
(June 30, 2018)

Self-adjoint operators on automorphic forms

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ g̃arrett/

Informal report [1] on joint work with E. Bombieri. Details will appear elsewhere.

1. Perspective and context
2. Eisenstein-Sobolev spaces, spectral expansions of distributions
3. Example: solving differential equations in automorphic forms
4. Meromorphic continuations of solutions of differential equations
5. Friedrichs’ self-adjoint extensions of restrictions of Laplacians
6. Constant-term and Heegner distributions
7. Exotic eigenfunction expansions
8. Example: the 94% limitation
9. Example: spacing of zeros
10. Technical notes about unbounded self-adjoint operators

We give a rigorous setting allowing precise statements and proofs illustrated by the following
simple examples:

• Extrapolating and refining comments at the end of [CdV 1983]: there is a Hilbert space
E0 of automorphic forms such that, given a complex quadratic field k = Q(

√
d), there is a

natural unbounded operator ∆̃d on E0, an extension of a restriction of the invariant Laplacian
∆ on SL2(Z)\H, whose discrete spectrum, if any, is of the form λs = s(s− 1) for ζk(s) = 0.

• No low-hanging fruit: at most 94% of the zeros s of ζ(s) appear as eigenvalues s(s − 1)
in the spectrum of ∆̃d. The proof uses exotic eigenfunction expansions in the Lax-Phillips
space of pseudo-cuspforms (below), the relatively regular behavior of arg ζ(s) on <(s) = 1,
and Montgomery’s pair correlation conjecture.

• Spacing of zeros. For complex quadratic fields k = Q(
√
d) with d < 0, half the on-line

zeros wo of

J(w) =
h2
d

−λw · 〈1, 1〉
+

1

4πi

∫
( 1
2

)

∣∣∣ ζk(s)
ζ(2s)

∣∣∣2 − ∣∣∣ ζk(w)

ζ(2w)

∣∣∣2 ds

λs − λw

(depending on sign of derivative) repel upward the on-line zeros so of ζk(s), in the sense that,
given ε > 0, there is sufficiently large T such that above a zero wo of J(w) with =(wo) ≥ T

the next on-line zero so of ζk(s) must satisfy

=(so)−=(wo) ≥ (1
2
− ε) · average spacing ≥ (1

2
− ε) · π

log T

[1] This is an informal, more detailed version of a talk given in Bristol, UK on June 4, 2018, in the conference

Perspectives on the Riemann Hypothesis, hosted by the Heilbronn Institute, organized by B. Conrey, J. Keating, P.

Sarnak, and A. Wiles. My talk was the first half of a two-part talk together with E. Bombieri concerning our on-going

joint work. My talk and these notes primarily address analytical details. Bombieri’s talk and notes give more of the

number theory details. A version of this document is also at http://www.math.umn.edu/ g̃arrett/m/v/bristol 2018.pdf
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1. Perspective and context

As a Diplomarbeit, [Haas 1977] attempted a numerical determination of the eigenvalues
of the invariant Laplacian ∆ = y2( ∂2

∂x2
+ ∂2

∂y2
) on Γ\H with Γ = SL2(Z), parametrizing the

eigenvalues as λs = s(s−1). A copy of the list of spectral parameters s was sent to A. Terras
in San Diego in early 1979. She showed the list to H. Stark and D. Hejhal. [2] Terras noted
to Hejhal that Stark had noticed the lowest zero of ζ(s) in the list, and that they (Terras and
Stark) had requested a copy of the Diplomarbeit, but only an empty envelope arrived. Hejhal
compared the list to a list of zeros of L-functions in the Scripps Oceanographic Library, and
noticed coincidences with zeros of L(s, χ−3), with the quadratic character of conductor 3.

Of course, if s(s − 1) is real and non-positive, either <(s) = 1
2

or s ∈ [0, 1]. To show that
s(s− 1) is real an non-positive, it suffices to show that it is an eigenvalue of a non-positive,
self-adjoint operator on a Hilbert space (clarifications below). Thus, to prove the Riemann
Hypothesis it would suffice (for example) so show that there is a non-positive self-adjoint
operator T on some Hilbert space so that for every zero s of ζ(s), λs = s(s−1) is an eigenvalue
of T . [3] Even though a numerical coincidence would not explain causality, exposure of an
apparent fact would be provocative.

Naturally, Hejhal attempted to reproduce Haas’ results, approximately confirmed most of
the spectral parameter values, but found that the zeros of ζ(s) and L(s, χ−3) were exactly
the discrepancy between his list and Haas’. In May 1979, Hejhal did acquire a copy of the
Diplomarbeit, and realized that, in terms of numerical procedures, Haas had misapplied the
Henrici collocation method [Fox-Henrici-Moler 1967]. In effect, Haas had solved equations
(∆−λs)u = A · δafc

ω with varying constants, where ω = e2πi/3, and δafc
zo is the SL2(Z)-periodic

automorphic Dirac δ at zo. In particular, for A 6= 0, this is not a homogeneous equation, so
it does not follow that λs ∈ R.

Several things were known about solutions us to such equations, being instances of auto-
morphic Green’s functions, then recently investigated in [Elstrodt 1973], [Neunhöffer 1973],
[Fay 1979], and others. For example, it was known that the constant term of us is eventually
(for large y),

cPus(iy) =

∫ 1

0

us(x+ iy) dx =
y1−sEs(ω)

2s− 1

[2] In addition to information about this episode from [Hejhal 1981], my Minnesota colleague D. Hejhal gave me

further details in [Hejhal 2015].

[3] Such ideas are sometimes refered to as the Polya-Hilbert conjecture. See [Odlyzko 1981/2].
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Also, it had been long known that

Es(ω) =
(√3

2

)s/2
· ζ(s)L(s, χ−3)

ζ(2s)

While these connections were and are provocative, there is no obvious, intuitive bridge to
eigenvalue equations for self-adjoint operators.

