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i a modular foren on GLIZ M) for a cubic estens
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sion M of F,
have integral representations as integrals against the restriction of an

cisenstein series on G5p(3,F), uder certain conditions, @s corollar igs, of course
¥

one ohtains »::-:’plz‘.c:i. results on a.‘e.alx;t ¢ continuations, funciional e guations, ard
5 results at certain nodits. This result includes a5 a very S{.:E-‘.‘,l-"l
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e‘{i C‘{LHH 5

'HH’ vk L] ’wu{

f}j Jp( t '

; ’l“f}) 'i)(fi e

1"

o —ea——



function of Milbert modular three—folds are L—functions of this type. (The

4 P | . o 1 - K. u 1 a1 I =
argument iz essentially identical to that in [Shi] for modular curves),

-d'
b

he raotivation for these investigations and for that of i- GE’] cormnes from
LG, where it is shown that Siegel's Eisenatein series on s v syrplectic groups,

npased along a pair of smaller disgonally imbedded symalectic groups,

-

have u;-"n}'ri. ZHONE ssions in terms of Eisenstein series attached io cussforms on
rational L@L*ﬂd-ﬁrq components ared special values of related s yrrinetric—suuare

hietr the rea-’.hﬂ —understood arithmetic nature of i:h-:xlorr‘.or‘it:a}‘;ie:}

Eizenzteln series can be made to yield arithmetic information ahout subitler tupes

norpnie forms and some associated L—functions,

First {Theorern [1L7)), we have a rather 5@;‘:%81 but ires fJ licit Euler

factorization result, under an as: surngriion of -~ ad.:pt.mnhtq of 1q ik

s assumption includes an s:'iuai waight” sssurmption {see

e

hen, we consider z;::-:,tﬂir:.ithﬁ certain more ::fllﬁ’tldl uutonuﬁ"prm forms
which are a st -:1(: vtForeeard adelic amlc*q:sv of newforms (with character) for

I (M3, a5 treated in chapter 3 of [Shi]. We cornpute the Euler factors at

L1

" NG o N i Wikl o i
e} primes which are not ramified in BF (Theorern (1.9}, For prime
splicit expression for the Euler factors (see Theorem (L101). We ewplicitly
gvaluate the archimedean factors onl 1y in the case of holo ormorphic modular Forms,
sz Theorern [1.11)). A

“equiring that only totally-real nurber ficlds appear |

ial—~value resilt is obiained for holon nr'nhn’ G:t:aru*ue*ﬁ{wm: of E"mé veioht,




£t

level one, and trivial central character, in Theorem (1121, (A much more
isixz-::r"uz::-:-;i case of the special~value result will be treated in a F::-rthc:oming paper
by this author and M. Harrisl, A direct caloulation of the infinite—prime
integral for waveforms to Bpress theny in terms of c:r'u:ﬁnarg.j GETITE functions
dogs not seerm to have been dong at this time, though F. Shahidi has indicated to

i

]

this author that his methods show that the mtuq ral should be e i ressibl

.., see [21], [52]).
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After cormrmunication of the results of [GE] concerTing the irtegral

ot

representation £ the tr Lf e pr’r-d.xrt I.I. Piatetskii—-Sh apiro and 5. Hallis also

l'k

pegan work on integral repressntations of such L-functions via "hwdsted D)7,

appear in & forthoor ning paper. {Their results and the present result
were anhounced 2t Oberwolfach in 19851, This tune of result Eh ;ur‘pnﬂl{ fitz in
heir me nuxiuluqq of ’ EDH"!PE-T’ fuing’ j reductive groups inzide larger groups,
which they had developed z:orsf::is:ierablg in [PRY). Indeed, a guestion asked of this
atrthaor %x{.j 1. I. Piatetskil~Shapiro during the development of [GE] about the
poasfzuhtu of Treating cubic fields was part of the motivation for the oresent

generatization of that result. This author tharks the prey i Jirj- rrhinned

authors for some clarif ying remarks PROErT mq thelr iswpoings o these

matters, It is a;‘.ti:::i;:xat‘;:cé that thedr Forthcomin W paper will freat the anslutic
~t
aspects of such inteqral representations in n:{re..atzr detail, 1::1.{ More gensral
ol i ol ° ot ~d



We no roughly describe the result in the case of {adelic) hﬂ?oi'nm‘phiz

i

-~ 54 i 3 « R - ! « = =
eigencuspforms ¥ of level ore. Let B be a cubic (serni—sim wle) algehra over 2
= i o

v
i
g

trivial central character, where 8 denotes the adeles of Q. Let Ghe

’tLrot Ri“iQF—;,

for a [comemutative) @ —algenra B, For an alternat ing B—valued B-hilinear Form

-~ e | % S5 -~ ¥ <%0 ™ 3 -,
T on B=, we have an alternating F—valued F-bilinear Forem T on B2 iy blj

o

J’:*ir"amﬁ spd. Let @ be the @- ~group (after restriction of scalars) of
v ow, :’ -
F-linear syrplectic similitudes of (B2,7°). Thus, we have a natural

~ . ¢

rormomorphism 1 oof @-—fgr"m.:ps 1:G—G. Let B g5l he the (adelic)

~izenstein series on G'(A) which iz attached to the standard rmamimal Imra;.n slic

I

with anelian unipotent radical, which is *adapted’ o welght 212, and to the right

{
representation and central character,
The integral we consider is

s

taken over Z(AGIQINGA), where 7 is the conter of G. One Finds th at this

integral has an Euler product over primes of F. Further, the Buler factors can



There arz several distinct

r of the prime in the estensi

o o oo,

]

' ~ s
extension B F are:

ii) «1is’
&

haracter and right represertation at j‘s

iz the unr

completely split™: "N 1""{’3 ¥ F’-. 4] M .5

L

. of ﬂp factors which occur, fEf!ﬁﬂdlﬂﬁ G

ion, and detﬁnx}mq on the nature of the

The five types of behavior of

amified cubic field extension of ?,,:,,

o P XE XF

oz 2 P Ar'ye o - .

i) is totally ramified”: pd= N B Fy 15 a totally ramified cubic
fiegld swiension of F i

iv) a1 is "partially ramified™: B & F g = F X ramified quadratic extension
of Fﬁj:

vl 4 is Vpartially split’™: 8 & Fo % FoXlunramified quadratic extension
of &-j{,,l.

Mote that in the case that B=F XFXF, all primes are “'completely split”.

g then have the :olfnwmq Euler factors arisin

Suppoze that for each i,

ation [for any prime o0 of F unramified in BF) {

....

F rom the intg:qr‘al

ee (1.7),(1.9), and

|'|‘|

. staternents):

i 1u.:tmn

bRy o BN, =0,

iz the a —th Hecke gige rvalue of n‘a.zlh;«lm, ny the obrvipus

power of ﬁ"l'f%}i, and f is a level—one holomorphic eigencuspform of weinhi 2%,
i = i =

~factor of the shove

O

1“2&&?5‘15




(=33 % (1-Fp=x%) % Lik,5-2,8/F),,

whers the Euler factor LiF,s,8.7F) ] o 18 given | ‘vq

i} for " ingrtial:

a o
-2

=(1-,%) n:z—ﬁix) (1-0¢p ™% (1-B o~ H5),

| =i

it} for 0 partially _split:
Lt,s8/F) b=
=(1-oye ) (- B2 (1-Be ) (1-BAX) X
- Pt o
X (10t 2™ XE) (1-B g E:xF_J;

iii} for w1 completely split:
P ] ¥ )

= (1-oypem X (1-t,00, B0 (1-¢ Pa0i X (1-eBBX) X

i & 3
X U=Byee) (1-Bec BX) (1B o) (1- ~BRop0.
Wz also treat the case that 90 is ramifisd at "y bt P is not rarmifisd in BF.

See (L0, We note thet the two inverse zeta factors cancel with those
occuring in the normalization of the Fisenstein series. (E.g., see [L] regarding
cisenstein series. The level-one case of Fisenstein series on symplectic groups
iz eplicitly frested in an appendiz in [Lh.

The First immediate corolla ry one obtaing is the (rﬁemr‘rzu:xr-f:xhic] analytic
corvtinuation and functional eg juation of LF,5,BF) from those of the Eisenstein
series. Second, on the arithmetic side, it is well known that the b slomorphic

Eisenstein series B O w) is Yarithrnetic over @, for esample in the classical



R |

sense of having Fourier cosfficients in @ when the rings of integers of F and B
hawe class number one. (We refer to [H1] and [H2] for gereral and sustematic
versions of this notion). From some relatively elar martary arithmetic properties
of the Hecke operators [in this c*>:amf3L, y one finds cii.r"r:::ﬂgj that the normalized
special value
*(f,x-2,8/F) =

= Lled™ Blde-at X <5 X L, e-2,8/F)
iz in @, and that for an automarphism T of €. qQ,

L¥(f,x~2,B/F)* = L*(f*,xk~2,B/F),
where Aut{T, T acts on “Fourier coefficients” of § (i.e.

certain ling bundle on the associated Shirmura var"iettj.?, and <F, > is the

u

LB

etersson inner product. From the esplicit evalustion of the archimedesn Fuler
factor, one has a further paraphrase of this, as given in (1.12). As Shirmura has
pointed out o this author, the other special values may he chtained as well from

this integral representation by using results of [Sh3], [Shd] on the arithmetic

nature of such Eisenstein series at points other than rnerely 5=,

A key point in the verification of the integral formula is the
determination of ‘nice regresentatives for a partioular coset space of the
general form

Pl G{@)elam),
where @ and @ are reductive G—groups, G is imbedded in G’ (over @), snd P’ is

., R . 3 o 5 A s -. -3 H
& Q~parabolic in @ . In the case of intersst, we take G and G' to be as ahove,



and B7 1 he the maxtrnal proper - parsholic i & mentioned earlier, Then this
coset space has just three representatives, and only ore will make a non—trivial

‘cuspidal’ contribution. Such a calculation was done in [G2] in the si ¢ simplest

possible case, in a somewhat different manner.

Then the global integral presents itself as an Euler product in a fairly
natural manner, even for somewhat more general tipes o utun*.rsrnhm forms.

ind it convenient in this matter to describe ™ clgcfr'xru nforms Lu{ the local

Whittaker functions which determine them iih:j an adelic Fourier ax PNl wid,  The

anly oketacle is that the Buler factors are f rational

:ﬂ:

LT

wy
o
]

grgsazi as

"J‘l

functions, with denominators n'u:luding several ewtraneous factors. Fortunately,

the most optirrdstic ';:juess" rsz:qar’:::‘inrj actors of the numerator is correct, under

the zupcxthes;s rettioned earlier concert rilriy the central character and mq}

representation, and one obtains the resulis ghove, after some caloulation.
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garnma functions when the ’uu;ﬁurm e h::rlomurf:ii';ix:, givine
m‘r‘p lete result in this case. However, in general the direct determination of
the aﬂaigtis:: nature of this factor is not so clear. IF the jvn-?r‘dl archirmedean

factor can be determined sufficientl e hbmq then it is pnsa ' lan::x:c«ri:ﬁnq ta

conversations with Rallis and F‘iats:.f’t:sii.ii—":‘.hafitim_l to use ‘converse theorems’ o
okrtain the f's"aE:?”r:xr'ﬁl:fr”p}' arbinuation of L ua lﬁ aid qumt.,;,ue roducts.,

Likewise, only in the holarmorphic case does the arithmetic nature of the



At the moment, it seems unlik ely that there 15 & directly analogous result
in maore rx:srrmha -ated situations Lg.q.. to ohtain hquho“ pra oouct L-functions), dus
to ohstacles in the nature of the analogous coset decor rpositions and related
matters, This iz in conirast 4o the ooourence of | 53 rinetric squa.“lz:’
L—functions for all the families of classical groups: see (PRI, Even mers
consideration of dimension can ilustrate this,

=

This work was pa 'tl:inij SLR :n::r*tuzd 'r:n.i the MNational Seiznce Foundation.

