
(March 26, 2007)

Cryptographic Primitives
Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/̃ garrett/

This is a version of an article of the same name to appear in [GL].

A symmetric or private-key cipher is one in which knowledge of the encryption key is explicitly or
implicitly equivalent to knowing the decryption key. An asymmetric or public-key cipher is one in which
the encryption key is effectively public knowledge, without giving any useful information about the decryption
key. Until 30 years ago all ciphers were private-key. The very possibility of public-key crypto did not exist
until the secret work Ellis-Cocks-Williamson at the UK’s CESG-at-GCHQ in the 1960’s, and public-domain
work of Merkle, Diffie-Hellman, and Rivest-Shamir-Adleman in the 1970’s. Even more significant than the
secrecy achievable by public-key ciphers is the variety of effects achievable that were (and continue to be)
simply impossible with even the best symmetric-key ciphers. Key exchange and signatures (authentication)
are the most notable among well-established uses. Further examples are given in section 6.

Other articles in address specific aspects of public-key cryptography at greater length. D. Lieman’s article
[Lie] concerns refinements of protocols appropriate to genuine practical implementations. N. Howgrave-
Graham [HG] treats proofs of security. J. Silverman’s [Sil3] discusses elliptic curves. W. Whyte’s [Wh] and
W.D. Banks’ [Ba] articles consider the problem of designing faster cryptosystems of various sorts. And I.
Shparlinski [Shp2] discusses design and attacks upon systems based upon various hidden-number problems.
Given these, we will emphasize algorithms related mostly to RSA, primality testing, and factoring attacks,
as opposed to discrete logs and/or elliptic curves, and give only simple naive forms of protocol-ideas rather
than refined forms.

By now there are many introductory texts on cryptography. Many of them are reviewed in [L3].

1 Prototypes
1.1 RSA cipher
1.2 Diffie-Hellman key exchange

2 Complexity
2.1 Polynomial-time algorithms
2.2 Probabilistic algorithms
2.3 Subexponential algorithms
2.4 Kolmogoroff complexity
2.5 Linear complexity, LFSRs, LCGs
2.6 Quantum algorithms

3 Background on Symmetric Ciphers
3.1 Bad Old Symmetric Ciphers
3.2 One-time pads and their failure modes
3.3 DES and AES

4 Review of Number Theory
4.1 Euclidean algorithm
4.2 Extended Euclidean algorithm
4.3 Square-and-multiply fast exponentiation
4.4 Fermat’s Little Theorem
4.5 Euler’s Theorem
4.6 Primitive roots, discrete logarithms
4.7 Futility of trial division
4.8 Quadratic reciprocity
4.9 The Prime Number Theorem
4.10 The Riemann Hypothesis (RH)

1

Paul Garrett: Cryptographic Primitives (March 26, 2007)

4.11 Dirichlet’s Theorem
4.12 The Extended Riemann Hypothesis (ERH)
4.13 Pseudoprimes, probable primes
4.14 Hunting for big primes
4.15 Generating big random primes
4.16 Continued fractions
4.17 Square roots modulo primes
4.18 Hensel’s lemma

5 More public-key ciphers
5.1 El Gamal Ciphers
5.2 Knapsack ciphers
5.3 NTRU
5.4 Arithmetica Key Exchange

6 Protocol Sketches
6.1 Signatures
6.2 Thresh-hold schemes
6.3 Zero-knowledge proofs
6.4 Electronic money
6.5 More..

7 Certifiable Large Primes
8 Factorization Algorithms

8.1 Euler-Fermat trick
8.2 Pollard’s rho method
8.3 Pollard’s p− 1 method
8.4 Toward the quadratic sieve

9 Randomness, Information, Entropy
9.1 Entropy
9.2 Shannon’s Noiseless Coding
9.3 Shannon’s Noisy Coding Theorem
9.4 Statistical randomness
9.5 Deterministic pRNGs
9.6 Genuine randomness

