Dirac and Casimir operators

Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/~garrett/

1. Characterization of Dirac operators \mathbb{D}
2. G-equivariance/invariance of Casimir Ω
3. K-equivariance/invariance of \mathbb{D}
4. Spinors and spinor representations

An important contrast between a Dirac operator \mathbb{D} and Casimir operator Ω attached to a semi-simple Lie group G, as elements of $C \mathfrak{p} \otimes U \mathfrak{g}$ and $U \mathfrak{g}$, respectively, is that the action of G on functions on G attached to right translation does not directly involve the enhanced coefficients $C \mathfrak{p}$.

Abstract equivariance properties are manifest differently. Significantly, while Ω is left-and-right G invariant as a right (differential) operator on functions on G, \mathbb{D} (acting as a differential operator on the right) is certainly left G-invariant, but not right invariant at all, although it has intelligible behavior under right translation by K. Specifically, it does not map the space of right K-invariant functions on G to itself, but, rather, to a space of vector-valued functions transforming equivariantly under right translation by K. Yes, as an element of $C \mathfrak{p} \otimes U \mathfrak{g}$ with K acting diagonally on both factors, \mathbb{D} is K-invariant, but the natural right-translation action does not have K acting on the first factor $C \mathfrak{p}$.

In particular, in the case of $G=S L_{2}(\mathbb{R})$, since \mathbb{D} does not map the space of right K-invariant functions to itself, it cannot be an operator on spaces of functions on $G / K \approx \mathfrak{H}$.

Background: [Dirac 1928] expressed Laplacians as squares of linear operators by extending scalars to noncommutative algebras. For several reasons, it is useful to similarly express Laplace-Beltrami operators on quotients G / K and $\Gamma \backslash G / K$ of semi-simple Lie groups G by maximal compact subgroups K and discrete subgroups Γ as squares of linear operators. Naturally, the non-abelian-ness of these groups and Lie algebras creates complications.

We work out some mundane features of Dirac operators on symmetric spaces G / K, using only the most basic ideas from [Parthasarathy 1972], [Atiyah-Schmid 1977/79], [Huang-Pandžić 2006], et alia.

The set-up here is merely a mild rearrangement of other excellent accounts, especially [Huang-Pandžić 2006]. The goal of the latter is construction of discrete series representations of semi-simple Lie groups, especially proofs of conjectures of Vogan in seminar talks in 1999 at MIT. We stay in a simpler context than [Kostant 1999].

In a much broader geometric context, [Atiyah-Singer 1963] announced proof of the Index Theorem for elliptic operators using Dirac operators. See [Palais 1965] and [Lawson-Michelsohn 1989] for exposition and references to further work in the general geometric setting.
[Parthasarathy 1972] used Dirac operators to construct discrete series representations of semi-simple Lie groups. The latter application was systematized by [Atiyah-Schmid 1977/79], and in Vogan's 1999 conjectures, the latter proven in [Huang-Pandžić 2002].

See [Sands 2020] for an application to automorphic forms.

1. Characterization of Dirac operator \mathbb{D}

Let G be a semi-simple real Lie group, \mathfrak{g} its Lie algebra, K a maximal compact, Killing form \langle,$\rangle . Let C \mathfrak{p}$ be the Clifford algebra of the -1 eigenspace \mathfrak{p} of a Cartan involution whose +1 -eigenspace is the Lie algebra \mathfrak{k} of K, with quadratic form given by the restriction of the Killing form. The Dirac operator, as an element of

Paul Garrett: Dirac and Casimir operators (June 29, 2024)

$C \mathfrak{p} \otimes U(\mathfrak{g})$, is the image of the identity operator $1_{\mathfrak{p}}$ on \mathfrak{p} under the chain of natural maps

The standard way for \mathbb{D} to act on functions f on G is by the natural incarnation of $U \mathfrak{g}$ as differential operators induced by right multiplication on G, with coefficients in $C \mathfrak{p}$.

