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An important contrast between a Dirac operator D and Casimir operator 2 attached to a semi-simple Lie
group G, as elements of C'p ® Ug and Ug, respectively, is that the action of G on functions on G attached
to right translation does not directly involve the enhanced coefficients Cp.

Abstract equivariance properties are manifest differently. Significantly, while 2 is left-and-right G invariant
as a right (differential ) operator on functions on G, D (acting as a differential operator on the right) is
certainly left G-invariant, but mot right invariant at all, although it has intelligible behavior under right
translation by K. Specifically, it does not map the space of right K-invariant functions on G to itself,
but, rather, to a space of vector-valued functions transforming equivariantly under right translation by K.
Yes, as an element of Cp ® Ug with K acting diagonally on both factors, D is K-invariant, but the natural
right-translation action does not have K acting on the first factor Cp.

In particular, in the case of G = SL2(R), since D does not map the space of right K-invariant functions to
itself, it cannot be an operator on spaces of functions on G/K = $.

Background: [Dirac 1928] expressed Laplacians as squares of linear operators by extending scalars to non-
commutative algebras. For several reasons, it is useful to similarly express Laplace-Beltrami operators on
quotients G/K and I'\G/K of semi-simple Lie groups G by maximal compact subgroups K and discrete
subgroups I' as squares of linear operators. Naturally, the non-abelian-ness of these groups and Lie algebras
creates complications.

We work out some mundane features of Dirac operators on symmetric spaces G/K, using only the most
basic ideas from [Parthasarathy 1972], [Atiyah-Schmid 1977/79], [Huang-Pandzié 2006], et alia.

The set-up here is merely a mild rearrangement of other excellent accounts, especially [Huang-Pandzié¢ 2006].
The goal of the latter is construction of discrete series representations of semi-simple Lie groups, especially
proofs of conjectures of Vogan in seminar talks in 1999 at MIT. We stay in a simpler context than
[Kostant 1999].

In a much broader geometric context, [Atiyah-Singer 1963] announced proof of the Index Theorem for
elliptic operators using Dirac operators. See [Palais 1965] and [Lawson-Michelsohn 1989] for exposition and
references to further work in the general geometric setting.

[Parthasarathy 1972] used Dirac operators to construct discrete series representations of semi-simple Lie
groups. The latter application was systematized by [Atiyah-Schmid 1977/79], and in Vogan’s 1999
conjectures, the latter proven in [Huang-Pandzié 2002].

See [Sands 2020] for an application to automorphic forms.

1. Characterization of Dirac operator D

Let G be a semi-simple real Lie group, g its Lie algebra, K a maximal compact, Killing form (,). Let Cp be
the Clifford algebra of the —1 eigenspace p of a Cartan involution whose +1-eigenspace is the Lie algebra ¢
of K, with quadratic form given by the restriction of the Killing form. The Dirac operator, as an element of
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Cp ®@ U(g), is the image of the identity operator 1, on p under the chain of natural maps

l, eEndp Z—>pap' —>pep—>CpoUg 3D

The standard way for D to act on functions f on G is by the natural incarnation of Ug as differential
operators induced by right multiplication on G, with coefficients in Cp.

The pattern is considerably analogous to the characterization of the Casimir element 2 € Ug:

quot

lg €Endg 2> gog" —>g0g—>Q®"g

The desired effect is D? = —Qmod U¥: in coordinates, letting {v;} be an orthonormal basis of p, in Cp® Ug,

Ug 3Q

2
D? = (Zm@vi) = vf®vf+2mvj®ij = —1®(va)+2(vivj®uwj + vjv; ® v;v;)

i i i#j i i<j

= -1® (va) + Z (viv; ® viv; — viv; QVjy;) = —1® (va) + Zvivj ® [vi,vj]

i i<j i i<j
= -1 +10Q%+ Y v ®[v,v] = —1®Q; mod Ut
i<j
Happily, the Cp coefficients on Qg collapse to —1 € R C Cp. ///

2. G-equivariance/invariance of Casimir )

As recalled below, by design, Ad(g)(2) = 2, with the (extended) Adjoint action of G on Ug. Thus, when
acts by differential operators attached to the right translation action of G on functions on G, 2 commutes
with the right-translation action of G. (With Ug acting by right translation, of course every element of it
commutes with the left translation action of G.) In particular, Q preserves right K-invariance.

