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An important contrast between a Dirac operator D and Casimir operator Ω attached to a semi-simple Lie
group G, as elements of Cp ⊗ Ug and Ug, respectively, is that the action of G on functions on G attached
to right translation does not directly involve the enhanced coefficients Cp.

Abstract equivariance properties are manifest differently. Significantly, while Ω is left-and-right G invariant
as a right (differential ) operator on functions on G, D (acting as a differential operator on the right) is
certainly left G-invariant, but not right invariant at all, although it has intelligible behavior under right
translation by K. Specifically, it does not map the space of right K-invariant functions on G to itself,
but, rather, to a space of vector-valued functions transforming equivariantly under right translation by K.
Yes, as an element of Cp ⊗ Ug with K acting diagonally on both factors, D is K-invariant, but the natural
right-translation action does not have K acting on the first factor Cp.

In particular, in the case of G = SL2(R), since D does not map the space of right K-invariant functions to
itself, it cannot be an operator on spaces of functions on G/K ≈ H.

Background: [Dirac 1928] expressed Laplacians as squares of linear operators by extending scalars to non-
commutative algebras. For several reasons, it is useful to similarly express Laplace-Beltrami operators on
quotients G/K and Γ\G/K of semi-simple Lie groups G by maximal compact subgroups K and discrete
subgroups Γ as squares of linear operators. Naturally, the non-abelian-ness of these groups and Lie algebras
creates complications.

We work out some mundane features of Dirac operators on symmetric spaces G/K, using only the most
basic ideas from [Parthasarathy 1972], [Atiyah-Schmid 1977/79], [Huang-Pandz̆ić 2006], et alia.

The set-up here is merely a mild rearrangement of other excellent accounts, especially [Huang-Pandz̆ić 2006].
The goal of the latter is construction of discrete series representations of semi-simple Lie groups, especially
proofs of conjectures of Vogan in seminar talks in 1999 at MIT. We stay in a simpler context than
[Kostant 1999].

In a much broader geometric context, [Atiyah-Singer 1963] announced proof of the Index Theorem for
elliptic operators using Dirac operators. See [Palais 1965] and [Lawson-Michelsohn 1989] for exposition and
references to further work in the general geometric setting.

[Parthasarathy 1972] used Dirac operators to construct discrete series representations of semi-simple Lie
groups. The latter application was systematized by [Atiyah-Schmid 1977/79], and in Vogan’s 1999
conjectures, the latter proven in [Huang-Pandz̆ić 2002].

See [Sands 2020] for an application to automorphic forms.

1. Characterization of Dirac operator D
Let G be a semi-simple real Lie group, g its Lie algebra, K a maximal compact, Killing form 〈, 〉. Let Cp be
the Clifford algebra of the −1 eigenspace p of a Cartan involution whose +1-eigenspace is the Lie algebra k
of K, with quadratic form given by the restriction of the Killing form. The Dirac operator, as an element of
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Cp⊗ U(g), is the image of the identity operator 1p on p under the chain of natural maps

1p ∈ End p
≈ //

66p⊗ p∗
≈ // p⊗ p

inc // Cp⊗ Ug 3 D

The standard way for D to act on functions f on G is by the natural incarnation of Ug as differential
operators induced by right multiplication on G, with coefficients in Cp.

The pattern is considerably analogous to the characterization of the Casimir element Ω ∈ Ug:

1g ∈ End g
≈ //

55g⊗ g∗
≈ // g⊗ g

inc //⊗• g quot // Ug 3 Ω

The desired effect is D2 = −Ω mod Uk: in coordinates, letting {vi} be an orthonormal basis of p, in Cp⊗Ug,

