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PULLBACKS OF EISENSTEIN SERIES; APPLICATIONS

Paul B. Garrett

Introduction.

This is a more detailed version of a lecture given at Katata, and
replaces some earlier preprint versions, with some insights added after
H. Klingen's lecture on work of 5. Bocherer, and after some helpful
discussions with S. Kudla and M. Harris.

The purpose here is to compute the pullback of a Siegel's
Eisenstein series via a map

H
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H*XH B (z,w) —> ( ) EH
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The "explicit" formula for this is in §5. The only real obstacle to

the calculation is determination of coset representatives for
* ¥
{(o %) € Sp(m+n, 7z )} \ sp(m+n,z) / Sp(m,% )Sp(n,z2) ,

which is worked-out in §2 (and related coset computations occur in §3).
S. Kudla has indicated to this author a "coordinate-free" way of doing
the coset computation, at least over a field, but we prefer the present
method for the computation over 72.

Occurring in the "Main Formula" of §5 are eigenvalues of a
"symmetric square" Hecke operator Sn’ introduced in 84, defined in
a de facto manner from the coset decompositions. In the case of
Sp(1) ~ SL(2), this operator is the "usual" one for elliptic modular
forms (see [Sh 2]).

In 86, using some arithmetic of Siegel modular forms, and using
the rationality of the Fourier coefficients of Siegel's Eisenstein
series, we find that the Main Formula for the collection of all such
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equivariant imbeddings has some surprising impact on algebraicity
properties of special values of symmetric-square Dirichlet series, and
of Fourier coefficients of Eisenstein series made by lifting cuspforms
(with algebraic Fourier coefficients) from the (standard) rational
boundary components.

This "special value" issue has been considerably studied: see
[sn 4], [sh 5], [sh 71, [H 1], [st 1], [st 2].

The other part of the algebraicity assertion was new, at the time:
a lifting Ef of a cuspform f with algebraic Fourier coefficients
has algebraic Fourier coefficients if a certain value Sf(*) of
an associated symmetric-square Dirichlet series Sf is non-zero.

This author observed that in the case that f is on a (complex)
l-dimensional rational boundary component, then the Euler product (from
[sh 2]) for Sf, f an eigenform, yields this non-vanishing. It was
natural to conjecture that these special values never vanish, and hence
one would obtain a general result sbout arithmeticity of Eisenstein
series.

After this was communicated to M. Harris, he gave a direct Hecke-
operator proof of the arithmeticity of these "generalized" Eisenstein
series ([H 2], [H 3]).

Recently, S. Bdcherer has shown that, indeed, these special values
are # 0. (See [B] and [K]). Further, he found, as corollary, a proof
of the "Basis Problem" using the Main Formula. His proof of the non-
vanishing is critical for this. Also, the Siegel-Weil formula is an
important ingredient. Some of the formalisms can be conceptually
simplified in the context of the "see-saw" dual reductive pairs theory:
the lecture [Ku] of S. Kudla may contain some discussion of this.

Despite the encouragement of Professor G. Shimura, these
calculations of the pullback seemed like an ineffable coincidence to
this author. It was unclear (to this author) what either the
significance or the general version of this computation might be. For
example, exactly analogous computations go through for certain
congruence subgroups of Sp(n,oF), when F is a totally real number

field, and o has class number one, but for arbitrary congruence

F

subgroups or for more general o_ things rapidly become confusing.

F
Also, one may carry out analogous computations for certain classical
groups, but in what seems to be a very ad hoc manner.

Given the impetus especially of Bdcherer's work, and of some

remarks of Kudla, this author now can claim that both the coset
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decompositions and the pullback formula are, indeed, part of a general
phenomenon (see [G 3] for some discussion of the coset decomposition).
What seems to be appropriate is the following situation. Let G be

a semi-simple (linear) algebraic group over @, of rational tube type,
for example. Let F be a ("standard") rational boundary component,
with associated @-parabolic PF’ containing a subgroup GF which is
"essentially" the automorphism group of F. Let Gﬁ be the centralizer
of GF in G. Let Po be the parabolic associated to a "standard"
O-dimensional rational boundary component. Then, believing that we

should do things "adelically" anyway, we consider the double coset space
P (@) \ c(e) / Gr(Rlc (@).