Let Tygw be the element of Endg attached to v, w € g, under p ® p — End g, by Tygw(z) = v - (z,w). For
notational compactness, let A = Adg. Then

(A © T’u®w o A_l)(x) = A(” ' (A‘%,w)) = Av- <£,Aw>) = TAv®Aw(x)
since A respects (Ay, Az,) = (y, z) for all y, z € g. Thus,
Taao = AOTQOA_1 = AolgoA_1 = 1g = To

By Poincaré-Birkhoff-Witt, g ® g injects to Ug, so AQ = Q. ///

3. K-equivariance/invariance of D

With the diagonal Adjoint action of K on both factors p and p*, since 1, commutes with this action, D
commutes with this action, since all the maps are K-equivariant/invariant.
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However, in contrast to the standard use of €2, the action of K that make D K-invariant is not just the
right-translation action (k- f)(g) = f(gk), but also must include the action of k¥ € K on the values in p of
Df. In particular, letting (R f)(g) = f(gk), and letting Ug act by differential operators (on the right), we
claim that the right translation Ry has the effect

(Re(Df))(9) = (Adk)"'((Df)(9))

where (Adk)~! acts on the values of (Df)(g). In particular, this action of D does not map right K-invariant
scalar-valued functions to right K-invariant p-valued functions, but to p-valued functions whose values
transform by Ad under right translation by K

Proof: Here the action of K x K on p ®p is relevant, rather than the diagonal action of a single copy of K,

so it may be notationally simplest to do this computation in coordinates. Let {v;} be an orthonormal basis
of p with respect to the Killing form, so

= Zvi®vi € C’p@Ug

Letting Ug act by differential operators on the right on G,

(R®H)o) = BN = Y (mewh)eh) = o] Sue flghe™)

g

0 Kokt
ot tzQZm@f(getk k)

Replacing the orthonormal basis v; by the orthonormal basis Ad(k)~!(v;), this becomes

7 0 Z Vi @ f(g@tAd(k)(UL)k)
t: .

(Br(Df))(g

ZAd ) ® flge™ik) = Ad(k 12% (vi(Rrf))(g)

- Ad(k)*(@w@vi)(Rm(g)) — Ad(R) " (D(RLS)(9))

as claimed. ///

4. Spinors and spinor representations

From above, for f on G/K, the image Df takes values in p, and under right translation by K transforms by
Ad acting on p. This is an instance of a spinor representation on spinors p, as follows.

Let V' be a non-degenerate quadratic space over R. There are copies of the Lie algebra so(V') of the special
orthogonal group SO(V') of V inside the Clifford algebra CV. A canonical copy can be distinguished by
taking trace-zero elements of the Lie subalgebra a in the following claim.

[4.1] Claim: Let a be the linear subspace of C'V spanned by products uv for u,v in V. Under the Lie
bracket [a,b] = ab — ba in C'V, a is a Lie algebra, and the action 6 - w = fw — wh on w € V C CV gives a
Lie isomorphism of a modulo constants to so(V).

[4.2] Remark: The Lie subgroup of CV associated to a is the Spin group associated to SO(V). In this
context, V is spinors, and the action of the Lie group on V is a spinor representation.

Proof: First, a stabilizes V: for u,v,z € V,
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[uv,z] = wzr —zuww = wzr — (—ux — (u,z))v = wx + uzv + (u, x)v
= wozr +u(—vz — (v,z)) + (u,x)v = wvr —uwvxr — (v, x)u + (u,x)v = —(v,x)u + {u, z)v

Thus, the image of V' in CV is stabilized by a. The latter computation also gives a useful commutation rule.
Second, show that a is closed under brackets: for x,y,u,v € V, repeatedly using the two-step commutation
rule just demonstrated,

[zy, uv] = (zy)(uv) — (wo)(zy) = z(yuv — wvy) + z(uvy) — wwry = —z(uvy — yuv) — (W — TUL)yY

= —z(={v,yu+ (u,y)v) = (=, D)u+ (u, 1))y = (v, y)au — (u,y)av + (v, 2)uy — (u, T)vy

which is back in a, as claimed. To show that the action of a on V preserves (,) is to show that
([uv, 2], y) + (2, [uv, y]) = 0 (for z,y,u,v € V)

From the earlier computation,

(fuv,al,y) = (= (a)u+ (wa)o, y) = —(0.2)w.y) + (w,2)(v,y)

while

(w,fuv,g]) = (2, —(,phu+ (wy)v) = —(©,p)u,2) + (u, g, v)
showing that the action of a preserves (,).

Certainly constants act by 0 by the bracket on V. To prove that a modulo constants maps isomorphically
to s0(V) dimension-counting seems necessary, so let eq,...,e, be an orthogonal basis of V, and claim that
the images of e;e; with ¢ < j are linearly independent as linear endomorphisms of V. This would prove
injectivity, and then surjectivity by dimension-count. Suppose } . j Cij€i€j is a shortest linear combination
acting by 0 on V. From the two-step commutativity above, for all k,

0 = [0,ex] = [Zcijeiej, ek} = ZQ’j(* (ej,en)e; + <ei,ek>ej) (in the copy of V in CV)

i<j i<j
Let i, be the lowest index such that ¢; ; # 0 for some j > i,, and take k = 4,, so
0= Z%(- (ej,€i )€ + <€i’€io>€j) = D cie
1<J J>t0
which implies that ¢; ; = 0 for all 7 > ¢,, contradiction. This proves injectivity. ///

[4.3] Remark: The proof shows that a choice of basis e; for V gives a choice of a copy of so(V), by taking
the span of e;e; for ¢ < j. Changing the basis will change this span, in general, but will not change the
action on the copy of V' in CV. A trace zero condition also disambiguates.
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