D2 =
(∑

i

vi ⊗ vi
)2

=
∑
i

v2
i ⊗ v2

i +
∑
i6=j

vivj ⊗ vivj = −1⊗
(∑

i

v2
i

)
+
∑
i<j

(
vivj ⊗ vivj + vjvi ⊗ vjvi

)
= −1⊗

(∑
i

v2
i

)
+
∑
i<j

(
vivj ⊗ vivj − vivj ⊗ vjvi

)
= −1⊗

(∑
i

v2
i

)
+
∑
i<j

vivj ⊗ [vi, vj ]

= −1⊗ Ωg + 1⊗ Ωk +
∑
i<j

vivj ⊗ [vi, vj ] = −1⊗ Ωg mod Uk

Happily, the Cp coefficients on Ωg collapse to −1 ∈ R ⊂ Cp. ///

2. G-equivariance/invariance of Casimir Ω

As recalled below, by design, Ad(g)(Ω) = Ω, with the (extended) Adjoint action of G on Ug. Thus, when Ω
acts by differential operators attached to the right translation action of G on functions on G, Ω commutes
with the right-translation action of G. (With Ug acting by right translation, of course every element of it
commutes with the left translation action of G.) In particular, Ω preserves right K-invariance.

Let Tv⊗w be the element of Endg attached to v, w ∈ g, under p⊗ p −→ End g, by Tv⊗w(x) = v · 〈x,w〉. For
notational compactness, let A = Adg. Then(

A ◦ Tv⊗w ◦A−1
)

(x) = A
(
v · 〈A−1x,w〉

)
= Av · 〈x,Aw〉

)
= TAv⊗Aw(x)

since A respects 〈Ay,Az, 〉 = 〈y, z〉 for all y, z ∈ g. Thus,

TAΩ = A ◦ TΩ ◦A−1 = A ◦ 1g ◦A−1 = 1g = TΩ

By Poincaré-Birkhoff-Witt, g⊗ g injects to Ug, so AΩ = Ω. ///

3. K-equivariance/invariance of D
With the diagonal Adjoint action of K on both factors p and p∗, since 1p commutes with this action, D
commutes with this action, since all the maps are K-equivariant/invariant.
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However, in contrast to the standard use of Ω, the action of K that make D K-invariant is not just the
right-translation action (k · f)(g) = f(gk), but also must include the action of k ∈ K on the values in p of
Df . In particular, letting (Rkf)(g) = f(gk), and letting Ug act by differential operators (on the right), we
claim that the right translation Rk has the effect

(Rk(Df))(g) = (Adk)−1((Df)(g))

where (Adk)−1 acts on the values of (Df)(g). In particular, this action of D does not map right K-invariant
scalar-valued functions to right K-invariant p-valued functions, but to p-valued functions whose values
transform by Ad under right translation by K.

Proof: Here the action of K ×K on p⊗ p is relevant, rather than the diagonal action of a single copy of K,
so it may be notationally simplest to do this computation in coordinates. Let {vi} be an orthonormal basis
of p with respect to the Killing form, so

D =
∑
i

vi ⊗ vi ∈ Cp⊗ Ug

Letting Ug act by differential operators on the right on G,

(Rk(Df))(g) = (Df)(gk) =
∑
i

(
(vi ⊗ vi)f

)
(gk) =

∂

∂t

∣∣∣
t=0

∑
i

vi ⊗ f(gketvi)

=
∂

∂t

∣∣∣
t=0

∑
i

vi ⊗ f(get·kvik
−1

k) =
∂

∂t

∣∣∣
t=0

∑
i

vi ⊗ f(get·Ad(k)(vi)k)

Replacing the orthonormal basis vi by the orthonormal basis Ad(k)−1(vi), this becomes

(Rk(Df))(g) =
∂

∂t

∣∣∣
t=0

∑
i

Ad(k)−1(vi)⊗ f(getvik) = Ad(k)−1
∑
i

vi ⊗ (vi(Rkf))(g)

= Ad(k)−1
((∑

i

vi ⊗ vi
)
(Rkf)(g)

)
= Ad(k)−1

(
D(Rkf)(g)

)
as claimed. ///

4. Spinors and spinor representations

From above, for f on G/K, the image Df takes values in p, and under right translation by K transforms by
Ad acting on p. This is an instance of a spinor representation on spinors p, as follows.