This coset space has "nice" representatives {R} in the unipotent
radical of the opposite parabolic to PO. Further, for such

representative R, and for g € G,(®), g' € G%(Q)
, ' = P
PO(Q)Rs g -O(Q)R

iff g' 1lies in a @-parabolic Pﬁ of Gl (determined by R), g

lies in a @-parabolic Pp of Gy (determined by R), and certain
straightforward additional conditions are satisfied. Thus, in some
generality, the pullback of a holomorphic "classical" Eisenstein series
will always involve the automorphic forms related to all the "standard"

@-parabolics of G G%, but with some coefficients which are special

B
values, and may vaiish in a generic situation.

The proof of the above (and slightly more general versions) does
begin from a Bruhat decomposition, shows that every coset
PO(Q)gG%(Q)GF(Q) has a representative in the "big cell", and then
normalizes this representative essentially by "elementary divisor
reduction".

We note that, in the terminology of [G 2], computation of such
pullbacks amounts to calculation of the "O-th normalized division-
point values" of the Fourier-Jacobi expansion over the rational
boundary component F. 1In fact, it was such a viewpoint that gave
some motivation to the original computation.

Still, we will reproduce here the original version, as thus we
have more direct access to the "symmetric-square” operator.

This work was partially-supported by NSF grants MCS-79-19150 and
MCS-8301126.
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§1. siegel Modular Forms
Without further explicit references, we rely upon [Go] and [s]

for the following.

Let Hn be the Siegel upper half-space of "genug" n, and
Sp(n) the symplectic group of 2n-by-2n matrices, with the usual
action of 8p(n,R):

(: 2) (z) = (az+b)(cz+d)_1

The "canonical" automorphy factor is

wlg,z) = det(cz+d)-2 (with g = (z' 2)
A Siegel modular form of weight k is g holomorphic function £ on
Hn 50 that for gesp(n,z ) , zeHn A

£(gz)y(g,2)F = £(z)

If n=1, we add the usual growth condition. Such f has a
Fourier expansion

e2ﬂi tr Tz

f(z) = ET a-T >
where '"tr" is trace, and T runs through positive semi-definite
semi-integral n-by-n matrices. Then £ is a cuspform if aT%O
implies T is positive definite.

The Siegel's Eisenstein series of weight k (on Hn )  ds

4
E}';n)(z) = % det(cz+d) 2K ;
fe.a}

where, as usual, {c,d} indicates summation over (n-by-n) "symmetric
coprime" pairs (c,d) left modulo GL(n,Z) . This series is nicely
convergent for 2k>n+1 .

Now we describe the "standard" maximal parabolics of Sp(n) .

For O0<r<n, put

zZ G
n,r n,rn,r
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where Zn = is the subgroup of Sp(n) of elements of the form

*  x  * %
o 1. * 0
o b &
O @ ¥ ©
¥
o O lr bl

Note that Gn i sp(r) in the obvious way. We may identify Crn

> A%
with Sp(r) when convenient.
We have the geodesic projections, for 0<r<n :
n
pr Hn — Hr
by
n ()& * ) S
pr.: z = —_— 2z s
r * Zos 22
where z is 7r-by-r , etec. For a cuspform f of weight k on