1. Statervent of results
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3. The Buler factorization

4. The ewplicit Euler factors

3. The archimedean in = ral [he ulc»mor‘fJf ¢ CasE)

E. Special values hulornurp 1ic case)



i. Statement of Results

First, we establish some conventions and Ifmmw‘:{ ults al.ltun'mrphis
Farme for congruence suby oroups of GLIZ,E), where B is a commutative

sermi—simple algehra over a number field F (o is a product of nurmber fields)

-

We will consider thesz items grplicitly only for an anal oz g of the Groups [ D[N}
oilowin 1 [5h] chiagte " 3, in essence. Second, we will introduce an Eisenstein
sories o & symplectic e 'at.afrt-d 10’ the central character and r‘i_rj'i'lt
representation tyse of a given auw tornarphic forem £ of egual weight’ on GLIE,H).
Then the integral formula will be stated, along with some ¢ sonszguences.  The

proofs will ke giver in s ub:ui et sections.

{1.1) Automorphic forms on GL(2). Fix a rurmber field F, with ring of

UI

inte E

w, Let 8 ke 5 comemutative :SE:n*ei—simphz: F—-algszbra over F. Then B is

isoi 'm*p hic to a3 direct r;-*cxduc‘f rurnber Fields s"l. Ye idE:ntiFH B with such a

-~

pra duct, Let O be the lrl'tc‘lji“dl closure of @ in B, 9 iz just the direct fn‘ndux 37

v

i

of the rings of integers &; in the sitnple factors of B, and ideals of O are just
direct t products of ideals in the rings '”1 In a similar manner one has F-adic

2 . o A Wy, B -
corrgletions b‘F‘ and e for a prime Rin &, Gererally, a finite or infinite prirng

%"

¥oof B lumq aver a primg e of F will be construed to be an shsolute value (or

valuztion) on the image of B under & non—trivial Fa—algebra homormorphism of
B inta an algehraic closure of 5:3,3. Define a linear al ge ehraic group G over O by
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for a cormrmutative O—al lgenra R, Let 6 be the adeles of F, and ﬂ the firite
areles of F. Let F® he the :ﬁar*ahcha: sk o of " consisting of
Wpper~t 1dr'1qulcsr‘ matrices, U" its uripotent radical, and T the o of

b=

diagonal rmatrices in G, Let K™ be the standard subgroup of G (RE,E)

isomorphic to a nurmber of ¢ coples of 30(2) and U(Z). For &, in 3 ring R, we
will denote by Boe,B) the 2~hy~2 matric with diagonal entries of and B, and
zero off—-diagonal entries. Lot K* be the sr.Jbgr‘cn.sp ]_IT:_': G“lf@»r;:l of G“mn@t’{].

Let 2% be the conter of G°. We identif Yy ZHAR B with (A

| ¢8)
gmss&:nc:'}'sar cter % of [RED 6"5'1} Dahich is Just a pr*adun::t of ideles of the :m“-ul»'
factors of B), we view % as beirzg & character on Eﬁ{ﬂ@FBJ. Far an integral
ideal f of F, let
K*F) ={ 1= g =% k| rmodulo FaI,
R
In yeneral, for a group & and s ubgr‘ﬁup H, with a one—dimensional
[::r:nmf:algx} representation 0 of H, we will say that a C—valued function f on 3 iz

,..

left (resp., right] (H,pl-equivariant if for heH, o 4EG, we have flhg)=p(h)f(g)

collection of translates {flhghheH] (resp., {f[qh!.hEHj ) spans a
finite—dimensional v sc‘tur-‘f‘:ara of tunctions on &,

For each prime 0 (irfinite or finite) of a mumber field M, we have a

r

pairing <, of | ’ > Mg p It G & defined as follows, If gt is infinite and
: l

B



real, then for o,fer, define
'\I}" :'w:]_.‘ e l':a'l t‘r',::nﬂ_ E.

If g is infinite and carmplex, then ! put
) .

oL, o= E+|’  mod 2

Mowy suppose that Mzﬁ‘ is a finite ewtension of €, py With p finite. We have the

nEtural m jection

where the trace is that from My to &, pe For & prime ' of M, we have an

I 0

s &
pl) = a;-:,lf-a‘-,.

Uefine an additive character T on the adeles of M by

where w15 the fi-cormponent of . ?U"” M—irvariant additive character on
*1 &8
the adeles of M iz of the form

SITine s o 3 o
®)=g . We can define pairings <,2p on

bp By a5 the sums of the palrings on the simple factors of By, and additive

& o s Top,
P ——— o~ [ i
e i ] l-f; L, E 00
1] 1]

for w and £ in ARE. Again, all B-invariant characters on A58 are of this



.__.
T

form far sorme e,
T . 7 g 3 2 . B oA “
For & left UP(B)~invariant continuous function Fon GTIARB), we havs

Fourier coefficients

W

Falg) = JTEg FluCdg) d

where gEf S ARE Bl, E2B, and we write

Here di is the (additive) Haar measure on 8B which is & product of the usual
g i . - i : Y1 ¢ _—_—
local Haar messures dwy, on the factors B, iLe., for a finite prime 2, {_}.F, has

. — A i S i * ~
measure (Ne) ™Y where who 15 the local different (in an ohvious sense), and
i

twice the Lehe esgue messure For rnrnf e p aces)., With this normalization of

measure, for =488, Yy YL (AR,

fﬂfziij] ulsde lﬂ!:‘ M) as shove.
Fix & grossencharacter % on 27 (AR with conductar dividing fii'! [with
an ideal of F), and a € —valued representation g of K®. Let g, he a
¥ —valued re epresentation of Gl f L Putp =P % I{‘_. Let £ be a cordinuous,
C~valued, (Z®(ARE1, %) - —eguivariant, left G* (B} —invariant, right
(R ¥ 3,{: —sguivariant Function on GT{ARR), su pported on
PR AREI R Fl We require that there is a function W=We on

T AR ((ASE2 50 that for EER”, celAREY,



fallle, 1) = Wike,1,
and we reguire that Ff: =0 for E&'B™. (Mote that nece essarily W is right
(TH PR F)p)—eouivariant, and #:Eu{ﬂ@ﬁ},?{i}—»::qi.:i*-.-'.a.**iant}. Further, we
reguire that for sach prime P of B there is 5 function Wi an T#EE;:J 50 that
W= I"[-p W,
If also f is square integrable on

ZHARBGE B\ G ARE),

and is an elgenfunction for the Casimir operator an GFRER), we say that f is

st

an sigencuspform with central character %, and with right representation o, of

Q,v
=
iy
-
3’"
.
-+
4
a1}
S
]
3

level f . The functions ‘N-p attached to f we refer to as the (loc

functions associated to f.

(1.2) Explicit Examples. Of special interest is 5 certain class of the local
{Whittaker] functions W, We consider a class of (adelizations of)

holo Fnarphic Hilbert rmodular cuspforms, 'upposﬁ that the simple factars M, of B
are totally real rrnber fields, Let % be a grossencharacter of finite order on

L Py o 5 o 1 B ' g
(AEETS, with conductor dividing F&, trivial on }ﬁ for W infinite, where fis

4l

i - o
ideal of F. Let £ be a ©*—valued representation of Il f 1 which restricts

to

oo Z[ﬂ}!ﬁ@n{n‘i’nf;'} ar ¥ divid g j’ anid which is of the form (modulo f}

ol [Re %\ )= (e
Il



i3

o 3 i@p)f—}ﬂiﬁ[ £ for B div viding . Let f he an elgencuspform with central

character %, sup parted on g )| T Fl, with right representation

P:?m@%- We will describe 2 certain a:-:phm class of local Whittaker
functions which acour when £ is the adelization of a h-:eh:lrw:zrphic Hilkert rmodular

gigenc fFor"m.

-

i 3 oL S e “ -
Let ¥ he an infirite (real) prirme of B, (Then we m iay termh; B writh an

infinite prime P of some Mid, We ses that p_ restricted to the P—factor of

® st be of the Form

.20 cos 0 —sine| — 8-l o)
s 0 cos o

for some integer w(Fl=i (). wWe say that w={k(Fi ¥ infirite} is the weight

of £+ or of 9, or of the eigencuspform £, Partition ¥ as Kk=(k ...}, where
A

M i | i

'

SR by L =S y
w={w(k: ¥ is an infinite prime of the simple factor M; of B},

!
Iy =22 (™ (over infinite primes F of b;).
-~ ‘}":_;_ _ - ” -!_-\_;_ %""‘] SR Lo R
Far ¥ a finite prirme of a si repie factor M; of B, ¥ not dividing dF . and
uzbie ™ with crdptqt—-ﬂ“,, we consider local Whittaker functions of the Form

f T‘ o ) {rnal)
{.-.! il" j:n

=
==
P
5%
193
e
)
e
=
P

)

*-f; are the roots of an eguation



ey

—h{ 17+ % PINE-1=q,

with b( ¥ an alg»:chrait: nurmher. For a finite prime ¥ of M, »::‘i*-.fiu::‘ing f . taks

(12.3)  Welyl = f (P (mz0)
l 0 (s,

with an aic_]e, wraic rumber ol I=bU. For an infinite {reall prirnz 7, put

(1.2.41 3’3 1= iqf (/2 ,,.an.r"f [}.

with w(¥) as shove.

Thizs formalism ap s 1o the situation where

(P=h(R),/ iy (P2

¥R = iyl (¥ a prime of p;]
and a( P is the glgenvalue for the [ s«u’rahlq nsen, normalized) F—th Hecke
aperator on 'adelic holomarphic Hilkert modular cuspforms’ of weight ¥ for

COnrUghos sw.ftm:jr‘cn.lpa o type 5 D[: f] with primitive character 3 hawing conductor

f Mote: our o B arid }3 > are the usual elgervalues divided hrj the ohvious power

i

£

of MF. See [Sh1] cha apter 3, sections 3 and B for treatment of I LFICsLE,Z).
The methods of [Shi] a_pplg, with simple modifications, to this more Henera
setting. See, B, [IL] for the re epresentation—theoretic treatment, and [GGE]
or [Ge] for 3 description of the transition from the classical fo adelic. local
Wihittaker function treatrnent.