Yet there was precedent for a seemingly magical conversion of certain inhomogeneous
equations (∆−λs)u = θ to homogeneous equations (∆̃θ−λs)u = 0 for self-adjoint operators
∆̃θ, with the same λs and the same u, in [Lax-Phillips 1976] and [CdV 1981]. Namely, for
a > 1, let

L2
a(Γ\H) = {f ∈ L2(Γ\H) : cPf(iy) = 0 for y ≥ a}

be the space of pseudo-cuspforms with cut-off height a,

∆a = ∆
∣∣∣
C∞c (Γ\H)∩L2

a(Γ\H)

and ηa the distribution defined by ηaf = cPf(ia). Then the Friedrichs self-adjoint extension
∆̃a of ∆a (described in the sequel) is partly characterized by

∆̃au = f ⇐⇒ ∆u = f + b · ηa and ηau = 0 with some constant b

Implicit in this is that u is in a global automorphic Sobolev space

H1(Γ\H) = completion of C∞c (Γ\H) with respect to |f |2H1 = 〈(1−∆)f, f〉L2

Thus, [4]

(∆̃a − λw)u = 0 ⇐⇒ (∆− λw)u = b · ηa and ηau = 0 with some constant b

That is, the inhomogeneous equation (∆− λw)u = ηa with u ∈ L2
a(Γ\H) is converted into a

homogeneous equation (∆̃a − λw)u = 0, with an additional boundary condition ηau = 0. If
the differential equation (∆−λw)u = ηa holds, then one finds (see below) that u ∈ H1(Γ\H).

Among other things, [Lax-Phillips 1976] essentially showed that the space of pseudo-
cuspforms L2

a(Γ\H) decomposes discretely for ∆̃a, by proving the Rellich-type lemma that
H1
a → L2

a is compact, where the source is given the finer H1 topology. (The inverse
(1 − ∆̃a)

−1 : L2 → H1 is continuous when H1 has its finer topology.) Naturally, in
the perception of many number theorists, as opposed to that of expert analysts, there
are many non-trivial details omitted. On the face of it, this discreteness would seem to

[4] The space L2
a can be characterizaed as the orthogonal complement to the space Θ of pseudo-Eisenstein series

Ψϕ(z) =
∑

Γ∞\Γ ϕ(= γz) with ϕ ∈ C∞c (a,∞). One can show that the closure Θ of this space in H−1 = (H1)∗

includes the functional ηa, and that on H1 ∩ L2
a the only non-trivial functional induced by Θ is ηa, up to constants.
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generalize earlier arguments that the space of (genuine) cuspforms decomposes discretely for
∆. However, some work must be done to show that genuine cuspforms are in the H1-closure
of C∞c (Γ\H)∩L2

a(Γ\H). Since there are apparently no test-function cuspforms except 0, that
this decomposition extends that of genuine cuspforms is not trivial.

The new proof of the meromorphic continuation of Eisenstein series for SL2(Z) in [CdV 1981]
made essential use of the Lax-Phillips discretization, as well as some details concerning the
distributional equation (∆− λw)u = ηa as above. Since this meromorphic continuation was
already known by many more prosaic means, the conclusion was not doubted. But the proof
mechanism itself was difficult to understand for many number theorists.

In particular, even granting the non-trivial point that genuine cuspforms are indeed
eigenfunctions for the pseudo-Laplacian ∆̃a, it is extremely unclear how any part of the
continuous spectrum in L2(Γ\H), expressible as wave packets

f =
1

4πi

∫
( 1
2

)

〈f, Es〉 · Es ds (in an L2 sense)

in terms of Eisenstein series
Es(z) =

∑
γ∈Γ∞\Γ

(= γz)s

can be discretized. And there are the incidental issues about rigorous interpretation of the
pairings 〈f, Es〉 since Es is not in L2, analogous to technical complications with Fourier
transform on L2(R).

Lax-Phillips had already made the explicit point that the genuine eigenfunctions for ∆̃a

not among cuspforms, with eigenvalues λw < −1/4, are exactly the truncated Eisenstein
series ∧aEsj with asj + csja

1−sj = 0, where as + csa
1−s is the constant term of Es, with

cs = ξ(2s − 1)/ξ(2s), where ξ(s) = π−s/2Γ(s/2) ζ(s) is the completed zeta function.
Generations of number theorists have wondered how these truncations, obviously not smooth
since their constant terms are not smooth, could be eigenfunctions for an elliptic operator
such as ∆, and, presumably, ∆̃a.

[5] For that matter, if a function with discontinuous
derivative could be an eigenfunction for such an operator, why not a discontinuous function?
Thus, why not every truncated Eisenstein series ∧aEs? And this is obviously ridiculous. But
perhaps this seeming paradox was not on anyone’s front burner, both because sufficiently
expert analysts did not see a problem, and because the number-theoretic consequences were
known for other reasons. Unfortunately, the perceived improbability of these details led
many people to rationalize that the whole argument was only a heuristic, and could not
conceivably be made into a genuine proof.

[5] This author recalls intense and apparently inconclusive discussions at Stanford c. 1980 between A. Selberg and

P. Cohen about this issue. P. Sarnak was also in the room. The non-smoothness of eigenfunctions issue plagued me

terribly until about 2011, when by good fortune reflection on (global) automorphic Sobolev spaces clarified aspects

of Friedrichs’ self-adjoint extensions.