22
Hr , define a "generalized" Eisenstein series (a lifting of f to

Hn):
EL£(z) = E, u(s:2)" f(pry(e(z))

where g is summed over Pn r(z )\ Sp(n,Z ) . Note that

Ez 1(z) = El((n)(z) . We will have an indirect proof in §5 that this

is nicely convergent for Zk>n+r+1 . One may see [Bo] for a
general discussion of such convergence issues.
The reproducing kernel Kl(in) for the space of weight-k

cuspforms on Hn is
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(n)
k

K u(8:2) et (g(z) -7) 2%

(z,w)=c
with some constant e which can be explicitly calculated (it is a

power of 7z times a rational). For a cuspform f , we have

\
)

2 ’
g€Sp(n,z)
n

f(z) = f‘/w‘,IK);r '(Z,wW) (det Imw)k dw ,
Sp{n,z)\Hn

where d'w is the Sp(n,R)-invariant measure on Hn - Equivalently,
(n) < (n) T
Kﬁn'(z,wj = Eg;g'f.(z) f.(w) ,

J 3

where {fsj is an orthonormal basis for the space of cuspforms.

§2. The Double Coset Decomposition

We consider Sp(m) x Sp(n) imbedded in Sp(m+n) by

(Ex(E8)— o 0 v o
g a' o b
c 0O 4 o0
0. ,¢* .0 at 5

and when convenient will identify these groups with their images.

Theorem: Pl O(Z)\Sp(mm,z) /sp(m,Z) Sp(n,Z) has an irredundant

set of coset representatives

gﬁ & 1m (o} [0} (0]
0 1 (0] 0]
n
0] M 1 (0]
m
j:ﬁ 0 0 1n 1
where

= [0 o
M_(OM),



120

and

Ml 0

is in elementary divisor form: each M. >0 5 Mj €Z,

| I3 " " ~
MpM,[...]M, . (Refer to r as the "rank" of &> M, or M)

Proof: This is a tedious bit of linear algebra. It depends just on
the fact that Z is a noetherian principal ideal domain, and exactly
the same conclusion follows in that generality. Over a field, the
computation is much simpler, and gives min(m,n) representatives.

It is well-known that

pmm,ofz) \ Sp(m+n, %)
is in one-to-one correspondence with
GL(m+n,%Z)\ {symmetric coprime pairs of size n-by-n}
And Sp(m,Z) x Sp(n,Z) still acts on the right on such pairs.
Let SC(n) be the set of n-by-n symmetric coprime pairs, and

put

L, = {e€sp(a,2) : g=(* 0) } o

0 =«
L‘xq 5 = subgroup of Sp(q,Z ) of the elements of the form
a9 o o0
0 * 0 *
7 I 0
%A g, R q-
05,0 0 L, 0 o0
0 * 0 o] - 0
i 0
g L %-; a-J

We have t\q 3 % SL(2,Z) in an obvious way.
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Lemma: Every coset in Pmﬂ,1 O(Z)\SC(m+n)/Sp(m,Z) Sp(n,Z) contains

3% C Y41 Y
¢ 43 G O G/ o
where 12 dll are m-by-m , Chno d22 are n-by-n , and dll is

in elementary divisor form

b, o©
4= “

0 D, |»
D20 , Dl]D2|---|Dm

Proof of Lemma: We use the action of GL(m+n,Z) on the left, and of

c Sp(m, (m,2Z) i X
bpg X % RS Sp(m,Z) and L cSp(m Z) on the right. Use a

block decomposition as in the statement
First, by acting on the left by GL(m+n,%Z) , and on the right by
A . C Sp(m) € Sp(mtn,Z) , we may put the j-th and (m+n+j)-th

m, j
columns of any (¢ d) €SC(m+n) into an elementary form

Djpl D J
DJ.Pm_m o] s
with DJ. >0 .

d
Second, we may put the submatrix ( ll} of (e d) into an

elementary form

Dl (o]
O 0 Dm 3
with Djzo y Dl]D°|"'|Dm , by acting on the left by GL(m+n,Z),

and on the right by L ¢ §p(m,Z)
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Consider the effect of performing the former reduction con-
secutively to the first and (m+n+l)-th columns, ..., mth and
(2m+n)-th columns, and then applying the latter reduction. Refer to

this compound reduction as "X" .