Ll
t
L

big siy npms case of this is where B=F=0Q, f =1, and



]

a =

A ‘J....ll, m f{P oy

) is the f—— h Fourier coefficient of a hol mﬂi‘uhlc ruufvfnr Fiy

of weight we2Z for SLI2,2) which is an eigenfunction for the classical Hecke

A similar formalism alsa af:sl;:«lie::'- to Maass' wavefarrms, with all ¥=0

A

and with a modification at the infinite primes. Mow we need not reguire that

the simple factors of B he totally real. For an infinite prirne H, owe now put

1

5] Wily,l) = Eg J &~ x) (E+E)™ Y e

1.2

£n

l " J €~ (et 3 )| f24 B Ve

(R real)

e

(¥ comples)

where the first integral is over R, the second Irtegral is over ©C, and v iz a

suitahble cornplest number possibly depending on 3

{1.3) The Imbeddmg of Groups. Mow we will imbed a

ertain _-ul-rjr"uufx G of

% ina aqrnplvf* group. Let J be the standard B—valued B-hilinear

alterna ﬁhq Form on BS:

Let @,,... be the F —-alqwra harnarnorphisms of B into an alq;
We define an F-lingar trace fnap
riB=2F

by

trif) = 2, o (B

~aic closure of F.

Let T he the F-hilinear F—valued alm*n#mq Form on B defired l*r'

Plvpv J=tr(J0v,, v )). Let @ be the linear algebraic group over '@ of

=4

I



U

westmilitudes of (9%,7°), L., for a commutative w—a algghra B, the group of
R~valuzd poirts of @ is given bﬁ
|'T”I"F‘] T F'___l'-—,.--. = e Fisry of RIS 2 crre s
Wikl = 19 an R-lingar sutomorphism of R w's such that,
for v ,v, in REISE, ] lq*v'i‘q‘«' l-»ql'q) Ty ',_,], with sarme
[
P - o
q!., E;}EH“ i } )
where we take the obvious estension of I, We may view @'(F) as a su.l:n:{r*ﬂup
of GLIE, Eﬂd;;[f:’_\l], ing on the left on 2-by-1 matrices with cornporents in B.

Let F' he the arah- sul‘grnuf: of @ whose R—valued points are

PR={/x x\e@F ]} C 6@, End.B)
.
Let U be the unipotent radical of P, Let K be the growp
= ﬂ.ff jo' C @A) s
where @, 15 the *n—adic completion of @, for a (finite prime of w. COhver F,

X -
A5

=y

e

Isomorphic to the F-grous wsually denoted by GSn(dim B,F) (i.e., to the
9% i F

Sodiry s-L h'g Ex:i'in'-.Fﬁ standard = symplectic similitudes over Fl. Let 2° be the

f.}iE:E,P}ij some of the elements of G ‘—-l_:Lhd B} natura Jsit inside &',

Howewver, there is a non—trivial restriction on the “torus par ', Let G be th

L]



'ts-—.»:i.s&:ugr’::xup of G* whose R—valued points (for a comrutative &—alge hra 7] are
GlR) = .jr:&: B RE S"'U . rjEG’I:Ef]} =
= {QEG”‘("E\,’%E"T! s det] ﬁ]Ffv""‘ ;
Thus, the "ser mi~sirmple part’ of G is the same as that of G"=GL(2,B), and G is
a narrmal -ubgrr_ﬁup. Let
LiG~3 &
be the natural (inclusion) group homomorphism.  Then 1 gives a morphism of

lirear alggi:uraic groups over B, for mearnple. Let P he the :—-ul::q.r*»:n_xf:- of

Upper —trisngular matrices in G, U its unipotent radical [which may clearly be

identified with the anslogous sl.ibx:p*cl:.ifz of GL{2,8) except for issuss of
rationalityl, T the roup of diagonal matrices in H, and Z the center. Let

| = G(nﬂ@ﬁ)ﬂﬁin
K=k*NEREE),
where K¥ and K® are as in (1.1).

Let K be the mawirnal com npac subqr*uup of FIFEE) consistin iy O

glements
A B\ & @FRER) C GLEEdE BR),
-5 A
where the bar denotes comples conjugation at comples imbeddings of F, and the
”rr"anafzasz’ is the adjoir ot to the pairing ( *.ljj-—*f Jl. Let
K=l 1@ (e,).

By construction,



-
i
£

in addition to the fact that 1 gives !ufu i 'restriction of scalars’) a mr:rphltm of

a‘zge‘ar-aic

L]

roups defired over the number Field F.
Fim an integral ideal f of F. Let
K = {gell g = /% *\ rmodulo Fi

-

%

Let K(PI=KNK*(FI=KNK'(F).

(1.4) ﬂdaptahle characters and representations. f:'?uppuse: that 70, Poar 05

are such that there are a grossencharacter 20 on Z'(A), a T -valued

R T "
representation g, of K, and a € -valued representation o' of K ') so that:

i

L UR PR . I:L—.ll‘.l E[Uq”

Poo = Fay® b {on KJ

e o el PRy
Py = P ¥ fon KDDL
(Note that such % always exists). Suppose also that the restriction W of

LN

= B0 1o KIC(FINP(A) hes an extension 10 a ©F—valued representation

'T.‘L

?‘3 of F'I#) which agrees with 2 on 2'(8). (IF 1y | 18 trivial locally at «, then

we take ‘r] to be trivial loc alhd at njﬂ. Further, Supposz that g" and ‘t! are trivial



fn
i

o GIFY and P'OFY, ¢ "espectively. Then say that 2 and g are adapt table over F,

—

and that 3¢ and f‘: are adapted to X and g. Itis elementary to verify that if
such %' and &t emist, then t hs:g are unigue.
In the emxam: ples of {1.2], the requirerent of aviaptj lity can he rmade
tnore explicit. For " dividing |, Er’ﬂ is of the form (rmodule 7
gﬂ’( 2" x\ j= ettt
g at
where  is a finite—order character modulo fonF y, and f*\.E\s-i\.,:"‘t. YWe must

)

have Y Morr( Bl 1= 5 Pl for ﬁEE’:":. (Here the norm is that from BE’JFP to Fl.
H M
Let 4 be a real prime of F which has only real primes rll lg.{inq over it in
3. Lt wlidi=elD e gt e D P W
B. Let wlq=wlky), where w{F) is as in (1.8), and Kl Fy) rust be independent

of i since Py, i5 adaptablg over F. Then on the factor G'le . o 1 of K' we have

A B\ = det(im+Aty,

(1.5) Some Symplectic Eisenstein Series. Let ent1=dirm.B be odd. Let

2% and { be adaptable over F, with 5 and (' be adapted to % and P, as in (1.4].
For primes 0 of @ (Finite or infinite], let | ., Lo be the usual {~adic

¢aluation on F 50 that the product formula holds. In par’ticuia:", if 10 is & local

farocans i i i
pararneter at a finite prime 4, then }}’R’H -



o
P

Far & camplex rumber s, define a ©°~valued represenation My on B(F o) (for

R pue NP g . P
where ASF 7~ 1 is attacked to p' as in (1.4}, and a—>a' is the transpose with

respect to the F —valued pairing o E—%‘traca{:tﬁﬁ] on BEIF .. MNote that My i
J B B 4

equal to ' on Z'(A), is 'C'Z"{ﬁ}_.:?é’)-equivaria‘r‘:t, is necessarily left

LA ~invariant, and right (K'KC(FIN PR, p") ~equivariant. Further, M 15 left

irvariant under the suhgh:xup B of PA) described h
={fa ¥\sP{d: h:ﬂdJ—-‘l g

{This is from EIE{'ﬁEnTB."‘H properties of topological groups, using the fact that Hyo
is £ ~valued).

Define & function v, on G(é) (de epending on s=C)

o O » Supported on

AR ”F 1 hxj dECOTROS sing g=pk PEF’{ﬂ}, kEH"M!Ef } and jeang

v ,,lq sl = }_!.jg{}:i} P k) 1}:_-_{1 infinite)

p.:.f,l;' ;:{.1 Q’D[la} { s Finitel



]
DS

Here we suppress reference to f. For g in @67, define
vifg;f}f_'l,f_)’,s] = r{ V., lg,, -F ,5)
where the product iz over all prives of F. From the definitions (and from the
proguct formula) L‘Lqm, 7 .5] is left B'(F) J=irvariant, rlqh’c
(KK 0" - —equivariant, and (2 fﬁ@!—'),_’;{:’]—-»zqui\.-'ar‘iant.

We have an adelic Fisenstein sories

E0 ) = L, vygisd ¢ ly & PIANGF) ).

fAs usual, for fised % and p this series is conv erqent for real part s
large—enough, and defines a left G'(F)—invariant, left (Z'(A) "f’i]-—»:'.qi.li‘-!ariar':t,
?‘t (R f p} a.1w‘ cariant continuous function on G'LA),

Let % ke of finite arder, and trivial on the infinite factors of the ideles

Rl

Let “3’3 be an infinite pr*ime of F. Then for

g=fa b £ SLiEF o BENdE) N &F o
oo

ane has

volgiod ¢ ys) = |detlee T +dd )|

if any plan:»:c of B Q,.Tmrimg peht IS Com nlc,-: and

Pﬁﬁif];:{:’s?‘ﬁ;} =
£ N e SN
s 5 ) s N o o)
= [detlee”+dd")] ™% detloit o) TP Bt i+ FLP R

if o splits as only real primes, where }-::l'ff}'ﬂ iz as (1.2). Mote that % does not

sppear here, as follows from the assumption that 90 (and, hence, %) is trivial
)



on infinlte prime factors F™

{(1.6) A special group element. Usfire
tr is the trace from B to F, as in (1.1). Let
A= [i4+e/2 -e/9 \e GLF.

7 5
.1 G 9_.'". :j

e

pr ofs of the Ff:uln\l.fing results will be given in ubuequrm eotiohs

]

bz po

et f be an

{1.7) Theorem. Let F be of dimension three over |

e=End B F.J bu &l ]_ =1 plz:rf_ﬁ b

f (1.1), with associated Whittaker

Nsg o

eigencuspform on GLIZ,E) in the se

functions W, central character %0 of conductor dividin . and righ
‘F 3]

For a prime
)

assurme that % and £ are adaptable over F.

representation o. s
i "

i

Wy = ﬂ}; WT? lprnduf‘c over primes

acter %

Take a central char and r*mh‘f representation p
ter

as in (1.4). Fo Far a prime 01 af of F, let 1:' ke the charac

;2
ZIAVGFING(A),

Then, integrating over
JEgo ¢ s) g dy =TI, &
where
Lt”r,s,i.xr""ffl,ﬂ =
=l L _i-{'t' e :; (Bulze) % TRt ;3 WLy ,u_'13] '
vl A 31 i HIJE b= I

for @ adapted to % and

on A as in (1.1).

F F, write
of B dividing f;f]:].



where for 0 aprime of F the integral is over :-:EF_,F, HEF:,,;}H

B o T -w }.: ;e - = - . 3
ye(BEIF ) F ", (Here ul> ), anc EATIRTNT Y are as in (1.1}, d'y is_the usual
i B ﬂ Sl ._1‘.__(:'."(-_‘ A R T 4 ot

nortnalization of & rnul“ciphcative Haar measure and N is the norm from B to FI.