1 Prototypes

Several points which occur either literally or figuratively throughout discussions of public-key ciphers are
already nicely illustrated in the case of the Rivest-Shamir-Adleman cipher, RSA, from [RSA], together with
the Diffie-Hellman key exchange [DH]. Subordinate algorithmic issues will be made more precise in the
sequel. A relevant notion is that of trapdoor: a computation which runs much more easily in one direction
than back. A prototypical example is that multiplication of large integers is easy, while factoring of large
integers is difficult (to the best of our knowledge). And then there is the question of how to make such
an irreversible process into a useful one. Another apparently comparably difficult task, relevant to both
RSA and Diffie-Hellman, is computation of discrete logarithms modulo primes, while exponentiation (by the
square-and-multiply algorithm (4.3)) is easy.

A key point is that while factoring large numbers into primes appears to be difficult, merely testing large
numbers for primality is definitely easy (e.g., by Miller-Rabin (4.13)).

A critical but often tacit issue is the generation of sufficiently many high-quality random bits incidental to
generation of random primes.

2

Paul Garrett: Cryptographic Primitives (March 26, 2007)

And here might be the time to introduce a common computer-language notation

x% n = x reduced modulo n

This notation allows us to easily make a distinction between reduction and equivalence classes or equalities
modulo n.

1.1 RSA cipher

For Alice to set things up so that Bob (or other people without prior contact with her) can send her messages
that cannot be decrypted by an eavesdropper Eve, Alice proceeds as follows. (But it must be disclaimed at
once that this is a naive and very incomplete implementation of RSA!)

First, there are one-time set-up computations. Alice generates two large random primes p and q (at least
> 2512, and probably > 21024), and computes her RSA modulus n = pq. Alice will keep the primes p and q
secret, while she will make n public. Alice chooses an encryption exponent e > 2. Often the Fermat prime
e = 216 + 1 = 65537 is used, for reasons that will become clearer subsequently. The encryption exponent e
is made public. Alice computes the decryption exponent d with the property that

ed = 1 mod (p− 1)(q − 1)

Alice keeps the decryption exponent d secret. This ends Alice’s set-up. The encryption key e is the public
key and the decryption key d is the private key. Integers n of the form n = pq with p and q distinct primes
are called RSA moduli, or sometimes Blum integers if both primes are 3 modulo 4.

For Bob to send a message to Alice that only Alice can read, he proceeds as follows. Note that Bob’s
procedure requires no prior contact or arrangment with Alice, in particular, no pre-existing secret shared by
the two of them. For simplicity, we assume that the plaintext x is an integer in the range 1 < x < n. The
encoding step x −→ En,e(x) is

En,e(x) = xe % n

This produces a ciphertext y = xe % n in the range 0 < y < n. Bob sends this over a (probably insecure)
channel to Alice.

Alice decrypts Bob’s message as follows. The decryption step y −→ Dn,d(y) is

Dn,d(y) = yd % n

This blunt description shows the simplicity of set-up and operation, but several things need clarification:
Why is it feasible for Alice to find two large random primes?
Why is it feasible for Bob to compute xe reduced mod n?
Why is it feasible for Alice to compute d = e−1 mod (p− 1)(q − 1)?
Why is it feasible for Alice to compute yd reduced mod n?
Why does the decryption step decrypt, that is, why is yd mod n = x?
Why is it not feasible for Eve (the eavesdropper) to compute d from n and e?
Why is it not feasible for Eve to compute x from xe mod n?
How do we get a good supply of random numbers?