Let
(p)
by 0
0 D‘p
m
0
d11
be the elementary form of obtained after iterating X p times.
d
21

It is easy to see that

p(P*L)5(p)
m e

(p)
Thus, eventually the Dﬁp"s stabilize. After that, we have

(p+1) | (P)

Dm-l le-l

),

1
(p)

Djp"s stabilize. Then once more performing X puts (c¢ d) into

the desired form. ///

(
So eventually the D&p s stabilize. Likewise, eventually all the

further normalized to the form

ey o g

S0 %1 O 0 By

with both a and d in the elementary form of the previous

11 o2 — o= = R 2n

lemma .

Proof EE Lemma,: Take
( = ' 1 1 ' '
(e d) %1 S 43 Yo

L} 1 L} 1
°pdy; G O 4
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as in the previous lemma. The "symmetry' ctd = dtc of (e 4d)

;o t -

yields cég dée = dég cég . It is well-known (or follows by linear
algebra) that for such c_'92, déo there is gé€Sp(n,%Z) so that

Lal ) = if n

(cpp 3508 = (0 d35)
Thus,

( Vg = 1 ' . 1 »*

e g Sy g * iy

1 1 "
e SR dop
By acting on the left by an element

1]11 0 € GL(m#n,Z ) ,

and on the right by an element of Lm , we can put d; 5 into the
indicated elementary form. This gives the desired form, and does not
1
change the block (dll) , nor the right-dil-divisibility of the
0

left m colums.///

Lemma: In the special coset representative chosen as in the previous

lemma., d22 = ln .

Froof of Lemma: Take

_ (b
T .
D i)
m
'E
o ™ 1 0
2 E
n.

as in the previous lemma. From the "symmetry" of (¢ d) ,

2 t t

2 %, ) J
Cadyy = (egdn) = &35 Cp 4
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and by the "coprimeness" (i.e., each row of (e d) has greatest
common divisor 1 ) ,
Codyy* ¥ = 1y
for some integral matrices X,y - Let Aj be the j-th entry of
the bottom row of S5y and Bj the Jj-th entry of the bottom row
t
of ey Then
AD2=EB (J=dywmsm)
Jd nj ’

and the greatest common divisor of

AqDyanes ’AmDm’En

48 1 . It is easy to conclude that En=l , and, hence, all Ej's
" =
are 1, and d22 ln 5 /

Lemma: We can further normelize the representative of the previous

lemma to the form

2t
ety 4% Y 0
d
021 11 (0] (¢] ln >
with dll still in the same elementary form.

Proof of Lemma: Starting with the form of the previous lemma,
left multiply by

lm - d12 € GL(m+n,Z )

0 1
n

to annihilate the (1,4)-th block. Then the "symmetricness' gives
the form of the (1,2)-block. ///

Lemma.: In the normalized form of the previous lemme, dll = 1m .
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Proof of Lemma: Let Aj be the j-th entry of the bottom row of

. t
cl1 , and Bj the j-th entry of the bottom row of c21 . The
""coprimeness" implies that the common divisor of
A.D AD ,I°B %
100 %4l o BBy <2 By Bre T
s " s " s s d£ “?t
is 1 . The "symmetricness' implies ey 11" all Cpq 2 so that

D _|A.D, , for all j - But then D , and hence all D.'s , must
moJJ m J

be 1, and d,=1 . /1)

Now we can quickly finish the existence part of the proof. From
"symmetricness'", the ¢ in the normal form of the last lemma is

i b B
symmetric. Thus, we can right multiply by

1 0 € Sp(m,Z) < Sp(mn,Z)

m
i1 N
to obtain
t
o c’Jl m g
cq 0 (6] ln

Then left multiplication by elements

(m-by-m) 0

0 (n-by-n)

of GL(m+n,Z) , and right multiplication by L L, -can put

t
c

C
21

51° in the elementary form of the statement of the theorem.

