(June 29, 2024)

Dirac and Casimir operators

Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/~garrett/

- 1. Characterization of Dirac operators \mathbb{D}
- 2. *G*-equivariance/invariance of Casimir Ω
- **3**. *K*-equivariance/invariance of \mathbb{D}
- 4. Spinors and spinor representations

An important contrast between a Dirac operator \mathbb{D} and Casimir operator Ω attached to a semi-simple Lie group G, as elements of $C\mathfrak{p} \otimes U\mathfrak{g}$ and $U\mathfrak{g}$, respectively, is that the action of G on functions on G attached to right translation *does not* directly involve the enhanced coefficients $C\mathfrak{p}$.

Abstract equivariance properties are manifest differently. Significantly, while Ω is left-and-right G invariant as a right (differential) operator on functions on G, \mathbb{D} (acting as a differential operator on the right) is certainly left G-invariant, but not right invariant at all, although it has *intelligible* behavior under right translation by K. Specifically, it does not map the space of right K-invariant functions on G to itself, but, rather, to a space of vector-valued functions transforming equivariantly under right translation by K. Yes, as an element of $C\mathfrak{p} \otimes U\mathfrak{g}$ with K acting diagonally on *both* factors, \mathbb{D} is K-invariant, but the natural right-translation action *does not* have K acting on the first factor $C\mathfrak{p}$.

In particular, in the case of $G = SL_2(\mathbb{R})$, since \mathbb{D} does not map the space of right K-invariant functions to itself, it cannot be an operator on spaces of functions on $G/K \approx \mathfrak{H}$.

Background: [Dirac 1928] expressed Laplacians as *squares* of linear operators by extending scalars to noncommutative algebras. For several reasons, it is useful to similarly express Laplace-Beltrami operators on quotients G/K and $\Gamma \backslash G/K$ of semi-simple Lie groups G by maximal compact subgroups K and discrete subgroups Γ as squares of linear operators. Naturally, the non-abelian-ness of these groups and Lie algebras creates complications.

We work out some mundane features of Dirac operators on symmetric spaces G/K, using only the most basic ideas from [Parthasarathy 1972], [Atiyah-Schmid 1977/79], [Huang-Pandžić 2006], et alia.

The set-up here is merely a mild rearrangement of other excellent accounts, especially [Huang-Pandžić 2006]. The goal of the latter is construction of *discrete series* representations of semi-simple Lie groups, especially proofs of conjectures of Vogan in seminar talks in 1999 at MIT. We stay in a simpler context than [Kostant 1999].

In a much broader geometric context, [Atiyah-Singer 1963] announced proof of the Index Theorem for elliptic operators using Dirac operators. See [Palais 1965] and [Lawson-Michelsohn 1989] for exposition and references to further work in the general geometric setting.

[Parthasarathy 1972] used Dirac operators to construct discrete series representations of semi-simple Lie groups. The latter application was systematized by [Atiyah-Schmid 1977/79], and in Vogan's 1999 conjectures, the latter proven in [Huang-Pandžić 2002].

See [Sands 2020] for an application to automorphic forms.

1. Characterization of Dirac operator \mathbb{D}

Let G be a semi-simple real Lie group, \mathfrak{g} its Lie algebra, K a maximal compact, Killing form \langle,\rangle . Let $C\mathfrak{p}$ be the Clifford algebra of the -1 eigenspace \mathfrak{p} of a Cartan involution whose +1-eigenspace is the Lie algebra \mathfrak{k} of K, with quadratic form given by the restriction of the Killing form. The Dirac operator, as an element of

 $C\mathfrak{p}\otimes U(\mathfrak{g})$, is the image of the identity operator $1_{\mathfrak{p}}$ on \mathfrak{p} under the chain of natural maps

$$1_{\mathfrak{p}} \in \operatorname{End} \mathfrak{p} \xrightarrow{\approx} \mathfrak{p} \otimes \mathfrak{p}^* \xrightarrow{\approx} \mathfrak{p} \otimes \mathfrak{p} \xrightarrow{\operatorname{inc}} C\mathfrak{p} \otimes U\mathfrak{g} \ni \mathbb{D}$$

The standard way for \mathbb{D} to act on functions f on G is by the natural incarnation of $U\mathfrak{g}$ as differential operators induced by right multiplication on G, with coefficients in $C\mathfrak{p}$.

