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Fubini-Tonelli, about changing order of summation, and/or rearrangements of infinite sums, can be addressed
prior to measure-and-integration. The proof techniques also illustrate why Lebesgue’s dominated convergence
theorem and monotone convergence theorems are correct, again, prior to measure-and-integration.

Of course, an optimist would presume or hope that interchange of limits is justified under mild-and-usually-
met hypotheses. And, of course, it is not surprising that things can fail when pushed beyond natural operating
limitations. Here, we confirm some expected and good outcomes, under mild, reasonable hypotheses.

For example, for {aij : i, j = 1, 2, . . .} a doubly-indexed set of non-negative real numbers, we will prove that
the two different obvious iterated sums are equal:

∞∑
i=1

∞∑
j=1

aij =

∞∑
j=1

∞∑
i=1

aij

where +∞ is allowed as a possible value of inner sums and/or of the whole, in the sense that the two implied
limits can be interchanged:

lim
M→+∞

M∑
i=1

(
lim

N→+∞

N∑
j=1

aij

)
= lim

N→+∞

N∑
j=1

(
lim

M→+∞

M∑
i=1

aij

)
(allowing value +∞)

Because finite sums can be interchanged with limits, this is equivalent to

lim
M→+∞

lim
N→+∞

∑
i≤M, j≤N

aij = lim
N→+∞

lim
M→+∞

∑
i≤M, j≤N

aij

On another hand, to attribute a different sense to the double sum, for any nested sequence Φ1 ⊂ Φ2 ⊂ . . .
of finite subsets of S = {(i, j) : i, j = 1, 2, . . .} such that

⋃
Φn = S, we will prove that also

lim
n

∑
(i,j)∈Φn

aij =

∞∑
i=1

∞∑
j=1

aij =

∞∑
j=1

∞∑
i=1

aij (allowing value +∞)

Sums over finite sets are unambiguous, so this gives one way to characterize a doubly infinite sum, somewhat
more complicated than the limit of a sequence. This also includes the assertion that arbitrary rearrangements
of such sums give the same value.

We will also prove more-general assertions about double sums, that including both limits of finite subsums,
and the iterated sums. The subsums Ai =

∑
j aij and Bj =

∑
i aij are not finite subsums, so this has

non-trivial content.

For complex aij , under the condition
∑

ij |aij | < +∞ as sup of finite subset sums, or under the equivalent

condition
∑∞

i=1

∑∞
j=1 |aij | <∞, or under the equivalent condition

∑∞
i=1

∑∞
j=1 |aij | <∞, again

∞∑
i=1

∞∑
j=1

aij =

∞∑
j=1

∞∑
i=1

aij =
∑
i,j

aij
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where the last expression is a limit over finite subsums, for example.

In this context, we prove that, for a sequence an of complex numbers, if
∑

n |an| < +∞, then arbitrary
rearrangements give the same sum

∑
n an. That is, for any re-indexing ain with bijection n ↔ in of

{1, 2, 3, . . .},
∞∑

n=1

ain =

∞∑
n=1

an

1. Limits of finite subsums: non-negative case

Let S be a non-empty set of non-negative real numbers. Let Φ be the directed set [1] of finite subsets of S,
ordered by inclusion. Let

σ(S) = sup
F∈Φ

∑
a∈F

a ≤ +∞

[1.1] Theorem: For any cofinal [2] subset Φ′ of Φ,

sup
F∈Φ

∑
a∈F

a = sup
F∈Φ′

∑
a∈F

a = lim
F∈Φ′

∑
a∈F

a (allowing value +∞)

[1.2] Remark: Existence of a limit L <∞ over the directed Φ is that, for every ε > 0 there is F ∈ Φ such
that, for every F ⊃ Fo, with F ∈ Φ, ∣∣∣L − ∑

a∈F
a
∣∣∣ < ε

A limit +∞ requires that, for every C > 0, there is Fo ∈ Φ such that, for every F ⊃ Fo, with F ∈ P ,∣∣∣∑
a∈F

a
∣∣∣ > C

Proof: Sups of non-empty sets of real numbers always exist, when the value +∞ is allowed. Likewise, for
Φ′ a subset of the set Φ of finite subsets of S,

sup
F∈Φ′

∑
a∈F

≤ sup
F∈Φ

∑
a∈F

To show the opposite inequality when Φ′ is cofinal, first, suppose σ(S) = supF∈Φ a is finite. Let Fo ∈ Φ be
such that

∑
a∈Fo

a > supF∈Φ a− ε. Cofinality gives F ′ ∈ Φ′ such that F ′ ⊃ Fo, so∑
a∈F ′

a ≥
∑
a∈Fo

a > σ(S)− ε

Thus, supF∈Φ′
∑

a∈F ≥ σ(S), giving equality.