For uniqueness, suppose that geGL(m+n,Z), g'¢Sp(m,Z) ,
g"cSp(n,Z), M and M' are such that

( ~l
o M 1m 0 o 0O M 1m 0
g (¢ g'g" =l
M o o0 1 M o o 1

n n
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Then we have
o) 21 0 i
g i g' = =
n o o )
f o M 0
g g" =
0o 1 0 1
n n

By uniqueness of elementary divisor forms, M = i'

S0, given such M , clearly

Sm = lm o} 0 (o}
0 i 0 [0]
n
0 M 1§ 0
m

i
M 0} (0] i1
n

is in Sp(m+n,Z) . This proves the theorem. ///

§3. The Twisted Coset Decomposition

Here we finish the group-theoretic calculations.

Theorem: With & as in §2 , M = (g 3) , M of rank

Fun,0  Fuen,0 &y SP(™Z) Sp(n,Z)

gmgég' gre"
-
where gOeGm,r(QZ) .
' (
g' e€P (Z)\sp(m2z) ,

" {
gler,M\a, (z) ,

" $2
g EP\’],I‘I‘Z)\ Sp(niz) »
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congruence subgroup of Splr,Z) of elements g S0 that

e 0 M“l)
M 0 g\M o € sp(r,Z)

Proof: It suffices to show that

where G, r(z) is identified with Sp(r,%Z), and l”r(M) is the

(4 Tl o l/ N
Finn,0' % )gﬁg & Pm+n,0‘z')gM

iff

= It G = fnon
g SOBZ s g gOgZ

i J (%) ' (Z)
with gOEGm,r\Z, ’ g, €2 (Z) s

identifying Gm & and Gn % with Sp(r) . We look at the condition

-1 y g
1 " \
G E € G € Brun,o(Z)
Now this just follows by multiplying-out. Put
g| - al bl gll = a‘I' b'l
Cl dl y cll dll 5

and further decompose by

' -— 1 ]
a' = a’ll 61.12 » ete.,
1 1
o -
; . S i i (s (]
where a.22 is r-by-r , all is (m-r)-by-(m-r)
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{ | REVEN " "
a'lti= a'll a.12 I,
" "
831 %o
where agg is r-by-r , a{l is (n-r)-by-(n-r) . When we multiply-

out, we find that equality of cosets is equivalent to

cI

) 1 1 1
11° e 4 2M, Msa, 5

192> %210 4 o1

" " " " "
€11’ C122 Ca1c Gt Mey

are all O (of appropriate sizes), and
n -l -
8 Paa P M (aéa bée)( 0. M 1)
3 95 M D ¢p pp/AM O

This translates directly into the assertion of the Theorem. ///

The Symmetric-Square Qperator

For a Siegel modular form f of weight k on Hn , and for a
non-singular integral n-by-n diagonal matrix M in elementary form,

define
I’TMf\(Z“I = f.fMg'f’Z‘.:M" "g,Z" 3
d g g > ek g

where g is summed over Fn(M\\\Sp(n,Zﬂl, with rniM\ as in the
Theorem of §3 . We define the symmetric-square operator Sn = S;k)

by

where M runs over all matrices as above.

Proposition: (Assuming the convergence of the series Snf for a
. () .. A -
cuspform f ) Sn = Snk’ is a hermitian operator on the space of

weight-k cuspforms on Hn , with respect to the Petersson inner

product. Further, the eigenspaces of Sn are spanned by cuspforms

with algebraic coefficients.
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Proof: First, it is elementary to see that

)Zk

( — mt
(det M TM TM s

L o
where TM s

poFL KR k
(T E)(z) = g f(e(z))ule,2)”
where g is summed over

M O

Sp(n,Z)\ Sp(n,Z) i
o M

1) sp(n,Z) -

Then one can check by standard methods (see [Sh 1] ch. 3) that T&
is hermitian. Hence, Sn is a sum of hermitian operators, so is
hermitian if the series converges.