4



Paul Garrett: Self-adjoint operators on automorphic forms (June 30, 2018)

In fact, ∆̃a is not an elliptic operator. It is a subtly different thing, in that requiring
∆u = f + c · ηa for some constant c, and ηau = 0, is a differential equation with boundary
condition. This is precisely analogous to Sturm-Liouville problems (∆ − λ)u = 0 on [a, b]
with boundary conditions, wherein the differential operator condition holds only in the
interior. At the endpoints, boundary conditions such as Dirichlet’s u(a) = 0 = u(b) make
differentiability of eigenfunctions impossible a significant fraction of the time: on [0, 2π],
the eigenfunctions for the boundary-value problem are sin(nx/2) with integer n. For odd
n, although these functions have one-sided derivatives at the endpoints, they cannot be
smoothly extrapolated as either periodic functions or as 0 outside [0, 2π]. This is not a
paradox, because the Friedrichs extension ∆̃ can be distributionally characterized on [0, 2π]
by

∆̃u = f ⇐⇒ ∆u = f + a · δ0 + b · δ2π and δ0u = 0 = δ2πu

That is, the non-smoothness of these exotic eigenfunctions, producing extra distributional
terms, is evidently ignored by the Friedrichs extension of the restriction of ∆ to the
simultaneous kernel of δ0 and δ2π on the Sobolev space H1(R//2πZ).

In the case of truncated Eisenstein series ∧aEsj with ηz(∧aEsj) = asj + csja
1−sj = 0, in fact

∧sEsj ∈ H1, and

(∆− λsj)(∧aEsj) = constant · ηa
with constant depending on sj. This fits into the distributional characterization of a
Friedrichs extension. The non-smoothness is not a problem: being in H1 is sufficient.

There is a technical obstacle to application of the previous ideas to homogenize the
inhomogeneous equation (∆ − λw)u = δafc

ω . To explain the issue, we need the spectral
characterization of the (global automorphic) Sobolev spaces Hr(Γ\H): this Hilbert space is
the completion of C∞c (Γ\H) with respect to the rth Sobolev norm (squared)

|f |2Hr =
∑
F

|〈f, F 〉|2 · (1 + |λsF |)r +
|〈f, 1〉|2

〈1, 1〉
+

1

4πi

∫
( 1
2

)

|〈f, Es〉|2 · (1 + |λs|)r ds

where F runs over an orthonormal basis of cuspforms. Let

H∞ =
⋂
r

Hr = lim
r
Hr and H−∞ =

⋃
r

Hr = colimrH
r

An extension of Plancherel shows that Hr and H−r are paired as mutual duals by [6]

〈f, u〉 =
∑
F

〈f, F 〉 · 〈u, F 〉+
〈f, 1〉 · 〈u, 1〉
〈1, 1〉

+
1

4πi

∫
( 1
2

)

〈f, Es〉 · 〈u,Es〉 ds

[6] This complex-hermitian pairing can also be adjusted to be complex bilinear, if desired, by using pointwise complex

conjugation.
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This equality holds literally at first for f, u ∈ C∞c (Γ\H), and then extending by continuity.
The Friedrichs extension of restriction to the kernel of a distribution θ requires that θ ∈ H−1,
but a pre-trace formula computation shows that δafc

ω is not in the (global automorphic)
Sobolev space H−1 = (H1)∗, but only in H−1−ε for every ε > 0. The same is true in
Euclidean spaces, already for local reasons: on Rn, a Dirac δ is in H−

n
2
−ε for all ε > 0, but

is not in H−
n
2 .

To overcome this technical obstacle, at the very end of [CdV 1982/3] it is suggested to
consider the restriction θ of δafc

ω to a smaller Hilbert space of automorphic forms, excluding
cuspforms. Modifying slightly the literal assertion there, as an eigenfunction expansion
converging at least in H−∞,

θ =
〈θ, 1〉 · 1
〈1, 1〉

+
1

4πi

∫
( 1
2

)

〈θ, Es〉 · Es ds

and

|θ|2Hr =
|〈θ, 1〉|2

〈1, 1〉
+

1

4πi

∫
( 1
2

)

|〈θ, Es〉|2 · (1 + |λs|)r ds

The restricted version θ of δafc
ω has the same value on Es. Since 〈θ, Es〉 = ζ(1 − s)L(1 −

s, χ−3)/ζ(2−2s), the second-moment bound for ζ(s) from [Hardy-Littlewood 1918], and the
convexity bound for L(s, χ−3), show that the Hr-norm of θ is certainly finite for r ≤ −1.

That is, let E∞c be the collection of pseudo-Eisenstein series

Ψϕ(z) =
∑

γ∈Γ∞\Γ

ϕ(= γz)

with ϕ ∈ C∞c (0,∞), and Er be the completion of E∞c with respect to the Hr norm. Let ∆θ

be the restriction of ∆ to the kernel of θ on E∞c , and ∆̃θ its Friedrichs extension. Then, for
u ∈ E1,

(∆− λw)u = c · θ for some constant c, and θ(u) = 0 ⇐⇒ (∆̃θ − λw)u = 0

This successfully replaces the inhomogeneous equation with a homogeneous one, at the cost
of adding the boundary condition θ(u) = 0.

Using the spectral expansion of θ, at least in <(w) > 1
2

we can solve the equation
(∆− λw)u = θ by division:

uw =
〈θ, 1〉 · 1

(λ1 − λw) · 〈1, 1〉
+

1

4πi

∫
( 1
2

)

〈θ, Es〉 · Es
ds

λs − λw
(converging in H1)

In that region, uw is an H1-valued function of w, and

θ(uw) =
〈θ, 1〉2

(λ1 − λw) · 〈1, 1〉
+

1

4πi

∫
( 1
2

)

|〈θ, Es〉|2
ds

λs − λw
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Of course, in =(w) > 1
2

and <(w) 6= 0, necessarily θ(uw) 6= 0, because if it were to vanish

then λw = w(w − 1) would be an eigenvalue of the self-adjoint ∆̃θ. If we are deceived by
the apparent symmetry under w → 1 − w of the integral in the expression for θ(uw), we
would think that the only possible zeros of the holomorphic function w → θ(uw) can be on
<(w) = 1

2
or on [0, 1]. Thus, we would anticipate that ∆̃θ has many eigenvalues, possibly

suggesting a way to show that many zeros of ζ(s) are on-line, asymptotically.