[1] A directed set Φ is a partially ordered set, with inequality relation < or ≤, such that for any two elements x, y,

there is z such that x ≤ z and y ≤ z.

[2] P ′ is cofinal in P when, for every Φ ∈ P , there is Φ′ ∈ P ′ such that Φ′ ⊃ Φ.
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Similarly, with σ(S) = +∞, given C > 0, take Fo ∈ Φ such that
∑

a∈Fo
a > C. Cofinality gives F ′ ∈ Φ′ such

that F ′ ⊃ Fo, so ∑
a∈F ′

a ≥
∑
a∈Fo

a > C

Thus, supF∈Φ′
∑

a∈F = +∞ = σ(S), giving equality.

To show that the sup is actually the limit, in a slightly more general sense than sequential limits, just translate
the previous discussion slightly, as follows. Let L = supF∈Φ′

∑
a∈F a. For finite L, for ε > 0, choose Fo ∈ Φ′

so that
∑

a∈Fo
a > L− ε. Since all the aij are non-negative, for every F ∈ Φ′ with F ⊃ Fo,∑

a∈F
a > L ≥

∑
a∈Fo

a > L− ε

The analogous monotonicity also treats the case L = +∞. ///

2. Limits of finite subsums: signed and complex case

Let S be a set of complex numbers, such that
∑

a∈S |a| < +∞, in the sense proven in previous sections to
be well-defined. Let Φ be the directed set of finite subsets of S.

[2.1] Theorem: limF∈Φ

∑
a∈F a exists.

[2.2] Corollary: For any cofinal subset Φ′ of Φ, limF∈Φ′
∑

a∈F a exists and is equal to limF∈Φ

∑
a∈F a.

(Proof below.)

[2.3] Remark: The corollary generalizes the idea that absolutely convergent sums can be rearranged
arbitrarily without changing their value.

Proof: Existence of this limit, in terms of Cauchy nets, is that, given ε > 0, there is Fo ∈ Φ such that, for
all F1 ⊃ Fo and F2 ⊃ Fo, ∣∣∣ ∑

a∈F1

a−
∑
a∈F2

a
∣∣∣ < ε

Since limF∈Φ

∑
a∈F |a| exists,

∑
a∈F |a| is a Cauchy net: given ε > 0, there is Fo such that, for all F1 ⊃ Fo

and F2 ⊃ Fo, ∣∣∣ ∑
a∈F1

|a| −
∑
a∈F2

|a|
∣∣∣ < ε

In particular, ∑
a∈Fj−Fo

|a| =
∣∣∣ ∑
a∈Fj

|a| −
∑
a∈Fo

|a|
∣∣∣ < ε (for j = 1, 2)

Thus, by the triangle inequality,∣∣∣ ∑
a∈F1

a−
∑
a∈F2

a
∣∣∣ =

∣∣∣ ∑
a∈F1

a−
∑
a∈Fo

a+
∑
a∈Fo

a−
∑
a∈F2

a
∣∣∣ ≤ ∣∣∣ ∑

a∈F1

a−
∑
a∈Fo

a
∣∣∣+
∣∣∣ ∑
a∈Fo

a−
∑
a∈F2

a
∣∣∣

=
∣∣∣ ∑
a∈F1−Fo

a
∣∣∣+
∣∣∣ ∑
a∈F2−Fo

a
∣∣∣ ≤ ∑

a∈F1−Fo

|a|+
∑

a∈F2−Fo

|a| < 2ε

This proves
∑

a∈F a is a Cauchy net in C. ///

For the corollary:
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Proof: Let L = limF∈Φ

∑
a∈F a. For a cofinal subset Φ′ of Φ, given ε > 0, let Fo ∈ Φ be such that∣∣∣L −∑a∈F a

∣∣∣ < ε for every F ∈ Φ with F ⊃ Fo. Since Φ′ is cofinal in Φ, there is F ′o ∈ Φ′ with F ′o ⊃ Fo.

Then for every F ∈ Φ′ with F ⊃ F ′o, since also F ⊃ Fo, we have the desired inequality∣∣∣L− lim
F∈Φ′

∑
a∈F

a

Thus, limF∈Φ′
∑

a∈F a = L, as claimed. ///

3. Discrete Fubini-Tonelli: non-negative case

[3.1] Theorem: Let S = {aij : 1 ≤ i, j <∞} be a set of non-negative real numbers, and Φ the directed set
of its finite subsets, under inclusion. Then∑

i

∑
j

aij =
∑
j

∑
i

aij = lim
F∈Φ

∑
(i,j)∈F

aij

Proof: Let Ai =
∑

j aij ≤ +∞. To show that limM

∑
i≤M Ai = σ(S), treat a few cases. First, if some Ai

is +∞, then σ{aij : 1 ≤ j < +∞} = +∞. Since R ⊂ S implies σ(R) ≤ σ(S), we have σ(S) = +∞.