(The proof will ke o armpleted in section 3],

(1.8) Corollarg. The ll'l'tr:,f]r'dl expression in [1.7) has an analytic continuation

o

to & meromorphic function of se.

Proof. Fram [L], one knows Sccncz.rallq that the Eisenstein series as ahove have

merormorphic analytic continuations, and that for s2C aw ay from the poles of

the Eisenstein

m

eries Elgi%0,0',5) is of "moderate growth’ in g, Since a

S
.-

cuspform flg) is slways of "rapid decay’ in g, the shove integral is finite, 4

o
v

Remark. We amr phasize that the Fr‘--equ and Fa:illov.:'ing results indeed do apply
to holomorphic eigenc uspforms [newforms) for groups analogous to I"“U'{}, with

characters % modulo M.

(1.9) Theorem. Let 1 be g finite prirne of F, and let % be a finite—order

grossencharacter of B which is of the form X=t{eNorm g, for some

grossencharacter o of F, ._eulp ose that W is unramified at 0y and that i iz

unramified in BF. For each prime “1 lumq over 9 in B BUppose that the local

Whittaker function W iz of the form (12,20

"T



W (1] = j A O T )
\ 0 (el

where, for each i, o4 and Ll are the roots of an eq ation

"I“E-—iilitr;“I‘ pA | "F-’i]ﬂ'-l ;]{1:!3:

where 1 doegs not ¢ EﬂErir‘i ot i, Let 17 be a local pararneter at . Then the the

*n—factar C(F,s,B. F] of [1.7) is is given by

L‘l_l

XA~ Ip=X Y LEF,5-2,6/F)

E(F,S,B,/.F]jﬁ = [1—y T P

where the Euler factor LIF,s,6F) o 15 given by

i} for o inertisl:

L(f,s,B.F) 5,‘1 ot
’.') 3

:f'1--v:.\:flti.*i‘ﬂ'”l])i] [‘1-ﬁ1l}'i'ﬁ~133(] [1—1361[]‘12{1 & in [le;p =X

CI

i) for 4 partislly split:
L(F,5,B/F), ™ =
=(1-0 00 y{10 “11‘&111 ~E B Urri,! D (=Po g (1= By %

1)

-
C. _!

(1—13:130"{33 J (1-f, Ny

i} for 4 carmpletely split:
L{F.5,B/F), " =

= [{—o0 . r.‘l.li-n"l,'}?{} E‘i—cv'iu-’ ]: }!ﬂ ) %

W {'1-r;aztlﬁaa::x:_:,i}l{f‘n 950 H=ux p;. ;(H XY X
4 i_ir‘\‘_p_\rﬁlflf ARG i"i %Pl X X

R PR Ao e, o
,11..'-1[_)2 T WX (- *,;_E;J LT3,

g
T
rn



[
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(Proof will be completed in section 43,

{1.10) Theorem. Take f asin (1.9). Let 4 be a finite prime of F which is

ynramnified in the ewtension B/'F, but which divides the level . Then the Buler

1= factor of LIF,5,B/F) izt
i) 4 nertial (Nfo )5 oyl ,40 (-ox g0
ii) 0 E:l.artialhj gplit: g fg EE 1%[{!4;]

-
.1

ARG T v s
.,1+D’1u 'd{HP

F(1-ox 2o ~ExE) 100, 2p ™
iii} gt comnpletely split: (N 19-_,1,:‘]C‘S+11:ﬂ,[ Fopd (14 r_ylry,u,ﬂl }1—3‘;:—3}

< (1-0 iel"r'%':})':}’i"_‘:] &= I::{EE(H:}}C‘XE) i 3{}43)‘“}(53 -1,

o(f. 4 = I f:’;‘*‘*{x:] i) d

where 2= geMarmm,

(Froof in section 4).

(1.11) Theorem. Su Jppose t hat gt is a real prime of F, with three real primes

591, '}@E, f]J of B lying over it. Suppos ¢ that the local Whittaker functions at }

bt =l I

are all of the form of (1.2.4), i.e.,

W fo i = Il ®7 Eosl =2 )
'y 7p1(5,*} l|lju&{gl exl cﬂiggllﬁh}ij

where ¥ depends only o 4. Ther _the Fuler g‘,ﬁ-f’an::tc»r given bH the integral of




(Froof ih section S50,

(1.12) Theorem. Mow Further SUEROZE that f is 3 hn:nln:;mm*f:f}'nic sigencuspform

iy

of level one with trivial central character,

"weight” (2, ..., 2x), ke,

’)

Let <,> be the Petersson inrer product on such cuspforms.  Then
¥ 1

LR, e-2,8/F) = Celeyt HLde-2) <F L e-2,8/F)

&

iz an al jszhr"am nurnber, and under an autorno nrnhl‘-'rT. ¥ of T,

L*(f,k-2.8/F)% = L*+° x~-2,8/F),

whre in the r*iq‘hi-hand side of the latter expression O acts on fas a _qlob-al

section of a line bundle on the associated Shirnura variety, (Le., if the rings of

B have class—number one, this is the action on the Fourier

ot
=
b
(]
Dy
12
7%
pe]
o
=t
i
a1}
=
.
_3.-

coefficients of f). By_the result of (1.11),

(e “ a2 SR
ni3-3x) G R )

LP*#,6-2,B/F) = (rational) X

e T o
Sha an—::]:;-:j:{ L‘Lf!}‘w G,E; PJ:’Q

(Froof in section B).



2. Coset Computatians

The first main technical point in the whole calculation is determination of
riice coset reprezentaﬁvea far
IR NGF) A UGF)
Az we will see below, this double coset space has finitely~rnany elerents (of
same conceptual signif’icance], oan one of which makes 3 ’c uc;ud:l contribution

in the end.

(2.1) Notation. Assurme that dim B=3. Let End.B be the ring of
F~vectorspace endomophisms of B, Let o 7T be the 3 distinct F-algebra
hornormorphisms of B into a fixe {n:br"air:. closure F of F, and puit
tr=7,+0,+0,. Define esbnd B by

ef) =tr(PleFCH
We define an F-subtorus T 86T by

TI(RJ = T(RINGL(E,R) C GlR)
for an F-algebra B, Define an F-subgroup U, of U by

UR) = TullslU(R) w=RRE, tris) =01
where we take the R-linear extension of the trace triB—2>F, and uls) is a3 in

(1.1, Alza, let

Say that an elernent B of @ is degenerate i the isoirony group of B (in (A1)



contains the adelic points of the untpotent radical of a parsholic subgroup tn some
F-—simpl@ factor of G. 9.33 that 8 is nondegenerate otherwiss, We say that 2
double coset P'(F)BG(F) is degenerate if it has a degenerate representative B

otherwise za the double coset is mndcqcnerate

The ’rr:rlinmrn pr"opmms in makes essential use of the fact that B is a cubic
Land not higher dagr‘ez{} ertension of F.

{(2.2) Propesition. The double coset space

PF) N @(F) / alF)

has & unigue nondegenerate [in the sense of (2.1)) double coset with

nundm enerate repressntative

7S | e 1 a 1
= [1+e 3 -~/ e GFl C GL(E, End B,
e 1-g, 2

where ¢ € End.B is as in (2.1, The isatropy grouy HF) of

._.
I'J'l

BIF) = G(F) N 8P (R = TAUF) = qu::ITir:F:!,

using notation of (1.1). Further, with F** as in (1.5),




L)

Gl M a7 F"8 D U (6.

Proof. We will consider & and @ to be uquupf of GL{ (2,EndB), as in (1.8,
Let I be the ldentity map in EndcB, and 0 the zzro m ap. We have a
non—degenerate bilinear form <, > on B given by

Cayr = triay,

where fr is as in (2.1). Let ¢ j*-?q be the corresponding transpose map on

ErdeB, Cansider an elerment

o
=

Tt is not difficult to check that such an elernent lies in @ if and unhj e =%
and that this elerment lies in G if and only if sBC EndFB. As in the classical
situation with mplevnc Groups, we have a natural identification
PUEINGE R = Aut B L
whete
Y= d wzle %o 1 e (End b)‘- e = x|, and (% ,%.) is of *Full
- i 1"e 2+, ? HEARPE RS )
rank’, i.e., >~1+.~.E.BEI}B—-;>B is ontoj.

It is elermentary lingar algshra {o verify that for given xX, there is

u= JI A
B T

in GLF) (i.e., with AEE) so that wu=( (YY) with Y EfutH. Then by left

mi.xltipli«::aﬁcin bgj a suitable elernent oo GLf;i_.Ern:iFB} wig can normalize to



L)
]

gru = (5, I),
with &' =s.
Mo put
Bt = {s€ EndB : 5 =s, trace{Ps)=0 for all BB},
where here trace is the operator trace. (One checks easihj that, for BEB‘,
ExT:EJ. We have n:iimFB‘L = 3 (as F-vectorspace). There is a natural action of

=4 b s Talds -
5" on B, given as follows. For o in B , 5 in B+, B in B, define

ltfr‘,

3 lpl = I.I.bl\l_a-.I_']

Mote that

where the o on the left is viewed as lying in AutB. Further, for A in F,
.0 A B\ = (s, 1)
o 1
Thus, the vector space action of F* on B and the action of B on B are both
induced by the actions of Aut B and G(F) on elements (5,I) of X,
First, we determing the orbits of (F9X(E) on BY. Over an a‘qelurr_ﬂc
closure F of F, one readily verifies that this action of B* on the F—vect Orspace

FHEF haz characters @ [rational over FJ.

153
L ..l U 5 x, L]
it =g E:' 2

In the case B=FRFXF, all the characters are ale L{ rational over F,
and we have a decarnposition {over F)

B+ = V(1,218BV(2,318v(1,3)



Lt
L3 |

where V{1, ) is the 7T j-representation space of BE=(F) M (PR F), Then

it is E-;IQ;rT\E:thar"lj to see that thers are precisely @ orbits, with representatives

of the form

where gach ;5 is either 0 or a fixed non—zers element of W, J’ﬁ]. With a choice
of coordinates on B according to these = dbre represe entations [so that the elements s

are i"'.‘."-f:lf'E’-l':‘-Efl"!'tEfd bH syrmetric matrices over Fl, we have I'po 1bh eduridart)

represer rtatives

2= | = £,
12 13
~ f -
i - e
= =3 a
123 L b |
p8a) o

where gach gy is gither 0 or 1.

In the case B=F XM, with M a guadratic field extension of F, the
representation space 7, 831"‘ o, Elrr o of BX decornposes over F into
F—irreducible surmmands

{"1 = O‘IIE LU:,E]D‘:;-]‘

o

whers we take O, and O, to be the imbeddings of M into F. One directly

determines that there are just 4 (B X (FY —arbits, with re presertatives



Laf
I

(a3}

where g5 15 gither 0 or a fixed non—zero element of ¥y, In coordinates, we can

take [F‘ nssi HL{ redundant) PDF"‘ERG‘HT:h‘ S

s§= (U4 o
i

e’ g

1 2

whers E:IE Hor(M,F) is either 0 or the trace T from M to F

. EHon'-.FlfF,M} is
correspondingly either 0 or the natural (field) imbedding, and €,8Hom(M,M) is
gither O ar (T eT~1).

