Rules: 4 exams, in class
(see http://www.math.umn.edu/~garrett/m/real)

Calendar for ex/hwk + exams not sacred

3 notes

No final

1) Snow days → Zoom
2) Medium-sick days → Zoom

Exams by email, on honor system
(keep those files small?)
Brief recap about distributions / a.k.a. "generalized functions."

$D \subset C^0(R)$, Schwartz functions $\subset L^2(R)$.

want? \mathcal{S}^* map $\rightarrow D^*$

cpt-sp$^+$ tempered distributions $\rightarrow \mathcal{S}^*$

In general $V \overset{\subset}{\otimes} V^*$

$D \overset{?}{\rightarrow} D^*$ by $\varphi \rightarrow \text{integrad-against-}\varphi$

View D^* as ext'n of D!

Define ops on D^* (consistently w/)

by $\varphi'(\varphi) = -\varphi(\varphi') - \text{i.b.p.}$
\(\Delta \) for \(u \in \mathcal{D}'^+ \) (\(\ri : \mathcal{D}^+ \to \mathcal{D} \))

\[
\hat{u}(\phi) = u(\check{\phi}) \check{\varepsilon}
\]

+ weak-dual top on duals, \(\mathcal{D} \)

"+ "

(Thm) \(\mathcal{D} \) dense in all of these, etc.

So also for \(u \in \mathcal{D}'^+ \), \(\Delta \) \(u_n \xrightarrow{\Delta} u \)

\[\Delta \text{ as well} \]

\[\frac{d}{dx} u = \lim_{n} \frac{d}{dx} (w^+ - \lim_{n} u_n) \]

\[\hat{u} \text{ distible} \]

\[\hat{u} = w^+ - \lim_{n} \left(\frac{d}{dx} u_n \right) \]

"usual"

can eval by "classic"

\[\lim \text{ of diff quot} \]

\[\Delta \text{ of } \theta \]

\[\Delta \]
\[\left(\frac{\sin x}{x} \right)^\pm = ? \quad \text{(is it \textit{cvgf}, not \textit{abs})} \]

But, "know" \[\left(\frac{1}{x} \right)^\pm \approx \frac{\sin x}{x} \]

all even, so \(\wedge \equiv \vee \)

not by \(\text{Sh} \), but

by \(F \), inversion.

Next: "Soboler spaces" + \(\text{Besov} \) \(\text{Lem} \) 1906
\(\text{G}, \text{FvBo} \) 1907

(True) version of Dirichlet
Minimum principle
(not in \(C^0, C^1, \ldots \))

differentialability
via Hilbert sp's?
First, H^k on $T = \text{circle} = \mathbb{R}/\mathbb{Z} \cong [0, 2\pi]$.

On T, order L^p regular Borel measures.

\[D \hookrightarrow C^\infty \hookrightarrow C^0 \hookrightarrow L^2 \hookrightarrow (C^0)^* \hookrightarrow (C^1)^* \hookrightarrow \cdots \]

Markov–Riesz–Kahane–Riener

\[\frac{d}{dx} (C^0)^* \subseteq (C^0)^* \text{?!} \]

In this sense, Yilun. \(\vdash \)

Not H^p's.

No min princ.

No \perp.

No \perp bases.
Instead, want Hsps grading range of funs

$\mathbb{D} \rightarrow C^1 \rightarrow H^1 \rightarrow C^0 \rightarrow L^2 \rightarrow (C^0)^* \rightarrow H^{-1} \rightarrow (C^1)^* \rightarrow H^2 \rightarrow \cdots \rightarrow H^*$

Hsps!

Sobolev imb. thm: $H^k \subseteq C^k \cap C^\infty$

+ more: F. - ego of dishes