For the second assertion, recall from [Sh 3] and [G 1] that the
space of cuspforms has a basis of cuspforms with rational Fourier
coefficients, and that the operators TM or Tﬁ map cuspforms with
algebraic Fourier coefficients to cuspforms with algebraic Fourier
coefficients. If we can show that all the TM's commute , then the
second assertion would follow by linear algebra (and the finite-
dimensionality of the space of cuspforms).

By the criterion of [Sh 1] ch. 3 Prop. (3.8), if we can find an

anti-involution * on Sp(n,Q) so that

*
(sp(n,Z) 2 O_l sp(n,Z)) =
0 M
= sp(n,z)( M O_l sp(n,zZ) ,
0 M
then we have the commutativity. t is easy to check that

b - <

g = 2 1n . gl 2 1n
e 0 1 0
n n

works. This proves the Proposition. ///
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§5. The Main Formula

(
Theorem: ('Main Formula') Let E£m+n) be Siegel's Eisenstein series

of weight k on Hm+n . Let =z eHﬁ, wean . Then for
2k>m+n+1l ,

(mtn) [z 0O\ _ (m) 5 on ()i o
Ek (O w) = Ek \z;Ek (w) +
a(r)

(r)- ; ! Z] o
+ 2 g 1 s s J(Ef. O()EL JW
1< r<min(m,n) o e nr,i
{ -
where c%r) is the constant in 3§l , Lfr 5 i} is an orthonormal

basis for cuspforms on Hr , consisting of eigenvectors for sr

(see §4) , with eigenvalues {Sr i i} , respectively, and

E;fr i is an Eisenstein series as in §1 . (Implicitly, we assert

that the generalized Eisenstein series converge nicely, as does the

series for each Srfr i) . Finally, the &-operator complex-

conjugates the Fourier coefficients of the fr 5

»

L S

Remark: In about 1980 this author conjectured that it might happen
that no eigenvalue sr,i vanished, thus giving unconditional version
of the theorem. M. Harris, in [H 2], [H 3], proved a general version
of assertion (iii), by a more direct use of Hecke operators.

Already in the case n =1, m arbitrary, if one writes out the
eigenvalue Sr,j corresponding to an eigenform, one finds that this
Dirichlet series is that occurring in [sh 2]. There it was shown that
such Dirichlet series have an Euler product with rational factors with
trivial numerators. This assures non-vanishing.

In [B], BScherer showed that (for this case of sp(n,Z)) there
is no 0-eigenvector of the symmetric-square operator. Not only
that, but he went on to use this fact, together with the "Main
Formula', to solve the Basis Problem for large-enough even weight.

See also the lecture of Klingen [K].

Proof: This really just amounts to putting together our previous
material, especially using the coset decompositions of §2, §3, and

the "cocycle formula' for .
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: _ (0 O
First, for ﬂo = (O 1r) ;

ey (29)) =

0]
oz noy=2
= (- )( ))
det lr ,prrz, ,prrw,_
Then
r z 0\ .,k
z Ut’\gM gL ( ) g v=
U ( 3\ 0 O w
gOEGm,r"Z" 0
= I u(g,prrﬁz ‘;k det{lr-g./prx;lz_‘:{prnw'))_2k
g €8p(r,Z) S
= ( m ‘|k P T n \-2k
Zgu.g,prrz, det.\g.prrz,l prrw, 5
since
e T
1 0
r
is in Sp(r,Z) . But this expression is just
(r)-l (r), m, I
o K (mpE . -pv )

Y

/
where K.l“{r’ is the kernel function of §l , and cl(‘{r) is the constant
there. This is, then,