When B is a field, the the representation of B* on B iz clearly
irreducible aver F. We create an B-vectorspace structure § on Bt as follows.
For BEB, seBt, define

gB)s = BLpINR),
where N is the rorm from B to F, and the action of MP is by the F-vectorspace
action. Put (pLle—-D It iz easy to check that ¢ gives BT the structure of a
ohe—dimensional B- Vﬂ:’tut‘*—'} ace, sinCE as a B —re epresentation space e it is Just

o Mo 0o
v, B o, B o,

Hence, there are just 2 orbits, represented by 0 and any ron—zero element of
B,

Mext we complete the cornputation of the nond eqererate doubile coset
r*-»::pre::szntatiﬂ."r;s, at the sarme time r.ir_ctgr‘mining the I:r_xr“r"esponcﬁngj iSElts"EIPH

groups. For each pczssible. double coset representative 1], it will be shown that

either 17 is in the same double coset as

D

, o else Tl iz u:ieqat'aerate:.



L
Lyl

For B a figld, the shove indicates that we have at most resresentatives

F A
TIU =41 B ?‘h =117 D
Bk s I

where 5 is an Y nan—zerd element of Bt. For that matter, we can

right—rmultiply by suitable elements of GIF) to make s be any elerrent of End B
with non—zero projection to BL, and s’ =s. We may as well take 5=, which
car be shown to have the required properties. And n, is visibly in the sarne
doukle coset as B, One rhr‘erﬂl{ that the isotropy group of T].‘ is the
F—-i:::ara'%:rahn:: :5ubgr’s::up Fof G, so My 1s degenerate. (\We will carnplite the
i:si:xtrl:nplj Group of B [with arbitr‘arlj non—zero m) in a uniform manner below).

When B=F XM, with M a quadratic field extension of F, by the sbove

discussion we have at most four representatives

T]:IU

oy

I

o

with s as above. Clearly the case =0 gives a degenerate representative.

Likewdise, the case

Y

I
-
R

0 (zler-1)
with T as ahove clearly gives an e which cornmutes with SLIF) X {11CSLI2,E)

{irrheds ding bu ool Thus, this “»:«f:' gzentative is degenerate. On the

other hand, for



5= ( i T )
T'  (rTer~1)

we have s+1=e, =0 that the cor‘rgwpondmg n_ lies in the same double coset as

LA

does B, as in the case that B is a field. What remains to be shown is that for
s= [0 Ty
(?:T D)

the corresponding representative 1) les in the same double coset as does B (so

that this T)_

et

is redundant with the praviouslg—mentioned represe.ntati‘-fes:l. We

te that

o
oy
i

15 just

L ® 1 D)
¢ fdlerell B 4,

again, w vhere the unlabelled T's r represent the ide rtity in m,,,ct 4. This shows
that this N is redundant. Thus, in the case B=FXM we have shown that 8

t“ef::reszntzs the cirzL;; niohdec generate double cosst



et

LAl

The case B=FXFXF is treated sirnilarly.
Mow we cormpute the isotropy group HF) attached to 8, in & manner

which does not d‘:.-f‘l;fld ot the e precise nature of B, Take

_r.j:(a by = GIFl.
o d\

Then the condition Bqﬂ lept iz ]u st that

=ea+o-lec-30ae -3 e+ 9 leco—che—de+ 3 lede = D £ EndFB.
By considering the requirement h{P1=0 for PeB with tr(B)=0, we find that
¢=0. Then from hRI=0 for PeFCE, we find that tr{b)=0. Again considering
W(BI=0 for tr(BI=D0, one finds that acF (actually, F*). Since gEGF), this
irrplizs that deF*, Then it is easy 1o check that with these restrictions the
elernent h of EndcB is the zero endomorphistn, so that g lies in B(F).

The last assertion of the proposition follows similarly.

This finishes the proof of the proposition. 7



3. The Euler Factorization

Mow we obtain the E-::-:prc:ssion (1.7) for the intc-;qr*al af the adaptr_-:d
Fiserstein series against an c,fiqe:nn::x_lspf'::nrm as an 'Euler pmdl.n::t” of local

integrals. E';-:ph::it Euler factors in the exarnples of (1.2) will be cormputed in

thi

=}

rewt section,

Proof of (1.7). Altogether, this is just an ’unwindina’ arqument. Let { ‘rl] be
5 collection of representatives for

P(FING'(FL7GF),
let {E}[q) be the isotropy group of 1), and X(q):Z(ﬁ)@(q‘Jx\Giﬁ). Then, by the
usual unwinding, the integral of (1.7] is

ZTI ji\’(q] flg) ?[T‘lg;‘;x;”,p’ ;5 dg.
Mow if 1) is ‘degenerate’ in the sense of section 2, then ;{:T]g;?{?,g’ ,5) is left
invariant (in g}- under the adelic points V(6) of the unipotent radical ¥V of an
S —par-abohc in @G, That is, integrating over VIFINV(A) (and with uls) as in
(1.1,

I Ei:?‘gr.il‘::-:] q;fx;",g’ ) Tl de =0

" K
W -,

for SEB™. Since f is & ’c:uspﬁ::rm’, the integral over X( T’l] rrust vanish.
Therefore, the only contribution to the integral is from the single

¥

non—degenerate representative 8 of (2.2].



e
piad

Mo W(Bo 2,0 s) is left Uniﬁﬁ—-imr'ariant, left TiiF-':}—-im-'ariant, and 1eft

(20,27 —eguivariant, with T, &z in (1.2}, Hence, integrating over
L (F) L),

J B Bu(xlgid o' ys) dx = 0
for E’,EB—FK, and this integral is finite for EEF}: for real part of s suFFicientlH
lar*ga. We ma y integrate over the smaller coset space

Z(AU(FITFIald)/KK(f).
Since § is supported on PIAIKK( )y we may in fact integrate over the

rep esen‘ratn &5

-~

lxlaluj 1 Y
g 1 (

a

i

o y*

N

with x(AB). B, HEﬂ = jf:ldql_élﬁl“ &%, Thus, in the notation of (1.1),

(using the Ugiﬁ)—-invar*ianc:e of v, and using (2.2))
I flg) Elgs2,p0'55) dg =
f W ‘;IH { B VAUl ~lul'% J T oo e '5) ”q’N W™ de o Y dg

where wEHA, l{Fﬂ F*, uelARE) S AC, EeFN, and d'y is the usual
normalization of r'ﬁt.Jltiplia::atiw:s Haar measure. (We need the factor of

oo oot - = e R
ggs.{—';*ﬂ[!_.i—]ﬂ * for the Haar measure on P). For each £, we can replace by ug .

i oo w5 ) o £ o X
and 4 by ug ! i put this into the form (integrated over »E6, Y=, and over



T, is the additive character on f, normalized as in (1.1]. In this integral we
replace by 3"1:::, noting that the idele norm of 3 is 1, by the product formula.
Ef’ag.:! construction, v is a pr‘c:dun::’c over primes, bg definition TID is such a f:nr*oduct,

and by hypothesis W is also. Thus, we obtain the assertion of (1.72).#
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4. Explicit Euler Factors

Mow we will complete the proofs of (1.9), and (110}, Again we point out
that these calculations applgj to "newforms' with characters for Groups

analogous to I (M), over arbitrary romber fields.
o i ! .

(4.1) Let 2 and p ke of the type mentioned in (1.2). Suppose that % and p are
az%aptabl-; over F, with 5, p', § a5 in (1.4). Again, this means that
M=ieNorm, % restricted to A% is %, ete. Now we will obtain sarme
;::r*ﬁliminarxd expressions for the indicated local intggrals, for the q:xplicit local
Whittaker functions of (1.2), with the assurnptions of (1.2) on p. This will

involve an explicit expression for
T % '8 , het? s St g FarbNd 4 h.—i. sy ! :-
(4.1.1) Pplraogh = VlBulse” 30y, 0% 05

with x&F g, HEF;‘:, E:{JEEEHE—QFP]X, and for the local Fourier transform (in x) of
this function. Note that we have r‘eplaced :-:EFP bH w3, as in the calculation
of the _r.jtz:n»:'ra’i formal Euler factorization in the previous section. In the

2 I P T S k'S i N 7 L TN I
notation of (1.2), for primes \91, tc]E y oo lying over & (finite) prime y1of F, let

::-A-:izazxff_‘}?i}, E-i:ﬁ{\}?i}. (If 'rj:’i,f. then we take Eﬁ&}gi]:!:l]. For 1 not dividing f,

let @y ke the group of permutations of {0y, and =@ X X ... . Let

1?

P=1 Ly, and



A= (o-F).
For o=@, 41 not dividing f put r _ﬂ aloyl, A° ‘“Hil:x}’.ig—ﬁid:], etc, We
note that since f is an ideal of the integers of F, all the primes ¥ lgiﬂg over a
firite prime gt of F have the same sort of explicit "local Whittaker function’:
either they are all of the form (1.2.2), or of the form (1.2.3). Let 0Ty be
the non—trivial F, o—algebra hormornorphisms of hl,;dFFﬁJ into F g, and let
?‘4{[3}212?1{5:!@3[E}GS(B) be the local norm. For a prime 11 of Fy %EF,, note that

ﬂp 'EF,{:xf.l = T, (trace(x)) = 'CjOKBx),

:

. 15 the "canonical’’ character on 8, as in (1.1).

(4.2) Lemma. Fix a finite prime % of F, which is unramified in B/ F. Take

EF g qEF 1‘* . {—ltjl e Jsl’: BIAJF- a8 p as in (3.2 1. MNormalize q so_that

m‘d-pl:q);af} for all P lying over "0y and so that ordp( ﬁ]ZU for some 1 lying aver

. Then for 4 not dividing | we have

Pl =

=y N Ny R LR,

whers W is the greatest cormmon divisor of y and . For 0 dividing the level f,

":{*'ji'i:::':5!;f’;{' = J 4}1 FIN U-{)] " lll{\i"-l{*" 4 'CI}P qE f

I a (otherwise).

5




110
LI

Proof. Recall that the representation i, of {1.53) is trivial on the subgroup

BUF ) of P'IF,) consisting of elements

a b )
0 &
where det(a)=1. Also, for 4 dividing F, by hypothesis g is trivial on the

5"&":1‘“0“{:' Cof G ]'-gﬂl consistir i of elermnents of the form

(’1 *) miodulo ft{-y p
o1

If o does rot divide [, then put C=G'(wg). Therefore, if we find pEP”(F o), k

pl (H'Q k= (»e x\
U ,[_.1-_1 0 w)

‘Pﬁgm(}jg xg"i);] = Pldet(w) ) |i33det(w3‘8||¥,5.
ooy

in ¢ so that
then

Thus, we need only look at the lower half of these matrices, left modulo
Hs {Fao—automor"phisms of EiIZJF:10 with determinant 11,
and right modulo .
The lower half of our product is
(¢ 1-e/B) () W1\ = (o e +1-e /DN
( 0y )

Except in the case that BE}F-W is a non—Galois cubic extension of F g, it is not
| o



dd

hard to see that one may choose an 'asv,f,—-hasls By Bay By TN @@'@'F g0 that in
et B ™ -’ B

these coordinates

s=l1 4 4}
1 4 4
{ 1 9

In lr.va.r‘tic:ular:
i) We take the basis (1,0,0), (0,1,0), (0,0,1) for "p !'Drnpletbll.{ flhT

ii} For BRIF o= JU XM, with M an unramified guadratic field extension of F g, let

7
o, U, he an Py —hasis of the integers @ of M so that the C are
permuted by Galois, and W+, =1 Then take the basis (1,0, I\L!.Lull
“D,r_s:.,aﬁi of El@'@a(,.

iii) For BRAF,; an unramified Galois field extension, we can take an @ —basis

for 9w, of the form ), W, W,, where the w; are permuted amang

themselves bt.{ (aaloiz, and E-Jl+r.n32+ &13:1.