However, the apparent symmetry of the integral under w → 1 − w is illusory (see below).
This possibly counter-intuitive fact is akin to the more elementary fact that the Cauchy
integral

F (w) =
1

2πi

∫
γ

f(z)

z − w
dw

over a circle γ does give a holomorphic function F both inside and outside the circle, but that
the function outside is 0, and this is not generally the analytic continuation of the function
inside the circle, namely f(w). Although w → uw does meromorphically continue to w ∈ C,
the meromorphic continuation lies only in a larger topological vector space of functions on
Γ\H, not lying inside H−∞. In particular, θ(uw) = 0 in <(w) < 1

2
does not give an eigenvalue

λw for ∆̃θ unless also uw ∈ H1, which occurs only at isolated points (see below).

In addition to [Hejhal 1981], [Cartier 1980/81] is a then-contemporary account of the
provocative nature of the situation, explaining something of both why the Riemann
Hypothesis might have been proven, but was not. Well-grounded treatment of the analytic
prerequisites for the above is a significant part of the point of [Garrett 2018].

2. Eisenstein-Sobolev spaces, spectral expansions of distributions

The standard L2(Γ\H) spectral expansion is

f =
∑
F

〈f, F 〉 · F + 〈f, uo〉 · uo +
1

4πi

∫
( 1
2

)

Ef(s) · Es ds (L2-sense equality)

where F runs over an orthonormal basis of cuspforms, uo is a suitable constant, and E(f) is
extended by L2 isometry from Ef(s) =

∫
Γ\H f · E1−s for f ∈ C∞c (Γ\H) = C∞c (Γ\G)K with

G = SL2(R) and K = SO(2,R). There is a Plancherel theorem:

|f |2L2 =
∑
F

|〈f, F 〉|2 + |〈f, uo〉|2 +
1

4πi

∫
( 1
2

)

|E(f)|2 ds

Let E∞c be the space of pseudo-Eisenstein series

Ψϕ(z) =
∑

γ∈Γ∞\Γ

ϕ(=(γz)) ∈ C∞c (Γ\H)
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with test-function data ϕ ∈ C∞(0,∞).

{L2 cuspforms}⊥ = L2 closure E0 of E∞c

For r ∈ R, the (global) Eisenstein-Sobolev space Er is the completion of E∞c with respect to
the Er-norm

|f |2Er = (1 + |λ1|)r · |〈f, uo〉|2 +
1

4πi

∫
( 1
2

)

(1 + |λs|)r · |Ef(s)|2 ds (for f ∈ E∞c )

The L2 pairing against uo extends by continuity to Er, as does f → Ef . We have

limEr = E∞ ⊂ . . . ⊂ E1 ⊂ E0 ⊂ E−1 ⊂ . . . ⊂ E−∞ = colimEr

Distributions θ ∈ E−∞ have spectral expansions converging in E−∞:

θ = 〈θ, uo〉 · uo +
1

4πi

∫
( 1
2

)

Eθ(s) · Es ds (E−∞ convergence)

Plancherel gives the duality of Er and E−r:

〈ϕ, ψ〉Er×E−r = 〈ϕ, uo〉 · 〈ψ, uo〉+
1

4πi

∫
( 1
2

)

Eϕ(s) · Eψ(s) ds

For θ a distribution which is (the restriction of) a compactly-supported measure, Eθ(s) =
θ(E1−s), since Eisenstein series are continuous, and s → Eθ(s) is meromorphic on C. For
example, with θ(f) = f(i),

Eθ(1− s) = Es(i) =
ζQ(i)(s)

ζ(2s)

3. Example: solving differential equations in automorphic forms

Since ∆ : E∞c → E∞c is continuous when the source is given the Er topology and the
target is given the Er−2 topology, extending by continuity gives continuous ∆ : Er → Er−2

consistent with distributional differentiation, and then continuous maps ∆ : E∞ → E∞ and
E−∞ → E−∞.

Extending by continuity, since ∆ can be applied termwise to spectral expansions of pseudo-
Eisenstein series in E∞c , it can always be applied termwise to spectral expansions in E−∞:

∆
(
〈f, uo〉 · uo +

1

4πi

∫
( 1
2

)

Ef(s) · Es ds
)

= 〈f, uo〉 ·∆uo +
1

4πi

∫
( 1
2

)

Ef(s) ·∆Es ds

=
1

4πi

∫
( 1
2

)

Ef(s) · λs · Es ds
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The equation (∆− λw)u = θ with θ ∈ E−∞ and λw 6= 0 can be uniquely solved by division
for u ∈ E−∞ by equating spectral coefficients of (∆− λw)u and θ:

(λ1 − λw) · 〈u, uo〉 = 〈θ, uo〉 and (λs − λw) · Eu(s) = Eθ(s)

This proves

Claim: There exists a solution in E−∞ to (∆−λw)u = θ only if Eθ(s) vanishes (in a strong
sense) at s = w. For <(w) > 1

2
and w 6= 1, this unique solution is given by

u = uw =
〈θ, uo〉
λ1 − λw

· uo +
1

4πi

∫
( 1
2

)

Eθ(s)
λs − λw

· Es ds

The function w → uw is a holomorphic E−∞-valued function in that region. ///

4. Meromorphic continuations of solutions of differential equations

Let θ be the restriction of a compactly-supported real-valued measure, and suppose that
θ ∈ E−1+ε for some ε > 0. Thus, in <(w) > 1

2
, uw ∈ E1+ε, and

uw =
〈θ, uo〉
λ1 − λw

· uo +
1

4πi

∫
( 1
2

)

Eθ(s)Es − Eθ(w)Ew
ds

λs − λw
+ Eθ(w)Ew

1

4πi

∫
( 1
2

)

ds

λs − λw

=
〈θ, uo〉
λ1 − λw

· uo +
1

4πi

∫
( 1
2

)

Eθ(s)Es − Eθ(w)Ew
ds

λs − λw
− Eθ(w)Ew

1

2(2w − 1)

By a Sobolev-type theorem, E1+ε ⊂ Co(Γ\H). The integral has a canonical holomorphic
extension to a neighborhood of <(w) = 1

2
, as a Co(Γ\H)-valued function, and then as a

meromorphic Co(Γ\H)-valued function beyond.