Let V be a non-degenerate quadratic space over R. There are copies of the Lie algebra so(V ) of the special
orthogonal group SO(V ) of V inside the Clifford algebra CV . A canonical copy can be distinguished by
taking trace-zero elements of the Lie subalgebra a in the following claim.

[4.1] Claim: Let a be the linear subspace of CV spanned by products uv for u, v in V . Under the Lie
bracket [a, b] = ab − ba in CV , a is a Lie algebra, and the action θ · w = θw − wθ on w ∈ V ⊂ CV gives a
Lie isomorphism of a modulo constants to so(V ).

[4.2] Remark: The Lie subgroup of CV associated to a is the Spin group associated to SO(V ). In this
context, V is spinors, and the action of the Lie group on V is a spinor representation.

Proof: First, a stabilizes V : for u, v, x ∈ V ,
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[uv, x] = uvx− xuv = uvx− (−ux− 〈u, x〉)v = uvx+ uxv + 〈u, x〉v

= uvx+ u(−vx− 〈v, x〉) + 〈u, x〉v = uvx− uvx− 〈v, x〉u+ 〈u, x〉v = −〈v, x〉u+ 〈u, x〉v

Thus, the image of V in CV is stabilized by a. The latter computation also gives a useful commutation rule.
Second, show that a is closed under brackets: for x, y, u, v ∈ V , repeatedly using the two-step commutation
rule just demonstrated,

[xy, uv] = (xy)(uv)− (uv)(xy) = x(yuv − uvy) + x(uvy)− uvxy = −x(uvy − yuv)− (uvx− xuv)y

= −x(−〈v, y〉u+ 〈u, y〉v)− (−〈v, x〉u+ 〈u, x〉v)y = 〈v, y〉xu− 〈u, y〉xv + 〈v, x〉uy − 〈u, x〉vy

which is back in a, as claimed. To show that the action of a on V preserves 〈, 〉 is to show that

〈[uv, x], y〉+ 〈x, [uv, y]〉 = 0 (for x, y, u, v ∈ V )

From the earlier computation,

〈[uv, x], y〉 =
〈
− 〈v, x〉u+ 〈u, x〉v, y

〉
= −〈v, x〉〈u, y〉+ 〈u, x〉〈v, y〉

while 〈
x, [uv, y]

〉
=
〈
x, −〈v, y〉u+ 〈u, y〉v

〉
= −〈v, y〉〈u, x〉+ 〈u, y〉〈x, v〉

showing that the action of a preserves 〈, 〉.

Certainly constants act by 0 by the bracket on V . To prove that a modulo constants maps isomorphically
to so(V ) dimension-counting seems necessary, so let e1, . . . , en be an orthogonal basis of V , and claim that
the images of eiej with i < j are linearly independent as linear endomorphisms of V . This would prove
injectivity, and then surjectivity by dimension-count. Suppose

∑
i<j cijeiej is a shortest linear combination

acting by 0 on V . From the two-step commutativity above, for all k,

0 = [0, ek] =
[∑

i<j

cijeiej , ek

]
=
∑
i<j

cij

(
− 〈ej , ek〉ei + 〈ei, ek〉ej

)
(in the copy of V in CV )

Let io be the lowest index such that cioj 6= 0 for some j > io, and take k = io, so

0 =
∑
i<j

cij

(
− 〈ej , eio〉ei + 〈ei, eio〉ej

)
=
∑
j>io

ciojej

which implies that cioj = 0 for all j > io, contradiction. This proves injectivity. ///

[4.3] Remark: The proof shows that a choice of basis ei for V gives a choice of a copy of so(V ), by taking
the span of eiej for i < j. Changing the basis will change this span, in general, but will not change the
action on the copy of V in CV . A trace zero condition also disambiguates.
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