We will treat these cases first. MNote that the 0wy which appear rust be

¥
f

units, Mow take 3 rormalized as in the staternent of the Lernma. That is, in

.;
54

w respective cases mentioned ahove,

i) 11._.5 11’””3 Jy—-\;v \8{ m@?o with rnin{ord 30'\31]
[;:1';31 _jeh-w %, with gither (case (ia)) y,=1 or (case (k)] y.=1

(3 T
11.‘.3 fj"‘" L



- ) s lp g oL se 1 . 40 g o, L
T/ W W Ry UTRYT3 -y Byt 1
: ; g L T R o U R | =f s

dy W Ws o MY /8 oy THELTE gty
, —_ -1 /1 T T =
W e Y 79 R4 /8 xRy E

where in case (i) some W=1, in case [iia) at least two of the y; are 1, and in

gse [iii) all yi=1. Without loss of generality, we can renurnber the Y5 50 that

3:11:'1. BiL Y a tmrj an the left bq H, one eaqllq transf this to
4 W W ® ¢ ©
] —_— -1
0 N 0 1 Ys D
] { 0 -1 0 33’1

g . o e o
since y, and y, are in Wy W Can act on the right by

Al n\e ¢

with



S
[

o transform this to

0 00 0 0o gt

From the prsziiminarlj remarks in the proof of thiz lemma, upan replacing < by

i . .
3w, this yield

o

oy

the result in the cases (i), (iia), and (iii) when BERF p 15 rot 3
non—iaalois cubic field extension of Fjo.
In case (iib), we have glzl, QEEMXHJ. Let q:LJd Ternporarily, let ©

ke the trace from M to Figy and § the diagonal imbedding of F  inte M. Then

= fy tgq wt+2.73 T(x-1" S,']T’]'l
E{j rS't'ng] Bix—1,3) [t/ ':3;181.’+1]n,"1

in the F_P.T-\{ M coordinates. The same type of reduction as before puts this into

thie fore

y 0 x(1+78) U’): y 0 3x O
00 B 00 oy
Thus, we have the same result, upon replacing » bg 3,

When BRIF ﬁ{,:M Is an unramified non—Galois cubic extension of F o WE

cart still take an e ~hasis 1,00, for a‘ff@x&-ﬁg g0 that tracelm)=1, trace(n’l=|
¥ :

Then, in these coordinates,



e= /3 1 0
0 0 0
g 3 H

Then, using g:‘l, we consider (in a similar manner to the ather Cazes)
3y oy 0 3x »-173 0

o 00 o 1 a

0 00 0 0 1
Usiﬂg the left action of H, as before, we ad just this to

!33 y 4 3« 0 0

Then the same result is obtained in this case, as well, after making the

substitution of 3% for x 7

(4.3) Lemma. With notation and normalizations as ahove,

i 'Ejg{::-:] t}}PfV,L{,Hl iy =
= NG Iy NP (1™ Sylre))
X =[Np= M) ™Y (gopi® gy,

For 4 not dividing f, where ord_,f,(g',}:rr-}:D, and the integral is over F

dividing f,

™

" U wn e di =
,j T;:,Jg’..rl_.! (_fj;]':""ﬁ"!‘_lu’."_‘{" g =

o For

x})
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= ) AP e 055 Lgp 0,

where we have the character sum

T:Jr[f I o 204 Y] dx,

integrating over «eF 59 that orx:{jgixi]:—nrdjo( f 1.

Proof. Let 0 ke 2 local parameter at 4. For P not dividing f, the indicated
integral is JIMN Q):][h.f[ﬂ(g] 2® times

I z;zljgjj“ifjgfl jo_asd:-: + [ g7 ao_esdx + [y 3\‘)—1"17,,0[3"3":\‘" P"Esdx,
where the first integral is aver {x:ord ,:q'::or"d q} the second is over
ssord P“""i” and the third is over {x: or*djoqx ord %z 0}. These Interprals yield

the sum

{:{H,ﬁ]—-r‘l'ml}_l‘.‘,p'arnsw[ﬂ.—m) _ IN-})-ES Jm +

[~

HES—U -k e
Ockam Ty Y-y =

L.

+

= [ﬂ'-i-}le":'"lupliﬂ‘_]"‘]"’ - lN«(p‘Estp(ﬂ'J +
+ (=[N )™ - 1= g Bty
which simplifies to the desired expression,
For 4 dividing §, one may readily verify that the only part of the
integral which gives a non-zero contribution is the integral over
{:-:EFj,:,: ordﬁ[ %] =—ord jg[' f)} ’
by the usual elerne ntary arquments regarding vdm«hmq aracter sums, Ther

one obtaing the indicated result lmmtdldi‘ehj -
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(4.4) Lemma. Lot 4 ke unrarnified in B/F. For primes ?;-]i lying_over 4,

QEE}@F,Q as in (4.2), put
i

mii) = ord'vfg {u).
R

= x
For *p ot dividing f integrating aver REF 00 YE FJQ \ we have

I Tyel) W‘ T P,(3,,y) Iyl cbe oy =
=i 1__{}42{} ¢rm”t “Ng”jo“s X

g ED‘EEIJ I:!“."_\‘s"i:ld ﬂi mid)hm( U“_ PG‘ [H}’]S‘_ 35:] - 1(‘1-—?‘5‘ &_“EPE~5,_M]T-1:]3 -1 :

For 0 dividing . this integral is equal to
(NFo )% T Loy F INGIE® (1-r b33~ T,
Proof. Let T be a local pararneter at . We have
_ s fega
NP J':U D= %l’g WP[J:{E = ulNl_ﬂ Wil HJE 1).
Then, by (4.3), for " not dividing §, the integral over y is
(4.4 NG PING], =3¢ =By ™S (1-BpP oty =1 =
= NGl =® (1M~ (1 M~ gy~

times the sum

~ - 5+ r L
g‘ @ r‘?" 1]_[ s mLI)au [L‘ . —‘IH‘}J 3mb+._f’ﬁ[rl3'.1m|.-.1 [[N.})CN 1L|'|ﬂ ]tfl+1 ]!
where we use the ex plicit form of each “&"F as in (1.2.2). For fixed oed, the
inner sum is

(1—r" U‘p‘"' ) al““ Iplﬂlm - 4_}8 Wt e

= [l [Nfc‘* I‘si*r 1[1-r° ﬁm ~3s ]_.1{'1~t"dﬂ'izpa*Sq‘x['ﬂ'“lfi}—1.



n
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The first factor cancels with a factor in (4.4.10, glving the asserted result.
For 41 dividing s the arqument starting from (4.3) is even simpler.  We
use the explicit form (1.2.3) for the local Whittaker functions, and the fact

that 3d:ntahllm { again entails %LL{ prLq =l

The lmwmq three & propositions cc»rnplw’r aur prtz:liminarg.i exarnination of the
{Finite:——}:rrime:} y—factors L(f,5,B/F) o for our integral (notation as in (1.7)),
in the case that the local Whittaker functions are as in (1.2). This cornpletes

the proof of (1.10). We keep the notation of the previous part of this section,

=

(4.5) Proposition. Let Y be completely split in B, F. Let X inp ? let

T be a local pararneter at T?i, in BFZ’.IF_.IQ, T 3 local parameter at . Then in the

present case the local inteqgral

J '\/‘v’;-,o[.'!:fgsgnll 'C'ya(x) ¢ j°(><:';i’§} HSN(gE)"{P-i o d.lj d.g

i‘c":. F g X dividi '
ig, for «p not dividing f ,

_._— ‘. "'8. )F! [ N g : — : 3, 3 "'y".
V=plTORS) g Llmgone /7 A) (14 o 00,00 NP0 X

K 1=t FNpBXE) -0 EN®XE) Y1 - e ENpEXEY (- oo D 02X)” ]

Far dividing f, this local integral is
( n-,*fl-;- P D F ) (1t oo 0 X)X
N A F ) O ogeeo My

#* {1 —:{hpﬂ}tci 1!1 —{ ’-H}] G _1L1 o, [H {“‘(" 1



al

Proof. This follows very easily from the expression of [4.3) for the integral
over x and Yy obecrwrxq the normalization of q a5 in (4.2, and r‘cralhnq the
Factor of M qa?“ The integral is the difference of two gearngtric series.
Upon canc celling the comman factors (1- =04, 04, !H:p 237 in the rurnerator and

denorninator of the summed geornetric series, we ohtain the indicated result. &

(4.8) Proposition. Let 0 be inertial in B/F. Put X:H'p—s. Then for "

w0t dividing f y The local integral is
oty ~

W1 7600 gl Iy e ay o =

ra

S IS : =INO o 0 331 (4_p O g -] AVATS ]
= U=lmXE) 2. oo g (0 A™) (10t “Np3x3) (4 o =),
For ¢ dividing ' this local integral is

(f&lf\:{,jales_i_ : U F g (-0 N3

Proof. This is str*aightforward, Following similar ohservations as in the proof

(4.7) Propos1t10n. Let pd W 1@ where the residue class extension du;: ez of

}2’8 is bwo., Let X:{H:f)"s, and let My, M,y T be local parameters at Pl, P:, s

respectively. For 1 not dividing f, the local integral is
4 ) .

o

drl J‘ U :fl ru I ™ L{ L“ ”Jﬂ{ [qd)”jo 1 dse 11—1 :j



Far sn dividing f, this integral 1s

f'\* ID‘ ra f ) LH—H 0. Np g lx.‘"-“p‘-x U ‘-3 gt 1\4’1 -1

Proof. Sirilar to the two previous., y 4

(4.8) Proof of (1.9), ¥ inertial. For - inertial in B./F, from (4.5), the
Euler p-factor is (1-QIm)XE) times the expression
o (1ot P ™ (e ™ INeg20) Mot - ) +
’ -1ir 1 * =]t 2wyl sl =
+ By (1B N1 B g NP (f~e ) =

(1ot N ¥ H1-B NP3 (1 - ox N2 (1 - =BT N2 e - )

L..___J
.