By the functional equation of Ew, the leading term and the integral are invariant under
the apparent symmetry w → 1 − w. The denominator in the last term causes it to be
skew-symmetric.

In particular, in <(w) < 1
2
, the meromorphically continued uw is not in E1+ε, but only in a

larger space such as Co(Γ\H), unless Eθ(w) = 0.

Corollary: For <(wo) = 1
2
, if (∆ − λwo)u = θ has a solution u ∈ E−∞, then Eθ(wo) = 0,

and u = uwo . ///

Corollary: Despite the above meromorphic continuation, the resolvent (T−λw)−1 : E0 → E0

does not have a meromorphic continuation to Re(w) = 1
2

and beyond. It does have a
meromorphic continuation as a map (T − λw)−1 : E0 → Co(Γ\H). ///
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5. Friedrichs’ self-adjoint extensions of restrictions of Laplacians

Fix ε > 0. Let Θ ⊂ E−1+ε consist of restrictions of compactly-supported real measures, and
assume that

E0 ∩ E−1-closure of Θ = {0}

Let ker Θ denote the simultaneous kernel of Θ as continuous linear functionals on E1.

Lemma: ker Θ is dense in E0. ///

Thus, the restriction T of ∆ to E∞c ∩ ker Θ is symmetric and densely defined on the Hilbert
space E0. Friedrichs’ self-adjoint extension T̃Θ is characterized by

〈(1− T̃Θ)−1v, w〉E1 = 〈v, w〉E0 (for v ∈ E0, w ∈ E∞c ∩ ker Θ)

With non-trivial Θ, the domain of T̃Θ may be strictly larger than E2, that is, T̃Θ may fail to
be essentially self-adjoint. Specifically,

Theorem: The domain of T̃Θ is {u ∈ ker Θ : ∆u ∈ E0 + Θ} where Θ is the E−1 closure.
T̃Θu = f with u ∈ E1 and f ∈ E0 if and only if u ∈ ker Θ and ∆u = f + θ for some θ ∈ Θ.

///

Corollary: With Θ = {θ} and <(wo) = 1
2
, λwo is an eigenvalue of T̃θ if and only if both

Eθ(wo) = 0 and θ(uwo) = 0.

Proof: From above, if there is any eigenfunction in E−∞ for λwo , then Eθ(wo) = 0. Then uwo

is in E−∞, in fact in E1+ε, and (∆− λwo)uwo = θ. If also θ(uwo) = 0, then uwo ∈ ker Θ, so is
in the domain of T̃θ. ///

Via the pairing E1 × E−1,

θ(uw) =
|θ(uo)|2

λ1 − λw
+

1

4πi

∫
( 1
2

)

|Eθ(s)|2 ds

λs − λw

and holomorphically continues as scalar-valued function to a neighborhood of <(w) = 1
2
, by

θ(uw) =
|θ(uo)|2

λ1 − λw
+

1

4πi

∫
( 1
2

)

|Eθ(s)|2−Eθ(w)Eθ(1−w)
ds

λs − λw
− Eθ(1−w)Eθ(w)

1

2(2w − 1)

On <(w) = 1
2
, the leading term and the main term are real, and the third term is purely

imaginary. Thus, both must vanish for θ(uw) = 0. ///
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6. Constant-term and Heegner distributions

Let ηa(f) =
∫ 1

0
f(x + ia) dx, and let θ be (the restriction of) a compactly-supported real

measure, lying in E−1+ε for some ε > 0, and assume that no non-trivial linear combination
of ηa and θ is in E0. Let T̃a,θ be the Friedrichs extension of the restriction of ∆ to ker θ∩ker ηa.

Let uw be the meromorphically continued solution of (∆− λw)u = θ as above, and vw that
of (∆− λw)v = ηa.

The condition that a linear combination xuw + yvw is in ker θ ∩ ker ηa is{
0 = θ(xuw + yvw) = θ(uw)x+ θ(vw)y

0 = ηa(xuw + yvw) = ηa(uw)x+ ηa(vw)y

which has a non-trivial solution if and only if

θ(uw) · ηa(vw) − ηa(uw) · θ(vw) = 0

From the spectral expansions and pairings, by residues,

ηa(vw) =
aw + cwa

1−w

1− 2w
· a1−w

For θ (the restriction of) the sum of Dirac deltas at the Heegner points attached to a complex
quadratic field k = Q(

√
d), and for a�d 1,

ηa(uw) = θ(vw) =
θ(Ew)a1−w

1− 2w
=

ζk(w)

ζ(2w)

a1−w

1− 2w

Corollary: λw < −1/4 is in the discrete spectrum of T̃a,θ if and only if

θ(uw) · a
w + cwa

1−w

1− 2w
· a1−w −

( ζk(w)

ζ(2w)

a1−w

1− 2w

)2

= 0

///

Using the regularization and meromorphic continuation of θ(uw),

Claim: This vanishing condition is symmetric under w → 1 − w. Thus, all zeros of this
expression are on <(s) = 1

2
∪ [0, 1].