The pattern is considerably analogous to the characterization of the Casimir element $\Omega \in U\mathfrak{g}$:

$$1_{\mathfrak{g}} \in \operatorname{End} \mathfrak{g} \xrightarrow{\approx} \mathfrak{g} \otimes \mathfrak{g}^* \xrightarrow{\approx} \mathfrak{g} \otimes \mathfrak{g} \xrightarrow{\operatorname{inc}} \bigotimes^{\bullet} \mathfrak{g} \xrightarrow{\operatorname{quot}} U\mathfrak{g} \ni \Omega$$

The desired effect is $\mathbb{D}^2 = -\Omega \mod U\mathfrak{k}$: in coordinates, letting $\{v_i\}$ be an orthonormal basis of \mathfrak{p} , in $C\mathfrak{p} \otimes U\mathfrak{g}$,

$$\mathbb{D}^{2} = \left(\sum_{i} v_{i} \otimes v_{i}\right)^{2} = \sum_{i} v_{i}^{2} \otimes v_{i}^{2} + \sum_{i \neq j} v_{i}v_{j} \otimes v_{i}v_{j} = -1 \otimes \left(\sum_{i} v_{i}^{2}\right) + \sum_{i < j} \left(v_{i}v_{j} \otimes v_{i}v_{j} + v_{j}v_{i} \otimes v_{j}v_{i}\right)$$
$$= -1 \otimes \left(\sum_{i} v_{i}^{2}\right) + \sum_{i < j} \left(v_{i}v_{j} \otimes v_{i}v_{j} - v_{i}v_{j} \otimes v_{j}v_{i}\right) = -1 \otimes \left(\sum_{i} v_{i}^{2}\right) + \sum_{i < j} v_{i}v_{j} \otimes [v_{i}, v_{j}]$$
$$= -1 \otimes \Omega_{\mathfrak{g}} + 1 \otimes \Omega_{\mathfrak{k}} + \sum_{i < j} v_{i}v_{j} \otimes [v_{i}, v_{j}] = -1 \otimes \Omega_{\mathfrak{g}} \mod U\mathfrak{k}$$
Happily, the $C\mathfrak{p}$ coefficients on $\Omega_{\mathfrak{g}}$ collapse to $-1 \in \mathbb{R} \subset C\mathfrak{p}$.

Happily, the $C\mathfrak{p}$ coefficients on $\Omega_{\mathfrak{g}}$ collapse to $-1 \in \mathbb{R} \subset C\mathfrak{p}$.

2. G-equivariance/invariance of Casimir Ω

As recalled below, by design, $\operatorname{Ad}(g)(\Omega) = \Omega$, with the (extended) Adjoint action of G on Ug. Thus, when Ω acts by differential operators attached to the right translation action of G on functions on G, Ω commutes with the right-translation action of G. (With $U\mathfrak{g}$ acting by right translation, of course every element of it commutes with the *left* translation action of G.) In particular, Ω preserves right K-invariance.

Let $T_{v\otimes w}$ be the element of Endg attached to $v, w \in \mathfrak{g}$, under $\mathfrak{p} \otimes \mathfrak{p} \longrightarrow \operatorname{End} \mathfrak{g}$, by $T_{v\otimes w}(x) = v \cdot \langle x, w \rangle$. For notational compactness, let $A = \operatorname{Ad} g$. Then

$$\left(A \circ T_{v \otimes w} \circ A^{-1}\right)(x) = A\left(v \cdot \langle A^{-1}x, w \rangle\right) = Av \cdot \langle x, Aw \rangle = T_{Av \otimes Aw}(x)$$

since A respects $\langle Ay, Az, \rangle = \langle y, z \rangle$ for all $y, z \in \mathfrak{g}$. Thus,

$$T_{A\Omega} = A \circ T_{\Omega} \circ A^{-1} = A \circ 1_{\mathfrak{g}} \circ A^{-1} = 1_{\mathfrak{g}} = T_{\Omega}$$

By Poincaré-Birkhoff-Witt, $\mathfrak{g} \otimes \mathfrak{g}$ injects to $U\mathfrak{g}$, so $A\Omega = \Omega$.

3. *K*-equivariance/invariance of \mathbb{D}

With the diagonal Adjoint action of K on both factors \mathfrak{p} and \mathfrak{p}^* , since $1_{\mathfrak{p}}$ commutes with this action, \mathbb{D} commutes with this action, since all the maps are K-equivariant/invariant.

///

However, in contrast to the standard use of Ω , the action of K that make \mathbb{D} K-invariant is not just the right-translation action $(k \cdot f)(g) = f(gk)$, but also must include the action of $k \in K$ on the values in \mathfrak{p} of $\mathbb{D}f$. In particular, letting $(R_k f)(g) = f(gk)$, and letting $U\mathfrak{g}$ act by differential operators (on the right), we claim that the right translation R_k has the effect

$$(R_k(\mathbb{D}f))(g) = (\mathrm{Ad}k)^{-1}((\mathbb{D}f)(g))$$

where $(\mathrm{Ad}k)^{-1}$ acts on the *values* of $(\mathbb{D}f)(g)$. In particular, this action of \mathbb{D} does *not* map right K-invariant scalar-valued functions to right K-invariant **p**-valued functions, but to **p**-valued functions whose values transform by Ad under right translation by K.