Lu (=R NP2~ B, (1 Np®X3 (- g 2X)

The g¥pression inside the square brackets simplif‘ies to
. -
(0¢,-B)) X (1-NpPytrrhx®,

=0 that this ':‘xrnphhas to the expression of (1.9), using p —MU 1= p

‘-\

(4.9) Proof of (1.9), 9 partially split. MNow take ;}38:‘}91‘1@2, with the
residus class field extension Cegre» of P b»lnq The Euler « P factor is
(1—=J(TIXE) tirnes

2 ity

“‘*‘" (s lix

ese f1+m,ﬁ~lp K 1—ne e N0 X

% (10 BN Yy 2 411
» (1 rxlul:p HEH -y [Hp yage,



i1
Ll

This is a rational function PIX),7Q(X) of X, where the numeratar E and the
derominator O arg p::dqnc:rnials in X and we taks
GX) = (-0t FHPXB)(1-B BN 1 BN e Ht-B Aty
“ {4 1y -1 E‘- Wi
X Mg o gim) MN®X)

We want to show that (1-{cx 6:1804314)(4] divides the numerator (for each

m )

@), and that = H'I:!N:p ,141 divides the numerator. For notationsl ease,
replace C{id bg tx:ld(kp('IT],;*"’U‘J:{))”Q, Cx‘ed by &:E"t{.l('n']/"ﬂ‘{}), and X by
9 {4_{“.:[[”33}1.’3_ Then 1} and [N:f] disappear from this expression, and oy =1
After this change of variables, the above expression hecomes
Zgem L % D)1+ oo X3 (1o o X)
X (1-0¢ 2 (- Ex“l”l]",
1 3
and we want to show that [1—)(4), (1-x B ?(4), and [1—[32E XY divide the
rirnerator B of this rational expression, where we take denominator
@) = (1~ =X (1B PX) (1~ BX J1-pEXT) X
-.x- s e OV
¥ ﬂse@ (1-ex, e X)°.
First, substitute X=2%1 into this empression. It becomes

2 Hoyot, /D) Mt (o)) (-0 214 2)71)7=
8] P, 2 ; G { =
= AT +p) M Ty o O T (G G0 0e 1171,
1 e

It is easy to check that the sum is zero. Mext, substitute X=#i. The shave

£ f'i! gzsion becomes



a4

2 [lee e, /7 A ~ oy B Il e ee 1174 0 B 14 00 21717
) (s 172 1z 1 2

it oy ek 00, Lo

=R, B, Lo (&7)7 = 0.

To finish the proof in this case, by formal symmetry it suffices to show

that (1~ ‘.cm' 4] divides the nurnerator P’ Since this polqnomial ocours in the
denominators of 2 terms in the surn, it suffices to show that (1-o s \4} divides
(e, (¢ ~B N1+ &, %)/ (1-ex X2)( - X) +

+ [Bl,-"’(ﬁl—txll')(1+Blua.‘fﬁ)/(l—ﬁ KEN1-B,ex, ),

e
Let =ty 172
‘ :

=4

Hubshtutmg ‘\’—+oe —y this is
e ™ NIPAE i i ST B i
e (1o )., U By (= yx -B) +
i p,i[j11»51,»"'};),,-/‘(1_ﬁle_/"y‘c")r;mj—[u' Y~ =

- [ 27 _p)] [(—n Vru ‘*ﬁ + (—}fiﬁl:i'li—tﬂli’}"j_l] = B

Substituting g ; =i W, thiz is

o (L —iex Y0 T4 o 2 YRR~ ) (o ih +
+ [Zaltli[—lf.’ul/ YIS [1+B o i “J[li[—if)’ \{JD(B ~I:rf] 2
2 ]'\J/ fr\r -—‘_‘, ]] [[:'\{)-}-1;3(] 1(1,3 +-\’;I 1 f'\’;-}-lﬁj 1(10.- +'}J ] o [I,
By degres considerations, these must be all the factors of P'. From this we

have the assertion of (1.9) in the case that 1 is parn:xllq ph‘("

(4.10) Proof of (1.9), ¥ completely split. MNow take ¥ completely split

in B.F, not dividing f. The Euler Y—factor is (1-Y(m)XE) times



Li
L

q-f

TED

a Lot~ A1+ et o 00 Np P -0t et e g m N
K (-0t FNpEXENT (1-00 BN

XE (-0 BN ),

This is a rational function PO Q0 of X, where the numerator B and the
aenormdnator © are f:salynorr-,ialq in X, and > il
Q) = /

- ﬂcrsfi (1~ 0,00,

/
YN X T [1—:;@47{ )(1-PEhlg?

We want to show that (1-(o¢" J‘-!N?p‘-)(e‘l dw1des tm numerator P (for zach
TeE, amd for each 1), and that IiUN p“‘(d' | divides the numerator. #s in
he previous c

the previous case, replace each ui“ by Dii'j(‘}'(m 7 [N"ij a
A () ;

{ 41[ r“ {H‘}]E{] 17z

d X by

, 50 that op;=1, and { and ij disappear from the simplified
rational expression P'/Q,

First, we show that (1-X") divides the numerator P’ of this rational

gxpression. For a rational expression R in { By Bl} let T[R] denote the “trace’
Rl =5 o

Sz tituting =21, the expression above becomes

3 C.
=4

T[,c 00U 000 A -0 B)(1- 0, B) (1~ B (1 — e ¢ J‘]

=(toe e o)/ (oo, )] = 0.
Sub tituting X=%i, this expression hecarne:

’
Tl ot ot (1 e o0, )) /(1 1o B o A1+ e B (o

o S L~ - ...1 o -i “
. ! + f e + 5 i
L -.1 i Fl]_![‘}:x" ﬁ,‘,‘ i r.-{:_:{ EIE;[ / 1 i_ .’_"aJ D s .

r:
l._..._l



EH’ fortnal 5}.{rrxr‘rau_“-.tr5, to show that the B factors Ei*[f:*fid}afia) i he
numerator, it suffices to show that (1~0¢=XE) divides the rational expression
i (e o . 2 Bumn | P
I @L\-E,j_.. J[l+utzu7)1 =0 PO S o S8y
K-t o, X1 71)°,

where QI:@&“?B‘ with @ as in (4.1). For a rational expression R in 1oy, Py,

fret

et
5[R] = Zu:-‘E’If sgn(o) k7,

where sgn(O‘ J is the sign of the pertrutation . MNote that for all oed,

o

& =sgn(o) A, By glementary algebra one sees that, to show that l:il—;:.s:.'leﬁia'l

divides the above expression, it suffices to show that

i . .ﬁ o + g 7 2 "-_/.-. e 2,-""-\1 a » E 2 IE . +‘,._-'Y‘, o :,'~. —
i b[_x.gug(l_c.eug,f 2./ (1 ’Xe 7 R EN - B &, E)(1( L.EU.E:,_J]

B B - e
= I3 o o S oy d_. &= Cops 2 14+ =y 1 b
%, S[t><EL.3[L)<1 Tix,0.) %, J( &, ")(11( L\EL(BJH

= —-ar o E 2 E. P 5 5 E - = a E a , . <= - 3 "‘1 .
=& Tl E-o S E -, Mox E-wx, Yo =P, )HUEII!L&[*ME“SJ J] pd

w oo ov (v & 2Y( o :

K Sloe, (o Bro %" =B, B0 BB 21 (- Bt NI~z B N1 (~f B 1]
The arqument of 3 in the last line is a polynomial of the farm

1 o +H e 4+H 0!y +HD, int X, Tao show that this value of 8 is zero we must

show that ea 13 }

We have



Third,

slA,] = slogoe (15~ S0 N0 BN~ 0] =

= =Bf=g ¢*+'~+ 41— o0 pu_ryapﬂ::

= g 0%~ B2 B2 g o B “Eieﬁeﬁoiofaﬁqiﬁg%*B}ﬁfﬁﬂ &

= S[Bp,la+p2+p, S+ (B4 o BB+ s HeB]]

% 3o 2o BB+ B 24 2~ (B B (3B B, + Bt + 00 B,)]

= 2ex,

-'2+r.xee3+;383,1 SIB,) + (x3+p2s[p.] + 2l +B 15 e ]

+
t §[-8+ex, +ax,2+p,24+p.2] + 8-, %0x,2~00, 5B 2—2B, 28 2] = q,

(In the latter grouping of terms, its is very easy to see that each indicated

gvaluation of 3 is zero). Finally,

= oo~y -B -2 B+ Bty 0 BB, 2P B =
ey [[:_‘[_-
+ S[D-:Edr,aia-—ﬁn:-l*bea—?-p I+ (B0, +o0,BIER R+ o St fl] =

TPIEHP B+ o B B2 B+ B+ )]

2
~

= E:[r_':c:&+ je:“‘"‘sﬂa} (1] + n_*_wrp Syl 3] + :;;;,33+“'.;°13[x:-,<2]
t S[a+oc B+o 2R 2420,8] + 9 Ei\{_:,&!\_::e'f-BEE!X:,‘E‘Fik:EE:‘é] =



v
Ly}

ﬁgam, the last grouping of terms allows easy verification that this sum of
values of § is indesd zero,

Altagether, we have checked that the numerator B has the asserted
Factors. By degree considerations, these must he all factors of the nurnerator.

e

Thus, we abtain the cornpletely split case of (1.9)., /7

they do, though presurnably there is some general purely al ehraic identity of
4 9 f 4 4 puneLy aig

which these are special Cases.,



o
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6. The Archimedean Integral (holomorphic case)

Mow we consider the Euler factors at infinite primes in the case of

}'sw:alm'ﬁc;r*phic automc:rphic: forms.

Proof (of 1.11). Let i be a real prime of F, with Pl, PE" PB real primes of
& lying over 0, and suppose that the local Whittaker functions are of the Form
of (1.2.4), i.c.,

’%.n"fsfgilf_g,‘l] = g% expl~2mfyly,
where =1, 2 depends only on 41, and not on R (Le., the Pueight” is 1),

Wis il E::-:Frlili:iﬂl.{ cormpute the integral indicated in (1.7), as was done in the
previous section for finite primes. We are supposing that the character X is

e N
rivial o A
trivial on F-ﬂ"

First, we may choose representatives

(’1 x)(g n)(g o)
o tho 1A\n g?

for TlﬂF_,k{,}"‘-n..,F‘(F #.,,'] (az indicated in (1.7)) so that (x,_g,g:'] satisfy

=y Yo ) EBRIF X = (FXIX(F ) X(F7,
o
EF



g}.;,};ﬂv{g!gﬂ} I'y "pr (y; 211 = |315 wf ke wp(—_mljg—z-g ’E+L! 2)),

since these local Whittsker functions are invariant under the center of

GLZ,BRF ).

fs in the previous section (see (4.1)), we need an e:-:plix:it e:v:f:tr‘eza:sicm for
the function

Pl = vo(Bul/ DY 0 5],

=t

or its Fourier transform, and for the mteqr‘al in 5 MNow far _gEEZi’iF 3;,} of

determinant 1, with
o= ( a b )
cod

(oo ,p 5] = !detf_ci—*—d)‘-—asde’t[ci-}-c{]—C{n:iet[:-—ic—kd]rx.

we have

T{(
bfj the usual sort of calculation (see (1.5)).
Let BZBU{:-:;"’B)S@,;I). As in the proof of (4.2), we can left multiply g
hg elements of P to normalize the lower half (¢ d) of g to the form

._1 -~
h S 4 ®y 00

000 -y g7 0

Then
detlci+d) = ':3152533_1 [;<+i[313+ HEE+HBE}]'