Proof: The symmetry is by rearranging, using the regularization, and using the functional
equation of the Eisenstein series. The vanishing condition is equivalent to λw being an
eigenvalue of T̃ . The Friedrichs extension T̃ is non-positive self-adjoint, so any eigenvalues
are non-positive. Thus, either <(w) = 1

2
or w ∈ [0, 1]. ///
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7. Exotic eigenfunction expansions

[Lax-Phillips 1976] essentially showed that the Friedrichs extension of the restriction of ∆
to the space L2

a(Γ\H) of automorphic functions with constant term vanishing above height
y = a > 1 has purely discrete spectrum. The same holds for the Friedrichs extension T̃≥a of
the restriction T≥a of ∆ to the space L2

a ∩ E∞c of test-function-data pseudo-Eisenstein series
with constant term vanishing at heights y ≥ a.

Let {fn : n = 1, 2, . . .} be an E0-orthogonal basis of eigenfunctions for T̃≥a, with eigenvalues
λsn , in E

3
2

+ε for every ε > 0. Without loss of generality, take all fn real-valued.

Let j : E1∩L2
a → E1 be the inclusion. The adjoint j∗ : E−1 → (E−1∩L2

a)
∗ is a quotient map:

E1 inc // E0 inc // E−1

j∗

��
E1 ∩ L2

a

j

OO

inc // E0 ∩ L2
a

inc // (E−1 ∩ L2
a)
∗

Extend the self-adjoint operator T̃≥a to a map T̃#
≥a : E1 ∩ L2

a → (E1 ∩ L2
a)
∗ by

T̃#
≥a(u)(v) = 〈u, v〉E1

Take θ (the restriction of) a compactly supported real measure, with θ ∈ E−1. For a �θ 1,
there is a spectral expansion convergent in (E1 ∩ L2

a)
∗ = j∗E−1, a quotient of E−1:

j∗θ =
∑
n

(j∗θ)(fn) · fn =
∑
n

θ(jfn) · fn =
∑
n

θ(fn) · fn (convergent in j∗E−1)

If (∆ − λw)u = θ and u ∈ E1 ∩ L2
a, then certainly (T̃#

≥a − λw)u = j∗θ, so, noting that the
inclusion j identifies u with its image,

j∗θ =
(
j∗ ◦ (∆− λw) ◦ j

)
u = (T̃#

≥a − λw)u

The equation (T̃#
≥a − λw)u = j∗θ can be solved by division: producing a spectral expansion

convergent in E1 ∩ L2
a ⊂ E1:

u = uw =
∑
n

θ(fn)

λsn − λw
· fn (convergent in E1)

Via the E1 × E−1 pairing, the condition θ(uw) = 0 is

0 = θ(uw) =
∑
n

θ(fn)2

λsn − λw
By the intermediate value theorem, there is exactly one solution to the latter equation
between successive spectral parameters sn with θ(fn) 6= 0, giving

Claim: The equations (∆ − λw)u = θ and θu = 0 have a solution u for at most one w in
each interval =(sn) ≤ =(w) ≤ =(sn+1). ///
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8. Example: the 94% limitation

With the simplest types of self-adjoint operators whose discrete spectrum λs = s(s − 1), if

any, can only appear for ζk(s) = 0, invoking exotic eigenfunction expansions, the regularity
of ζ(s) on <(s) = 1, and Montgomery’s pair correlation (for simplicity presented in the
conjecturally strongest form), we find a conflict, as follows.

Take θ to be the sum of (restrictions of) automorphic Dirac deltas at the Heegner points
attached to k = Q(

√
d), so that

θEw =
∣∣∣√|d|

2

∣∣∣w ζk(w)

ζ(2w)

Corollary: At most 94% of the zeros of zeta appear among the spectral parameters for T̃θ.

Proof: All the eigenfunctions fn with eigenvalues < −1/4 are constant multiples of truncated
Eisenstein series ∧aEs such that as + csa

1−s = 0.

The spacing of the spectral parameters sj such that asj + csja
1−sj = 0 becomes essentially

regular when log log t is large. Namely, from [Titchmarsh 1986] 5.17.4 page 112 (in an earlier
edition, page 98), ψ(t) = arg ξ(1 + 2it) satisfies

ψ(t) = t log t+O
( t log t

log log t

)
and ψ′(t) = log t+O

( log t

log log t

)
Thus, given ε > 0, there is to sufficiently large such that, for w1, w2 on <(w) = 1

2
with

=(wj) ≥ to, such that λw1 and λw2 are eigenvalues for T̃θ, |=(w1) − =(w2)| ≥ (1 − ε) · π
log t

.
Otherwise, adjust the cut-off height a slightly to put both w1, w2 in the same interval between
some sn, sn+1.

On the other hand, Montgomery’s pair correlation conjecture is that, for imaginary parts of
zeros . . . ≤ γ−1 < 0 < γ1 ≤ γ2 ≤ . . ., for 0 ≤ α < β,

#
{
m < n : 0γm, γn ≤ T with

2πα

log T
≤ γn − γm ≤

2πβ

log T

}
∼
∫ β

α

(
1− (

sin πu

πu
)2
)
du

For example,

#
{
m < n : 0γm, γn ≤ T with γn − γm ≤

π

log T

}
∼
∫ 1

2

0

(
1− (

sinπu

πu
)2
)
du ≈ 0.11315

From the asymptotic lower bound for separation of zeros appearing as spectral parameters,
for at least one of every such pair m,n the zero cannot appear. ///
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9. Example: spacing of zeros

For example, without assuming anything about existence or non-existence of discrete spectra:

Let

J(w) =
h2
d

−λw · 〈1, 1〉
+

1

4πi

∫
( 1
2

)

∣∣∣ ζk(s)
ζ(2s)

∣∣∣2 − ∣∣∣ ζk(w)

ζ(2w)

∣∣∣2 ds

λs − λw

and w = 1
2

+ iτ . By rearranging, the condition that λw be an eigenvalue of T̃a,θ and/or of

T̃≥a,θ is

cos(τ log a+ ψ(τ)) · J(w) = sin(τ log a+ ψ(τ)) · θE1−w · θEw
2τ

As above, between any two consecutive zeros of cos(τ log a+ ψ(τ)) there is a unique τ such
that λ 1

2
+iτ is an eigenvalue of T̃≥a,θ.