Next, suppose every Ai is finite, but
∑

iAi = +∞. Given C > 0, take M sufficient large such that∑
i≤M Ai > C. Given ε > 0, for each i ≤M , take Ni such that

∑
j≤Ni

aij >
∑
j

aij −
ε

2i

With F = {aij : i ≤M, j ≤ Ni},

∑
a∈F

a =
∑

i≤M, j≤Ni

aij >
∑
i≤M

(∑
j

aij −
ε

2i

)
=
∑
i≤M

(
Ai −

ε

2i

)
> C − ε

∑
i≤M

1

2i
> C − ε

Thus, σ({aij}) = +∞.

Very similarly, with
∑

iAi = L < ∞, take ε > 0, and M sufficient large such that
∑

i≤M Ai > L − ε. For
each i ≤M , take Ni such that ∑

j≤Ni

aij >
∑
j

aij −
ε

2i

With F = {aij : i ≤M, j ≤ Ni},

∑
a∈F

a =
∑

i≤M, j≤Ni

aij >
∑
i≤M

(∑
j

aij −
ε

2i

)
=
∑
i≤M

(
Ai −

ε

2i

)
> L− ε

∑
i≤M

1

2i
> L− ε

Thus, σ({aij}) ≥ L.

In the opposite direction, first suppose that σ{aij} = +∞. Given C > 0, take M,N large enough so that∑
i≤M, j≤N aij > C. Then ∑

i≤M

Ai ≥
∑
i≤M

∑
j≤N

aij > C
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So
∑

iAi = +∞. Similarly, with σ{aij} = L < +∞, given ε > 0, take M,N large enough so that∑
i≤M, j≤N aij > L− ε. Then ∑

i≤M

Ai ≥
∑
i≤M

∑
j≤N

aij > L− ε

so
∑

iAi ≥ L. ///

4. Discrete Fubini-Tonelli: signed and complex case

Let S = {aij : 1 ≤ i, j <∞} be a set of complex numbers, and Φ the directed set of its finite subsets.

[4.1] Claim: If
∑

ij |aij | < +∞, then

lim
M→∞

lim
N→∞

∑
i≤M, j≤N

aij = lim
N→∞

lim
M→∞

∑
i≤M, j≤N

aij = lim
F∈Φ

∑
(i,j)∈F

aij

Proof: As in the non-negative real situation, the hypotheses assure that the infinite subsums Ai =
∑

j aij
and Bj =

∑
i aij are approximated by finite subsums, and (absolutely) convergent. Further, both iterated

sums are equal to the limit sum over F ∈ Φ.

First, to see that the infinite subsums are approximated by finite subsums, given ε > 0, convergence of∑
j |aij | assures that, for every ε > 0, there is jo such that, for all j1, j2 ≥ jo,∣∣∣ ∑

j≤j1

|aij | −
∑
j≤j2

|aij |
∣∣∣ < ε

In particular, this applies to jo and any j1 ≥ jo:∣∣∣ ∑
jo<j≤j1

|aij |
∣∣∣ =

∣∣∣ ∑
j≤j1

|aij | −
∑
j≤jo

|aij |
∣∣∣ < ε

Thus, for such ε, jo, j1, j2,∣∣∣ ∑
j≤j1

aij −
∑
j≤j2

aij

∣∣∣ ≤ ∣∣∣ ∑
j≤j1

aij −
∑
j≤jo

aij

∣∣∣+
∣∣∣ ∑
j≤j2

aij −
∑
j≤jo

aij

∣∣∣
=
∣∣∣ ∑
jo<j≤j1

aij

∣∣∣+
∣∣∣ ∑
jo<j≤j2

aij

∣∣∣ ≤ ∑
jo<j≤j1

|aij |+
∑

jo<j≤j2

|aij | < 2ε

Thus,
∑

j≤M aij is Cauchy, therefore convergent. Thus, Ai =
∑

j aij is (absolutely) convergent, and nicely
approximable by its finite subsums.

Next, we show that the sequence
∑

i≤M Ai converges to limF∈Φ

∑
a∈F a. Given ε > 0, let Mo, No be large

enough so that
∑

i≤M, j≤N aij is within ε of the limit L of the finite subsums for every M ≥Mo and N ≥ No.

For each i ≤Mo, let ji be large enough so that
∑

j≤ji aij is within ε/2i of Ai. Let N ′o = maxi≤Mo
ji. Then∣∣∣L− ∑

i≤Mo

Ai

∣∣∣ < ε+
∣∣∣ ∑
i≤Mo, j≤N ′

o

aij −
∑
i≤Mo

Ai

∣∣∣ ≤ ε+
∑
i≤Mo

∣∣∣ ∑
j≤N ′

o

aij −Ai

∣∣∣ < ε+
∑
i≤Mo

ε

2i
< 2ε

Thus,
∑

i≤M Ai converges to L. ///
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