Thus,



T

Pl =

{Hif‘j'a L-.—-l[.’. ‘-+J L+H 2] L‘df

lmlnﬁ the obvicus ag::pr*ofzxriate choice of branch Thus’ ‘31‘t':":.]€ﬂ'!9.“, the integr-al

we wish to evaluate, which will give the Euler P factor in this case, is
1 ACET I

Iy o)™ Forpl -l 2y 2+

3 Vs
I S WD
.".\'.

oS 1131“+L13“+L{; 3=
* {.}H_i,:!_jle_i_HEE,;.HSE‘]]“-S'*‘W.’ g expl2rtix) [Ny E!H dy, 'y d'y e,
where <ER with usual Lebesgue measure, yeR™, and d L=y

Lh" Replacing
‘h .;5 Hl -0 for each i, this may be written 3

(0T () e:-:p(—8n’(31+52+53.]:3[1"»:+iqi+ij 1™
f—1.-+h 'i +l_{ ]] —sT X zxp['aﬂ'ix:] d'lj iy ff%lb

This may be evaluated by standard rmethods, as

ot ..»‘-: o

followes,
From the identity (for Re(s)>0)

g -2y +ed) 1 4 = @RI

__ e

122 CAn u»n,faut» the Fourier transforms (bq Fourier inversion, for Rels)
S

Ficies tﬂl 1:1!‘5& far given K=ewl:

dr‘{E‘ es:fnlf——meq] [”“'*'H]—S_C"fdx o

-

L

= g (20 Ts+0d ™ eplemyn(-p*t %! (nen)

3

[ q::-uj;
J-:E a:h:f:x[:—Eﬂ'i:-:'r‘!:l {~i:-:+tj] \"+wdf =
SIL.T[,’E Y M- e p[ —2TTL T:H"—wai [:TII}D:I

(rp=0).
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By the identrty (F,f ) =F i Y llr:rhca'rmq CONvoIUTION), we have

l{El e chm 1 [+ f_[ +L{d+ti, i L—1x+[Jl+3ﬂ+f “']_5+C’5d;.; =

=
ot

Tlst+o) M- w

£l

= {(2m)

e J“'D_:: n evp(~2r(1+ Eq)[ Y+ Y, + 5:3],] T]S_D(—l[1+ I’}] st~ dq.

Therefore, the shove integral is (integrating from 0 to CO in zach varishle)

_.IE::-:fJf —4m(1+ 1y, + Yot !.;933?'[5_'X~1E 1+ ‘!‘ps + r:x—'lm.!d- Yl 'y,
-~ [ﬁe-n',‘.iasf‘(s+:xﬁl‘1ﬂ=—ru‘114n‘s”*’"d°+Jﬂ’q+w 1% ¥
- y—2s—ot 2, 5——1
.-)\s ._rij_:::rl [1+qj rl dq-
It is well-known that
B % goBie v s e G s
"SE"'“':"I U+ TN = Tla+ D0 b~a~1),/T(k).
Hence, the integral aver N abave is
[Ms—ods+3:-2),/ T(2s+2:-2).
Therefore, altogether, this local integral is

1ob—4s—Brx, ‘?—~—q0€ -
(=

P
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7. Special Values (holomorphic case)

Mow we can dir'E:ctl_q dernonstrate our simple case of the spec cial value

result, as a corollary of the integral representation, and of the arithrmetic of

Y
HA Y,
Py
o
S

nsteln series and Hilbert modular forms. (The basic results regqarding the

latter are to be found in [SH2]),

Proof of (1.12). MNow we restrict our attention to the case that F is tx:u‘rallj
real of degree d over @, B is a product of totally real number fields, and the
a:.itr::mr.nrphin: farm f iz (an adelic) f'u::lr::morf::hic: EiﬁE‘t‘lDUSPFDF‘fTi of level one of

Pweight” (2%, ..., 2K) with trivial central character and trivial Finite—prime

ot

~

r"ig'rst representation, [Hgain, the mast general case of holomor'phic: eigenforms
"equires considerable further effort, and involves several rather subtle issy ues
not r:!i.“g:ctla connected with the present considerations). In our present adelic
setting, it is rmost econornical to use the terminology and results of [Hi] and
[H2] re Ljammg the arithmetic of aummnrphlr forms, Thougn W llq using &
wery special case of the results of these papers. Also see [T] ru:-garding SOME
arithrmetic properties of certain level-one Fisenstein series, IF it wers the
case that the rings of Integers of F and B had class nurnber one, then the more

= |

ciazsical notions of .:mthmrnrl“tq via literal Foumur oefficients would suffice

for part of this argurnent (as in [G3]).

Let



X = Z(MEF) G, KE,

X = Z(AEFING AL/ KK
be the twa (level-one pleces of) the associated Shirmura varieties. Derote bg
1X—>1 the alyehraic rnarphism from X to X0 induced bg the imbedding of
groups. Both X and X7 have models over @, and this can be arranged so that 1
is defined over @. Let Elg,2K] denote the Eisenstein series of [1.5) in this
case, with =, trivial Py F=1, and weight 2 (as in (L)), It is known {ses
[HI1D, that (with suitable chaice of the @ —structure on X') this Eisenstein

series is ') —arithmetic”, i.e., is a section of a line bundle on X° defired over

. Further, Ee1 is a glr_\bal section of a line hundle w on X defined over @, As

in the classical treatment in [Sh2], the space of Vweight =2k, ...2x0"
cz.JsitJFl:xr*ms on X is a Q—subspa:::gz of the space of glc:’:nal sections of 0 [and this
latter space of E{_lobal sections is defined over @, as well),

Let | lpl i be an or*thngorial hasis far the space of usme‘mw of wmqh‘c ¥ an
X, consisting of eigenfunctions for the Hecke . algebra. The action of the Hecke
ale j»:f‘; ra on the space of weight % CII.ISPFDI"!T\S is defined over O, serni—simpls,
closed under ad joints, ard is commutative, as in the most classical case. Also
as in the most classical case, these 21gon’run- tions are qlohal gctions of @
defined over @, the al gehraic closure of @. Let 1§ be the projection [with
respect 1o the action of the Hecke alge:bra} of Eet to the space of cuspforms of
weight . By the frevious remarks, nis still a g:_{l:jha section of m defined over

W. Therefore, put ting ?]—%_,, Gy, we rmust have o *-’-ii_;ki ,‘r'{}-{{pi,gpi}", ard
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£, Further, le Tting tp-——\*p denote the action of Aw{C, Q) on sections of

0y we nave

g

T T R . R o I o L
LGP == = 25 ¢
Bince {in thizs case) the Hecke 3 3 ghra cormrnutes with the action of Aut(T, S0,

the Py are again [or"cl'n:«_qonalj eigenfunctions fand are cuspforms!. Thus,

r}*l,r] “-Pl'q’" & :C‘: "?1 ’r]f ‘(Pl !Pl >eq.

wq

his finishes the dermonstration of our simple e:-camplg-: of the specia al—value
phanarﬁzrlr_w‘l. The »:»:xplir:.it calculation of the archimedean factor gives the second

statement of the theorem (1.12). 4

Remarks. In the mare gereral situation, one must refer to somewhat more
delicate r.a’tlnnahtq properties of the spaces of newforms with characters, and
the con Jugation result involves con jugation of the characters, and Eisenstein
series a5 well. Further, to chtain the other expected special values, one needs
the rmuch more delicate arithmetic properties of the Eisenstein series at other

specializations of the paramneter s, for example, as in [5h3], [3hd].



Py
L
| S—

[&1]

[G2]

,......1
boxl
X

et

[GGF]

[ 41
o

P. Delighe, “Valeurs de fonctions L et pertodes dinteqrales”, Broc. Sums.

Pure Math., 33, val. I, . P 313-342, AMS, Providence, 1979,

F.B. Garrett, “Pullbacks of Eisenstein seriss: Applications”, in Proc.

nmur‘hx Jump. on f‘fU‘tDH‘»uPFIPM‘ Forms in Several Variables, at Katata,

Birkhauser, Boston, 1354,

BB, Garrett, !’DE‘-lI‘-Cil'ﬁFlDEi‘tiClﬂ of Eisenstein series: Fankin triple product

L—functions”, to sppear in fAnnals of Math,

F.B. Garrett, "Structure and arithmetic of Bi.l't!:!l"l'll:!f"r_li'iic Fortns on bounded

syrnmetric domains, T and 117, Arner. J. Math, 105 (1383), fp-

11711193, and Amer J. Math, 105 (1353, pp. 1133-1216.

5. Gelbart, ﬂutorraorphic Fortns on Adele Gmulps, Ann. of Math, Studies

no. 83, Princeton Univ. Press, Princeton, 1975.

LM, Gelfand, M.I. Graev, and 1.1 Piatetskii—Shapira, Represertation

Theary_and Autornorphic Functions, W.E. Saunders, F'%'iiladelpt'xia, 1364,

M. Harris, “Eizenstein series on Shirmura Yarieties”, finn. of Math, 119

(13841, pp. 59-94.



M=

[PR1]

ym—
)
4]

hoveesd

[
.

L Harveis, 7 Arithmetic veotor bundles on Shirrs varistizs', in Proo,

Tanigucm Syrri. o Hutomo r‘ni ic Forms in Several Yarisbles”, Birkhauser

Hoston, 1984, (Part I to 4 p{]garj],

i

H. Jacouet and R.P. Langlands, Automorphic Foarms on GLIE], Springer

scture Motes vol, 114, Springer—Verlag, Mew York, 1970,

D,l

R.P. Langlands, On the Functional Equations Satisfied by Fisenstein Series,

-tf-“ln ger L Lecture Motes no. 544, fxr’mqur‘—- % Prldq 197E.

I.I.Piatxztsli.ii—-E‘-hapirs:l and 5. Rallis, "Rankin integral reprezentations of

L—functions for classical qr‘cu.lps”, in Proc. Durharn Conference on Modular

Forrns, Ellis—Horwood, Chichester, 1385,

F. Shahidi, "On certain L—functions”, Armer. J. Math. 102 (13800, pe.

.

F. Shahidi, *Functional eguation satisfied 'bn\.}x certain L-functions”, f.u'rfm



i
i a}

4L i i

[2h1] @, Shirura, Introduction to the Arithmetio Theory of Autornorphic

-Ul"ﬂ Tlx:s, = F’ l_l_ f’f 'tr‘i ‘-3130, j' ;_ 13 Dnaranarnd _“ u-'tlf?l Ehl-" U"‘ln'Bt!'d" Ilm—..

oo il v, P SIS ;1 N
“:«?id] ta, Shirmura, O some a

=

nodular forms in one and

several variables”, Ann. of Math, 102 (1975), pp. 491-515.

e At PR ] 5, R IR Tas [ .
L,‘ Eiserstein s iEs, Duke ., Math, 50 £1933], :t.iF.

rl-.l
tohd! @, Shimura,

e
2 B

series , Duke J. M

r . - - - )
[T]  L.=C. Tzao, "The ratio nality of the Fourier o

of certain

~isenstein series on tube domains”, Comp. Math, 32 (1976), pp. 225-231