[9.0.1] Corollary: Let τ < τ ′ be large such that 1
2

+ iτ and 1
2

+ iτ ′ are adjacent zeros of θEw,
and neither a zero of J(w). If there is a unique on-the-line zero of J(w) between the two,
with ∂

∂τ
J(1

2
+ iτ) > 0, then

|τ − τ ′| ≥ π

log t
· (1 +O(

1

log log t
))

That is, in this configuration, the distance between consecutive zeros must be at least
essentially the average. ///

10. Technical basics about unbounded self-adjoint operators

A self-contained, reasonably efficient account of the relevant ideas, aimed at number-theoretic
applications, is one of the main goals of [Garrett 2018].

Unsurprisingly, outside of the finite-dimensional situation, and outside of the context of
bounded [7] operators, a suitable notion of self-adjointness is subtler.

There is a suitable, precise notion of symmetric, unbounded operator T on a Hilbert space
V , and its adjoint T ∗ from [Stone 1929/30] and [vonNeumann 1929]. First, as is often only
implicit, we assume that the domain DT of T is dense in V , although is necessarily (due to the
unboundedness) not the whole Hilbert space V . The symmetry is that 〈Tv, w〉 = 〈v, Tw〉 for

[7] Recall that, on Hilbert spaces T : V → V , a linear map T : V → V is continuous if and only if it is continuous

at 0, if and only if it is bounded, in the sense that there is 0 ≤ B < ∞ such that |Tv| ≤ B for all |v| ≤ 1. In this

context, such a linear map is implicitly assumed to be everywhere defined on V .
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v, w ∈ DT . The unboundedness allows for a lack of continuity in the Hilbert space topology
on the whole space V , such as for the archetype T = ∆|C∞c (Rn) on V = L2(Rn). There, the
symmetry property follows because in integration by parts there are no boundary terms.
The adjoint T ∗ of a symmetric operator T is the unique maximal extension of T satisfying
〈Tv, w〉 = 〈v, T ∗w〉 for v ∈ DT and w ∈ DT ∗ . Specification of DT ∗ ⊃ DT is an essential part
of the characterization. Letting U : V ⊕ V → V ⊕ V by U(v ⊕w) = −w⊕ v, the graph ΓT ∗

of the adjoint T ∗ is characterized as the orthogonal complement to the image UΓT of the
graph ΓT under U . There are details to check.

An unbounded, symmetric, densely-defined T is self-adjoint if T = T ∗. This includes
the assertion that DT ∗ = DT , that is, that T admits no proper extension T ′ satisying
〈Tv, w〉 = 〈v, T ′w〉 for v ∈ DT and w ∈ DT ′ ⊃ DT . Every self-adjoint operator is symmetric,
but not vice-versa. For unbounded operators, it is important to appreciate the distinction
between T and T ∗, if they are not equal, because in general T ∗ is not symmetric, and
has many non-real eigenvalues. This is not a pathology: already in the simplest Sturm-
Liouville problems, with ∆ = d2

dx2
on L2[a, b], the natural symmetric operator to begin with

is T = ∆|C∞c (a,b), that is, the restriction of ∆ to test functions supported properly in the
interior of the interval. The domain of the adjoint T ∗ includes at least all smooth functions
on the closed interval [a, b], but without a suitable choice of boundary conditions T ∗ is not
symmetric, because integration by parts produces non-trivial boundary terms obstructing
the symmetry.

Why did intuitive manipulation of such operators in the hands of physicists in the 1920s and
1930s reach mathematically correct conclusions? For one, many of the operators employed
are essentially self-adjoint, in the sense that they have a unique self-adjoint extension, and it
is the graph closure [8] of the given operator. Proof of the essential self-adjointness, when it
does hold, is non-trivial. In effect, the essential self-adjointness assures that naive, intuitive
manipulation of the operator leads to correct conclusions. Typically, essential self-adjointness
of Laplace-Beltrami operators, restricted to test functions, holds in absence of boundary
conditions. This is the case for T = ∆|C∞c (Rn), a densely-defined, unbounded, symmetric
operator on L2(Rn). Thus, being unaware of the possibility that an operator might have
several distinct self-adjoint extensions does not lead to disaster when, as fortunately often
happens, the operator has a unique self-adjoint extension.

[Stone 1929] and [vonNeumann 1929] gave a necessary and sufficient criterion for a densely-
defined symmetric unbounded operator T to have a self-adjoint extension, and also classified
all possible self-adjoint extensions, as follows. For λ ∈ C but λ 6∈ R, the λth deficiency

subspace of T is the kernel of T ∗ − λ. The λth deficiency index is the dimension of the λth

[8] The graph closure, often called simply the closure, of an unbounded operator T : V → V is the extension whose

graph is the topological closure of the graph of T in V ⊕ V . In general, this closure will not be the graph of an

operator. Operators whose graph-closure is the graph of an operator are called closeable. All symmetric operators

admitting self-adjoint extensions are closeable.
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deficiency subspace. The first main result is that there exists a self-adjoint extension of T

if and only if the λth deficiency index is equal to the λ
th

deficiency index. (On separable
Hilbert spaces, this is correct whether those indices are finite or infinite.) When the two
indices are equal, the collection of all possible self-adjoint extensions of T is indexed by
isometric isomorphisms ker(T ∗ − λ)→ ker(T ∗ − λ).