The pattern is considerably analogous to the characterization of the Casimir element $\Omega \in U \mathfrak{g}$:

The desired effect is $\mathbb{D}^{2}=-\Omega \bmod U \mathfrak{k}$: in coordinates, letting $\left\{v_{i}\right\}$ be an orthonormal basis of \mathfrak{p}, in $C \mathfrak{p} \otimes U \mathfrak{g}$,

$$
\begin{gathered}
\mathbb{D}^{2}=\left(\sum_{i} v_{i} \otimes v_{i}\right)^{2}=\sum_{i} v_{i}^{2} \otimes v_{i}^{2}+\sum_{i \neq j} v_{i} v_{j} \otimes v_{i} v_{j}=-1 \otimes\left(\sum_{i} v_{i}^{2}\right)+\sum_{i<j}\left(v_{i} v_{j} \otimes v_{i} v_{j}+v_{j} v_{i} \otimes v_{j} v_{i}\right) \\
=-1 \otimes\left(\sum_{i} v_{i}^{2}\right)+\sum_{i<j}\left(v_{i} v_{j} \otimes v_{i} v_{j}-v_{i} v_{j} \otimes v_{j} v_{i}\right)=-1 \otimes\left(\sum_{i} v_{i}^{2}\right)+\sum_{i<j} v_{i} v_{j} \otimes\left[v_{i}, v_{j}\right] \\
=-1 \otimes \Omega_{\mathfrak{g}}+1 \otimes \Omega_{\mathfrak{k}}+\sum_{i<j} v_{i} v_{j} \otimes\left[v_{i}, v_{j}\right]=-1 \otimes \Omega_{\mathfrak{g}} \quad \bmod U \mathfrak{k}
\end{gathered}
$$

Happily, the $C \mathfrak{p}$ coefficients on $\Omega_{\mathfrak{g}}$ collapse to $-1 \in \mathbb{R} \subset C \mathfrak{p}$.

2. G-equivariance/invariance of Casimir Ω

As recalled below, by design, $\operatorname{Ad}(g)(\Omega)=\Omega$, with the (extended) Adjoint action of G on $U \mathfrak{g}$. Thus, when Ω acts by differential operators attached to the right translation action of G on functions on G, Ω commutes with the right-translation action of G. (With $U \mathfrak{g}$ acting by right translation, of course every element of it commutes with the left translation action of G.) In particular, Ω preserves right K-invariance.

Let $T_{v \otimes w}$ be the element of End \mathfrak{g} attached to $v, w \in \mathfrak{g}$, under $\mathfrak{p} \otimes \mathfrak{p} \longrightarrow$ End \mathfrak{g}, by $T_{v \otimes w}(x)=v \cdot\langle x, w\rangle$. For notational compactness, let $A=\mathrm{Ad} g$. Then

$$
\left.\left(A \circ T_{v \otimes w} \circ A^{-1}\right)(x)=A\left(v \cdot\left\langle A^{-1} x, w\right\rangle\right)=A v \cdot\langle x, A w\rangle\right)=T_{A v \otimes A w}(x)
$$

since A respects $\langle A y, A z\rangle=,\langle y, z\rangle$ for all $y, z \in \mathfrak{g}$. Thus,

$$
T_{A \Omega}=A \circ T_{\Omega} \circ A^{-1}=A \circ 1_{\mathfrak{g}} \circ A^{-1}=1_{\mathfrak{g}}=T_{\Omega}
$$

By Poincaré-Birkhoff-Witt, $\mathfrak{g} \otimes \mathfrak{g}$ injects to $U \mathfrak{g}$, so $A \Omega=\Omega$.

3. K-equivariance/invariance of \mathbb{D}

With the diagonal Adjoint action of K on both factors \mathfrak{p} and \mathfrak{p}^{*}, since $1_{\mathfrak{p}}$ commutes with this action, \mathbb{D} commutes with this action, since all the maps are K-equivariant/invariant.

However, in contrast to the standard use of Ω, the action of K that make $\mathbb{D} K$-invariant is not just the right-translation action $(k \cdot f)(g)=f(g k)$, but also must include the action of $k \in K$ on the values in \mathfrak{p} of $\mathbb{D} f$. In particular, letting $\left(R_{k} f\right)(g)=f(g k)$, and letting $U \mathfrak{g}$ act by differential operators (on the right), we claim that the right translation R_{k} has the effect

$$
\left(R_{k}(\mathbb{D} f)\right)(g)=(\operatorname{Ad} k)^{-1}((\mathbb{D} f)(g))
$$

where $(\operatorname{Ad} k)^{-1}$ acts on the values of $(\mathbb{D} f)(g)$. In particular, this action of \mathbb{D} does not map right K-invariant scalar-valued functions to right K-invariant \mathfrak{p}-valued functions, but to \mathfrak{p}-valued functions whose values transform by Ad under right translation by K.