()7t alr) - =
\r) ¥ ¢ ) (s ) =
% A fr,,j‘prrz fr,,j' P
j=1
=1
(r) m ] e T
= ¢ ( ( )
) ZJ. fr,j\prrz) fr,j\prrw, 5

where ¢ is as in the statement of the Theorem, and
{f : J=1,...,4(r)} 1is any orthoncrmal basis for cuspforms on Hr

r,j’
0 0

For fixed M = (O M) of rank r , one similarly computes that

) it z 0\ \k _
T ulegesey (o w) s

1
€of1
AT ;. Mo B
=t wlemertw) o) k) (prPa,-Me (pre)M)
o ' xSk Py \Pr W

where gé, gz are summed as in the Theorem of section 3, and
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g"&'l‘r(M)\Sp{r,Z) . Then, by the previous, this is

=1 d(r)
(r) g N BN
S _2 fr’j.,prrz. (TMfr,j" pr W)
J=1
Now by the Proposition of §4 , we may take [f‘r ,j} to be eigenvectors
?
for Sr » with real eigenvalues Sr 3 as Sr is hermitian. Then

the above becomes, when summed over M of rank r ,

.’r)-l m., 6 , n.
o zj Sr,,j fr’j(prrz, fr,j‘prrw
Then the sum over g' ER r,’Zfi\Sp-.’m,Z) g"ePn r(Z)\SP(n,%)

for fixed r gives

c{r)-l (Erf Y2 \I(Erfe Y (w)
k I drmorid! 2 n r,i“w
Sunming over r=0,1,...,min(m,n) gives the asserted formula, noting

that for r=0 we take =1, and Ef;(z) = E}im)(z) , the

0,1
Siegel's Eisenstein series.

With regard to convergence, we see that the series defining

2 Erf » ete., actually occur as subseries of the series
1o | mr,j

( )

\PLER) (Cz) 8) » S0 are absolutely convergent uniformly for (z,w)

in compact subsets of Hm X Hn

Thus, the Theorem is proven. /1S

§6. Algebraicity Applications
(n)

Theorem. ILet Xs = XS be the s-eigenspace of Sn on cuspforms

of weight k on E . Suppose that s % O . Then

i) There is an orthogonal basis for Xs of cuspforms with

algebraic Fourier coefficients;

ii) For f in XS with algebraic Fourier coefficients,
-1
)

clin s(f,f)_l is algebraic ;

iii) with f as in ii) , for 2k>m+n+1 , m>n , the generalized

. . n " " =
Eisenstein series Emf on Hm has algebraic Fourier coefficients

Proof: All this will follow, surprisingly enough, from the
rationality of the Fourier coefficients of the Siegel's Eisenstein
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series, and the arithmetic of Siegel modular forms encapsulated in
the Proposition of §4 .

Clearly, in light of the Proposition of §h , it suffices to
prove, instead of (i) ,

(i') For fl, f2 in X > with algebraic Fourier coefficients,

-1/2 -1/2
(£, 550 (£157) (£,

is algebraic.
Then we could do a "Gram-Schmidt process', without losing algebraic
Fourier coefficients, to obtain an orthogonal basis.

(m+n) (z

Lemma, ; Ek 0 8) has algebraic Fourier coefficients in (z,w)

Proof: We will show that the Fourier coefficients of the pullback

(m+n)

are finite sums of those of Ek , which are rational, from [S] .

As remarked in §1 , the T-th Fourier coefficient an is ©

unless T is positive semi-definite (and semi-integral). Decompose

a1 S (2]
T2l T22 2
where Tll is m-by-m , etc. Then
A4 z2 0
2ﬂtrT(O w) 2ritrT,.2 2nxitrT W
e =e 1 g 22

Thus, the (Tll’T22)'th Fourier coefficient of the pullback is the sum

of & where T has (1,1)-block T4 and (2,2)-block Tson * This
sum is finite. ///

Now let P(no,mo) denote the assertion of the truth of (i) or
(T),ﬁi%(iﬁ)fM‘Ofnfno,lfmfﬂj. We will do an induc-
tion, using the Main Formula for varying m,n .