Proof: Here the action of $K \times K$ on $\mathfrak{p} \otimes \mathfrak{p}$ is relevant, rather than the diagonal action of a single copy of K, so it may be notationally simplest to do this computation in coordinates. Let $\{v_i\}$ be an orthonormal basis of \mathfrak{p} with respect to the Killing form, so

$$\mathbb{D} = \sum_{i} v_i \otimes v_i \in C\mathfrak{p} \otimes U\mathfrak{g}$$

Letting $U\mathfrak{g}$ act by differential operators on the *right* on G,

$$(R_k(\mathbb{D}f))(g) = (\mathbb{D}f)(gk) = \sum_i \left((v_i \otimes v_i)f \right)(gk) = \frac{\partial}{\partial t} \Big|_{t=0} \sum_i v_i \otimes f(gke^{tv_i})$$
$$= \frac{\partial}{\partial t} \Big|_{t=0} \sum_i v_i \otimes f(ge^{t \cdot kv_i k^{-1}}k) = \frac{\partial}{\partial t} \Big|_{t=0} \sum_i v_i \otimes f(ge^{t \cdot \mathrm{Ad}(k)(v_i)}k)$$

Replacing the orthonormal basis v_i by the orthonormal basis $\mathrm{Ad}(k)^{-1}(v_i)$, this becomes

$$(R_k(\mathbb{D}f))(g) = \frac{\partial}{\partial t}\Big|_{t=0} \sum_i \operatorname{Ad}(k)^{-1}(v_i) \otimes f(ge^{tv_i}k) = \operatorname{Ad}(k)^{-1} \sum_i v_i \otimes (v_i(R_kf))(g)$$
$$= \operatorname{Ad}(k)^{-1}\Big(\Big(\sum_i v_i \otimes v_i\Big)(R_kf)(g)\Big) = \operatorname{Ad}(k)^{-1}\Big(\mathbb{D}(R_kf)(g)\Big)$$

///

as claimed.

4. Spinors and spinor representations

From above, for f on G/K, the image $\mathbb{D}f$ takes values in \mathfrak{p} , and under right translation by K transforms by Ad acting on \mathfrak{p} . This is an instance of a *spinor representation* on spinors \mathfrak{p} , as follows.

Let V be a non-degenerate quadratic space over \mathbb{R} . There are copies of the Lie algebra $\mathfrak{so}(V)$ of the special orthogonal group SO(V) of V inside the Clifford algebra CV. A canonical copy can be distinguished by taking trace-zero elements of the Lie subalgebra \mathfrak{a} in the following claim.

[4.1] Claim: Let \mathfrak{a} be the linear subspace of CV spanned by products uv for u, v in V. Under the Lie bracket [a, b] = ab - ba in CV, \mathfrak{a} is a Lie algebra, and the action $\theta \cdot w = \theta w - w\theta$ on $w \in V \subset CV$ gives a Lie isomorphism of \mathfrak{a} modulo constants to $\mathfrak{so}(V)$.

[4.2] Remark: The Lie subgroup of CV associated to \mathfrak{a} is the Spin group associated to SO(V). In this context, V is spinors, and the action of the Lie group on V is a spinor representation.

Proof: First, a stabilizes V: for $u, v, x \in V$,

$$[uv, x] = uvx - xuv = uvx - (-ux - \langle u, x \rangle)v = uvx + uxv + \langle u, x \rangle v$$
$$= uvx + u(-vx - \langle v, x \rangle) + \langle u, x \rangle v = uvx - uvx - \langle v, x \rangle u + \langle u, x \rangle v = -\langle v, x \rangle u + \langle u, x \rangle v$$

Thus, the image of V in CV is stabilized by \mathfrak{a} . The latter computation also gives a useful commutation rule. Second, show that \mathfrak{a} is closed under brackets: for $x, y, u, v \in V$, repeatedly using the two-step commutation rule just demonstrated,

$$\begin{aligned} [xy,uv] &= (xy)(uv) - (uv)(xy) = x(yuv - uvy) + x(uvy) - uvxy = -x(uvy - yuv) - (uvx - xuv)y \\ &= -x(-\langle v, y \rangle u + \langle u, y \rangle v) - (-\langle v, x \rangle u + \langle u, x \rangle v)y = \langle v, y \rangle xu - \langle u, y \rangle xv + \langle v, x \rangle uy - \langle u, x \rangle vy \end{aligned}$$

which is back in \mathfrak{a} , as claimed. To show that the action of \mathfrak{a} on V preserves \langle,\rangle is to show that

$$\langle [uv, x], y \rangle + \langle x, [uv, y] \rangle = 0$$
 (for $x, y, u, v \in V$)