Proof: Here the action of $K \times K$ on $\mathfrak{p} \otimes \mathfrak{p}$ is relevant, rather than the diagonal action of a single copy of K, so it may be notationally simplest to do this computation in coordinates. Let $\left\{v_{i}\right\}$ be an orthonormal basis of \mathfrak{p} with respect to the Killing form, so

$$
\mathbb{D}=\sum_{i} v_{i} \otimes v_{i} \in C \mathfrak{p} \otimes U \mathfrak{g}
$$

Letting $U \mathfrak{g}$ act by differential operators on the right on G,

$$
\begin{gathered}
\left(R_{k}(\mathbb{D} f)\right)(g)=(\mathbb{D} f)(g k)=\sum_{i}\left(\left(v_{i} \otimes v_{i}\right) f\right)(g k)=\left.\frac{\partial}{\partial t}\right|_{t=0} \sum_{i} v_{i} \otimes f\left(g k e^{t v_{i}}\right) \\
=\left.\frac{\partial}{\partial t}\right|_{t=0} \sum_{i} v_{i} \otimes f\left(g e^{t \cdot k v_{i} k^{-1}} k\right)=\left.\frac{\partial}{\partial t}\right|_{t=0} \sum_{i} v_{i} \otimes f\left(g e^{t \cdot \operatorname{Ad}(k)\left(v_{i}\right)} k\right)
\end{gathered}
$$

Replacing the orthonormal basis v_{i} by the orthonormal basis $\operatorname{Ad}(k)^{-1}\left(v_{i}\right)$, this becomes

$$
\begin{aligned}
\left(R_{k}(\mathbb{D} f)\right)(g) & =\left.\frac{\partial}{\partial t}\right|_{t=0} \sum_{i} \operatorname{Ad}(k)^{-1}\left(v_{i}\right) \otimes f\left(g e^{t v_{i}} k\right)=\operatorname{Ad}(k)^{-1} \sum_{i} v_{i} \otimes\left(v_{i}\left(R_{k} f\right)\right)(g) \\
& =\operatorname{Ad}(k)^{-1}\left(\left(\sum_{i} v_{i} \otimes v_{i}\right)\left(R_{k} f\right)(g)\right)=\operatorname{Ad}(k)^{-1}\left(\mathbb{D}\left(R_{k} f\right)(g)\right)
\end{aligned}
$$

as claimed.

4. Spinors and spinor representations

From above, for f on G / K, the image $\mathbb{D} f$ takes values in \mathfrak{p}, and under right translation by K transforms by Ad acting on \mathfrak{p}. This is an instance of a spinor representation on spinors \mathfrak{p}, as follows.

Let V be a non-degenerate quadratic space over \mathbb{R}. There are copies of the Lie algebra $\mathfrak{s o}(V)$ of the special orthogonal group $S O(V)$ of V inside the Clifford algebra $C V$. A canonical copy can be distinguished by taking trace-zero elements of the Lie subalgebra \mathfrak{a} in the following claim.
[4.1] Claim: Let \mathfrak{a} be the linear subspace of $C V$ spanned by products $u v$ for u, v in V. Under the Lie bracket $[a, b]=a b-b a$ in $C V, \mathfrak{a}$ is a Lie algebra, and the action $\theta \cdot w=\theta w-w \theta$ on $w \in V \subset C V$ gives a Lie isomorphism of \mathfrak{a} modulo constants to $\mathfrak{s o}(V)$.
[4.2] Remark: The Lie subgroup of $C V$ associated to \mathfrak{a} is the Spin group associated to $S O(V)$. In this context, V is spinors, and the action of the Lie group on V is a spinor representation.

Proof: First, a stabilizes V : for $u, v, x \in V$,

$$
\begin{gathered}
{[u v, x]=u v x-x u v=u v x-(-u x-\langle u, x\rangle) v=u v x+u x v+\langle u, x\rangle v} \\
=u v x+u(-v x-\langle v, x\rangle)+\langle u, x\rangle v=u v x-u v x-\langle v, x\rangle u+\langle u, x\rangle v=-\langle v, x\rangle u+\langle u, x\rangle v
\end{gathered}
$$

Thus, the image of V in $C V$ is stabilized by \mathfrak{a}. The latter computation also gives a useful commutation rule. Second, show that \mathfrak{a} is closed under brackets: for $x, y, u, v \in V$, repeatedly using the two-step commutation rule just demonstrated,

$$
\begin{gathered}
{[x y, u v]=(x y)(u v)-(u v)(x y)=x(y u v-u v y)+x(u v y)-u v x y=-x(u v y-y u v)-(u v x-x u v) y} \\
=-x(-\langle v, y\rangle u+\langle u, y\rangle v)-(-\langle v, x\rangle u+\langle u, x\rangle v) y=\langle v, y\rangle x u-\langle u, y\rangle x v+\langle v, x\rangle u y-\langle u, x\rangle v y
\end{gathered}
$$

which is back in \mathfrak{a}, as claimed. To show that the action of \mathfrak{a} on V preserves \langle,$\rangle is to show that$

$$
\langle[u v, x], y\rangle+\langle x,[u v, y]\rangle=0 \quad \text { (for } x, y, u, v \in V)
$$