The first part of the induction is completed by observing that

P(O,mo) only asserts that the Siegel's Eisenstein series on H
0
of weight k , has algebraic Fourier coefficients, which we know

already (see [S]).
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Suppose that we know P(no-l,mo). We will prove P(no,mo)
(here “021) . This will yield the Theorem.
For l§1~5no , let {Fr Jj be an orthogonal basis for cusp-
forms on H_ , consisting of eigenvectors for §_ . Let ({f .3
T r 00 d
be an orthonormal basis for cuspforms on Hn , of eigenvectors for
0]
Sn . Now take m==n==no in the Main Formula of §5 :
6]
(2n ) (n.) (n.)
2T R I s P o
E, (O w) E, ‘Z)Ek (w) +
-1
(r) -1r r &
+ F Bt s . (F .,,F_.) EF _(z)ETF W)+
l§r<nok B bt it gt e o Fr, (%)
{(n_)-
* oo 0" "z, B g fn .{z)fe Aw)
J O’J O’J nO’J

where we note that € must be a @-antilinear isometry of the space
of cuspforms. By the induction hypothesis P(n -l,mo) , all terms
but possibly the last sum have algebraic Fourier coefficients. Hence,

by the first lemma above,

(=]
£ (z)

¢ .8 : Az)2 L (w)
J Bypd nged “o"j

has algebraic Fourier coefficients.
(n.)

¢}

(s)
Now let {FQS'J; j=1,...,d (n))} be abasis for X =~ ,

> s'0
0]
consisting of cuspforms with algebraic Fourier coefficients, as in
gk . Let Aég) be complex numbers so that

(8] sk (@) 08) 1 0B) -o08) =3/2
£ =i AR S iRl SRRy
no,i f Vi no,j nO,J no.j

(as j varies) gives an orthonormal basis for XS . Then from

above
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<3
(n.) -1/2
o} _ +=i08) (s)e (s) o(s)
Cy >4 si?j FhO,J(z)FnO,i(w)(Fno’j,Fno,j) %
ey E TYR L (e
<Fho,i’FnZ,j7 Zn Apg By

where again-we use the fact that 6 is a C-anti-linear isometry.

As the functions ng)j(z)ng)i(w) are linearly independent ,
O’ 3
and have algebraic Fourier coefficients, and by the first lemma

above, we find that

=3
(ny) -1/2 () (9) -1/2

o a(8) 0@) p(e) (8]
c s A (F HF o (F N ?
k Lh hj Ahi 0, d no,J no,l no,i
is algebraic, for each 1,j,s . We surely could have taken the
matrix {Agj)j (for each s ) to be upper triangular, and A11 = 1

Thus,

(n,)-1 ( _
o 0 8 <ng31 ; F6231> .
is algebraic. But this applies as well to any F + 0 in XS with
algebraic Fourier coefficients. This proves (ii) for our induction
step.
For F,F' in Xs , we may apply the previous to, F,FY 5
F+F', F+iF' to find that

(F,F,)<F,F>-1/2<Fﬂ,F.>-1/2

is algebraic. This proves (1') for the induction step.
To prove (iii), take n=n, , m=m, in the Main Formula.
Arguing as before, by the induction hypothesis

(n) n 9

0’ 0
c by f (z) £ :
o Yo %ot?

28 E (w)

3 no,j m

has algebraic Fourier coefficients. By (i') or (i) of the induction
hypothesis, we may take

=12

L

fn N Fn
O)J O)
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for some Fn 3 with algebraic Fourier coefficients. By linear
O’

P n
independence of the F_*. , Emo £ must have algebraic Fourier
n.,J n.,>3J

6] 0 0

coefficients. This proves (ii1) for the induction step.

Thus, the Theorem is proven. ///
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