From the earlier computation,

$$\langle [uv, x], y \rangle = \left\langle -\langle v, x \rangle u + \langle u, x \rangle v, y \right\rangle = -\langle v, x \rangle \langle u, y \rangle + \langle u, x \rangle \langle v, y \rangle$$

while

$$\left\langle x, [uv, y] \right\rangle \ = \ \left\langle x, -\langle v, y \rangle u + \langle u, y \rangle v \right\rangle \ = \ -\langle v, y \rangle \langle u, x \rangle + \langle u, y \rangle \langle x, v \rangle$$

showing that the action of \mathfrak{a} preserves \langle , \rangle .

Certainly constants act by 0 by the bracket on V. To prove that \mathfrak{a} modulo constants maps isomorphically to $\mathfrak{so}(V)$ dimension-counting seems necessary, so let e_1, \ldots, e_n be an orthogonal basis of V, and claim that the images of $e_i e_j$ with i < j are linearly independent as linear endomorphisms of V. This would prove injectivity, and then surjectivity by dimension-count. Suppose $\sum_{i < j} c_{ij} e_i e_j$ is a shortest linear combination acting by 0 on V. From the two-step commutativity above, for all k,

$$0 = [0, e_k] = \left[\sum_{i < j} c_{ij} e_i e_j, e_k\right] = \sum_{i < j} c_{ij} \left(-\langle e_j, e_k \rangle e_i + \langle e_i, e_k \rangle e_j\right)$$
(in the copy of V in CV)

Let i_o be the lowest index such that $c_{i_o j} \neq 0$ for some $j > i_o$, and take $k = i_o$, so

$$0 = \sum_{i < j} c_{ij} \Big(- \langle e_j, e_{i_o} \rangle e_i + \langle e_i, e_{i_o} \rangle e_j \Big) = \sum_{j > i_o} c_{i_o j} e_j$$

which implies that $c_{i_o j} = 0$ for all $j > i_o$, contradiction. This proves injectivity.

[4.3] Remark: The proof shows that a choice of basis e_i for V gives a choice of a copy of $\mathfrak{so}(V)$, by taking the span of $e_i e_j$ for i < j. Changing the basis will change this span, in general, but will *not* change the action on the copy of V in CV. A trace zero condition also disambiguates.

Bibliography

[Atiyah-Schmid 1977] M. Atiyah, W. Schmid, A geometric construction of the discrete series for semi-simple Lie groups, Inv. Math. 42 (1977), 1-62.

[Atiyah-Schmid 1979] M. Atiyah, W. Schmid, Erratum: a geometric construction of the discrete series for semi-simple Lie groups, Inv. Math. 54 (1979), 189-192.

///

[Atiyah-Singer 1963] M. Atiyah, I. Singer, *The index of elliptic operators on compact manifolds*, Bull. AMS **69** (1963), 422-433.

[Chevalley 1954] C. Chevalley, The algebraic theory of spinors, Columbia Univ. Press, 1954.

[Dirac 1928] P.A.M. Dirac, The quantum theory of the electron, Proc. Royal Soc. London 117 (1928), 610-624.

[Huang-Pandzic 2002] J.-S. Huang, P. Pandžić, Dirac cohomology, unitary representations, and a proof of a conjecture of Vogan, J. Amer. Math. Soc. 15 (2002), 185-202.

[Huang-Pandzic 2006] J.-S. Huang, P. Pandžić, Dirac operators in representation theory, Birkäuser, 2006.

[Kostant 1999] B. Kostant, A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal-rank subgroups, Duke J. Math. **100** (1999), 447-501.

[Lawson-Michelsohn 1989] H.B. Lawson Jr., M.-L. Michelsohn, Spin Geometry, Princeton Univ. Press, 1989.

[Palais 1965] R. Palais, *Seminar on the Atiyah-Singer Index Theorem*, Annals of Math. Studies no. 57, Princeton University Press, 1965.

[Parthasarathy 1972] R. Parthasarathy, *Dirac operator and the discrete series*, Ann. of Math. **96** (1972), 1-30.

[Sands 2020] A. Sands, Automorphic Hamiltonians, Epstein zeta functions, and Kronecker limit formulas, thesis, University of Minnesota, September 2020.