From the earlier computation,

$$
\langle[u v, x], y\rangle=\langle-\langle v, x\rangle u+\langle u, x\rangle v, y\rangle=-\langle v, x\rangle\langle u, y\rangle+\langle u, x\rangle\langle v, y\rangle
$$

while

$$
\langle x,[u v, y]\rangle=\langle x,-\langle v, y\rangle u+\langle u, y\rangle v\rangle=-\langle v, y\rangle\langle u, x\rangle+\langle u, y\rangle\langle x, v\rangle
$$

showing that the action of \mathfrak{a} preserves \langle,$\rangle .$
Certainly constants act by 0 by the bracket on V. To prove that \mathfrak{a} modulo constants maps isomorphically to $\mathfrak{s o}(V)$ dimension-counting seems necessary, so let e_{1}, \ldots, e_{n} be an orthogonal basis of V, and claim that the images of $e_{i} e_{j}$ with $i<j$ are linearly independent as linear endomorphisms of V. This would prove injectivity, and then surjectivity by dimension-count. Suppose $\sum_{i<j} c_{i j} e_{i} e_{j}$ is a shortest linear combination acting by 0 on V. From the two-step commutativity above, for all k,

$$
\left.0=\left[0, e_{k}\right]=\left[\sum_{i<j} c_{i j} e_{i} e_{j}, e_{k}\right]=\sum_{i<j} c_{i j}\left(-\left\langle e_{j}, e_{k}\right\rangle e_{i}+\left\langle e_{i}, e_{k}\right\rangle e_{j}\right) \quad \text { (in the copy of } V \text { in } C V\right)
$$

Let i_{o} be the lowest index such that $c_{i_{o} j} \neq 0$ for some $j>i_{o}$, and take $k=i_{o}$, so

$$
0=\sum_{i<j} c_{i j}\left(-\left\langle e_{j}, e_{i_{o}}\right\rangle e_{i}+\left\langle e_{i}, e_{i_{o}}\right\rangle e_{j}\right)=\sum_{j>i_{o}} c_{i_{o} j} e_{j}
$$

which implies that $c_{i_{o} j}=0$ for all $j>i_{o}$, contradiction. This proves injectivity.
[4.3] Remark: The proof shows that a choice of basis e_{i} for V gives a choice of a copy of $\mathfrak{s o}(V)$, by taking the span of $e_{i} e_{j}$ for $i<j$. Changing the basis will change this span, in general, but will not change the action on the copy of V in $C V$. A trace zero condition also disambiguates.

Bibliography

[Atiyah-Schmid 1977] M. Atiyah, W. Schmid, A geometric construction of the discrete series for semi-simple Lie groups, Inv. Math. 42 (1977), 1-62.
[Atiyah-Schmid 1979] M. Atiyah, W. Schmid, Erratum: a geometric construction of the discrete series for semi-simple Lie groups, Inv. Math. 54 (1979), 189-192.
[Atiyah-Singer 1963] M. Atiyah, I. Singer, The index of elliptic operators on compact manifolds, Bull. AMS 69 (1963), 422-433.
[Chevalley 1954] C. Chevalley, The algebraic theory of spinors, Columbia Univ. Press, 1954.
[Dirac 1928] P.A.M. Dirac, The quantum theory of the electron, Proc. Royal Soc. London 117 (1928), 610-624.
[Huang-Pandzic 2002] J.-S. Huang, P. Pandžić, Dirac cohomology, unitary representations, and a proof of a conjecture of Vogan, J. Amer. Math. Soc. 15 (2002), 185-202.
[Huang-Pandzic 2006] J.-S. Huang, P. Pandz̆ić, Dirac operators in representation theory, Birkäuser, 2006.
[Kostant 1999] B. Kostant, A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal-rank subgroups, Duke J. Math. 100 (1999), 447-501.
[Lawson-Michelsohn 1989] H.B. Lawson Jr., M.-L. Michelsohn, Spin Geometry, Princeton Univ. Press, 1989.
[Palais 1965] R. Palais, Seminar on the Atiyah-Singer Index Theorem, Annals of Math. Studies no. 57, Princeton University Press, 1965.
[Parthasarathy 1972] R. Parthasarathy, Dirac operator and the discrete series, Ann. of Math. 96 (1972), 1-30.
[Sands 2020] A. Sands, Automorphic Hamiltonians, Epstein zeta functions, and Kronecker limit formulas, thesis, University of Minnesota, September 2020.