[Friedrichs 1934/35] description of a canonical self-adjoint extension for semi-bounded

operators requires no checking of hypotheses. A symmetric, densely-defined operator T
is semi-bounded when either there is a constant c such that 〈Tv, v〉 ≥ c · 〈v, v〉 for all v in
the domain of T , or there is a constant c such that 〈Tv, v〉 ≤ c · 〈v, v〉 for all v in the domain
of T . K. Klinger-Logan has pointed out to me that this particular self-adjoint extension
was already noted (page 103) in [vonNeumann 1929]. For the construction, take the case
〈Tv, v〉 ≥ 〈v, v〉 without loss of generality, so that T is something like a restriction of 1−∆.
Give the domain DT of T a Sobolev-like norm via 〈v, w〉1 = 〈Tv, v〉, and let V 1 be the
completion of DT in that norm. We have a natural continuous imbedding V 1 → V . Define
B : V → V 1 by 〈Bv,w〉1 = 〈v, w〉 for v ∈ V and w ∈ V 1, via Riesz-Fréchet. Then T̃−1 = B
for T̃ the Friedrichs extension of T .

In contrast to the case of semi-bounded operators, where Friedrichs’ construction immedi-
ately gives existence of at least one self-adjoint extension, in general a symmetric, densely-
defined, unbounded operator need not have any self-adjoint extensions. Yes, seemingly
natural symmetric operators should have at least one self-adjoint extension, for either phys-
ical or mathematical reasons, but it is not hard to find simply-expressed symmetric oper-
ators with no self-adjoint extensions. For example, from [MSE-2363904 2017] and [MSE-
2364766 2017], consider the unbounded operator T = x3 ◦ i d

dx
+ i d

dx
◦ x3 on L2(R), where x3

is the multiplication-by-x3 operator. A seeming paradox is that the L2(R) function

u(x) =

 e−1/4x2

|x|3/2
(at x 6= 0)

0 (at x = 0)

is apparently an eigenfunction with eigenvalue −i, which would be impossible for an
eigenvector of a symmetric operator (and the operator L is indeed symmetric on the dense
subspace S (R) of L2(R)). That is, one can solve the differential equation

(x3 ◦ i∂x + i∂x ◦ x3)u = λ · u

by elementary means:

u =
eiλ/4x

2

|x|3/2

For Im(λ) > 0, the function is in L2(R), being square-integrable both at 0 and at ∞. For
Im(λ) ≤ 0, the function is not square-integrable at 0. For Im(λ) > 0, the solution vanishes
to infinite order at 0, so we can splice together a solution in x < 0 and another solution in
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x > 0: the L2 solutions are

u =


a
eiλ/4x

2

|x|3/2
(for x > 0)

b
eiλ/4x

2

|x|3/2
(for x < 0)

(for arbitrary constants a, b)

For Im(λ) > 0, certainly these functions are λ-eigenvectors for the adjoint T ∗, so the
deficiency index for such λ is 2. But for Im(λ) < 0, there are no L2 λ-eigenvectors for
T ∗. Thus, by von Neumann’s criterion, there is no self-adjoint extension of S. In particular,
there is no paradox about non-real eigenvalues of self-adjoint operators.

While it is not surprising that most basic classical analysis does behave consistently with
physical intuition, given the history and historical purposes of calculus, it is more surprising
that the fairly extravagant mathematics initiated in [Dirac 1928a,b] and [Dirac 1930], for
example, was so successful in producing correct, testable physical conclusions. Genuine
mathematical justification, as opposed to experimental, had to wait for [Stone 1929/30],
[vonNeumann 1929], [Friedrichs 1934/5], [Gelfand 1936], [Pettis 1938] [Sobolev 1937],
[Sobolev 1938], [Sobolev 1950], [Schwartz 1950/1], [Schwartz 1950], [Schwartz 1953/4],
[Grothendieck 1953a,b], and others.
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Inst. Sci. Math. de Kharkoff, no. 4, 13 (1936), 35–40.

[Grothendieck 1953a,b] A. Grothendieck, Sur certaines espaces de fonctions holomorphes,

I, J. Reine Angew. Math. 192 (1953), 35-64; II, 192 (1953), 77-95.

[Haas 1977] H. Haas, Numerische Berechnung der Eigenwerte der Differentialgleichung
y2∆u + λu = 0 für ein unendliches Gebiet im R2, Diplomarbeit, Universität Heidelberg
(1977), 155 pp.

[Hardy-Littlewood 1918] G. H. Hardy, J. E. Littlewood, Contributions to the theory of the
Riemann zeta-function and the theory of the distributions of primes, Acta Math. 41 (1918),
119-196.

[Hejhal 1981], D. Hejhal, Some observations concerning eigenvalues of the Laplacian and
Dirichlet L-series, in Recent Progress in Analytic Number Theory, ed. H. Halberstam and
C. Hooley, vol. 2, Academic Press, NY, 1981, 95-110.

[Hejhal 2015] D. Hejhal, personal communication, email, March 13, 2015.

[Lax-Phillips 1976] P. Lax, R. Phillips, Scattering theory for automorphic functions, Annals
of Math. Studies, Princeton, 1976.

[MSE-2363904 2017] Math Stack Exchange, Residual spectrum of a Hermitian operator [sic],
retrieved 19 July 2017, https://math.stackexchange.com/questions/2363904/

[MSE-2364766 2017] ibid https://math.stackexchange.com/questions/2364766/

[Montgomery 1973] H.L. Montgomery, The pair correlation of zeros of the zeta-function,
Proc. Symp. Pure Math. 24, AMS, Providence R.I., 1973, 181-193.
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