

2π

Thus, with K(x, y) = k(x− y), and

Tf(x) =

∫
T
K(x, y) f(y) dy (for suitable f ∈ L2(T))
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presumably moving the differential operator inside the integral via Gelfand-Pettis, and abusing notation
toward the end,

∆Tf(x) = ∆

∫
T
K(x, y) f(y) dy =

∫
T

∆xK(x, y) f(y) dy =

∫
T

(
δ(x−y)− 1

2π

)
f(y) dy = f(x)− 1

2π

∫
T
f

This computation is a proof when the integral is rewritten as a pairing among Sobolev spaces. This strongly
suggests that the target f ∈ L2(T) should satisfy

∫
T f = 0.

So we consider the Hilbert space V = {u ∈ L2(T) :
∫
T u = 0}. The kernel K(x, y) should be further adjusted,

if necessary, so that x ∈ K(x, y) is in V for every y. Compute∫
T
K(x, y) dx =

∫
T
k(x− y) dx =

∫
T
k(x) dx =

−1

4π

∫ 2π

0

(x− π)2 dx =
−1

4π
· 2π3

3
= −π

2

6

Thus, we should add −π
2

6 · 2π to K(x, y). This has no impact when K(x, y) is integrated against f ∈ V .

Since K(x, y) is continuous on T×T, it is in L2(T×T), and gives a Hilbert-Schmidt operator. The function
k(x) itself is even and real-valued, so K(x, y) is a hermitian kernel, and gives a self-adjoint compact operator.
Thus, by the spectral theorem, its eigenvectors give an orthogonal basis for V .

2. Eigenfunctions

The eigenfunction condition Tu = λ · u for u ∈ V with λ 6= 0 implies

u(x) =
1

λ

∫
T
K(x, y)u(y) dy (in L2(T))

Applying ∆ distributionally, abusing notation about pairings among Sobolev spaces as usual, by design

∆u(x) =
1

λ
∆

∫
T
K(x, y)u(y) dy =

1

λ

∫
T

∆xK(x, y)u(y) dy =
1

λ

∫
T
δ(x− y)u(y) dy =

1

λ
u(x)

Thus, a λ-eigenfunction u ∈ L2(T) satisfies the distributional differential equation u′′ = 1
λu. Lifting this

back to R via the projection R → T = R/2πZ, letting λ = c2, the differential equation has two linearly
independent solutions, e±cx.

The requirement that a linear combination u(x) = aecx + be−cx is orthogonal to constants is

0 =
ae2πc − a

c
+
be−2πc − b
−c

which gives
a · (e2πc − 1) = b · (e−2πc − 1)

The periodicity condition is

aec(x+2πn) + be−c(x+2πn) = aecx + be−cx (for all x ∈ R, for all n ∈ Z)

At x = 0 and n = 1, this is
ae2πc + be−2πc = a+ b

or
a · (e2πc − 1) = −b · (e−2πc − 1)

For a, b not both 0, the latter equation and the orthogonality condition give e2πc = 1, and then a, b can be
arbitrary. Conversely, when e2πc = 1, all the conditions are met. Thus, the non-zero eigenvalues are −n2
with n ∈ Z, with corresponding eigenspaces spanned by e±inx, and these eigenvalues give an orthogonal
basis for V .

(For λ = 0, apply ∆ distributionally to Tu = 0 · u = 0 to obtain u(x) = 0 for u orthogonal to constants.)
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