The decryption step decrypts: At first glance, possibly the least obvious fact is that the decryption step
really does recover the plaintext. For the decryption step to genuinely decrypt, recovering the plaintext, the
two keys e, d must have the property that

(xe)d = x mod n

3

Paul Garrett: Cryptographic Primitives (March 26, 2007)

for integers x. Euler’s theorem (4.5) asserts in general that if gcd(x, n) = 1, then

xϕ(n) = 1 mod n

where ϕ is the Euler totient function

ϕ(n) = number of integers 1 ≤ ` ≤ n with gcd(`, n) = 1

Thus, e and d should be mutual multiplicative inverses modulo ϕ(n)

d · e = 1 mod ϕ(n)

For integers n of the form n = p · q with distinct primes p, q it is easy to see that

ϕ(p · q) = (p− 1)(q − 1)

Then one can easily verify that the encryption and decryption really work for gcd(x, n) = 1: let
ed = 1 + `(p− 1)(q − 1). Then

Dn,d(En,e(x)) = (xe)d = xed mod n

= x1+`·(p−1)(q−1) = x · (xϕ(n))` = x mod n

by invoking Euler’s theorem.

Euler’s theorem requires that x be prime to n. The probability that a random x in the range 1 < x < n
would be divisible by p or q is

1
p

+
1
q
− 1

pq

which is sufficiently tiny that we ignore it. In any case, testing for this is easy, via the Euclidean algorithm.
And we note that a systematic ability to choose such messages would be (therefore) tantamount to being able
to systematically factor large integers. And the encryption exponent e must be prime to ϕ(n) = (p−1)(q−1)
so that it will have a multiplicative inverse modulo ϕ(n). Failure in this regard would be detected in set-up.

The security of RSA depends upon the difficulty of factoring integers into primes, or at least factoring
integers n = pq which are the product of two primes: if Eve can factor n into p and q she knows as much as
Alice about the set-up. Eve can compute ϕ(n) = (p− 1)(q− 1) and compute the decryption exponent d just
as Alice (probably by the extended Euclidean algorithm (4.2)). Factoring is not provably difficult, though
no polynomial-time public-domain algorithm exists.

Given n = pq the product of two big primes p, q (with the primes secret), it seems hard to compute ϕ(n)
when only n is given. Once the factorization n = p · q is known, it is easy to compute ϕ(n) as

ϕ(n) = ϕ(pq) = (p− 1)(q − 1)

In fact, for numbers n = pq of this special form, knowing both n and ϕ(n) gives the factorization n = p · q
with little computation. Indeed, p, q are the roots of the equation

x2 − (p + q)x + pq = 0

Already pq = n, so if p + q is expressed in terms of n and ϕ(n), we have the coefficients of this equation
expressed in terms of n and ϕ(n), giving an easy route to p and q separately. Since

ϕ(n) = (p− 1)(q − 1) = pq − (p + q) + 1 = n− (p + q) + 1

rearrange to get
p + q = n− ϕ(n) + 1

4

Paul Garrett: Cryptographic Primitives (March 26, 2007)

Therefore, p and q are the roots of the equation

x2 − (n− ϕ(n) + 1)x + n = 0

Computing roots: Also, even more obviously, the security of RSA also depends upon the difficulty of
computing eth roots modulo n: if Eve can compute eth roots modulo n, then she can compute the plaintext
as the eth root of the ciphertext y = xe % n. While computing roots modulo primes is easy (4.17), computing
roots modulo composite numbers appears to be hard (without factoring).

Common modulus: The users of a system with modulus n (the product of two secret primes p, q), public
key e, and private key d do not need to know the primes p, q. Therefore, one might envisage the scenario
in which a central agency uses the same modulus n = pq for several different users, only with different
encryption/decryption exponents ei, di. However, compromise of one key pair e1, d1 fatally compromises
the others: anyone knowing N = e1d1 − 1 need not determine (p − 1)(q − 1) exactly, since an inverse
D = e−1

2 mod N for N any multiple of (p − 1)(q − 1) also works as a decryption exponent for encryption
exponent e2. That is, a multiplicative inverse modulo a multiple N = e1d1 − 1 of (p − 1)(q − 1) is a
multiplicative inverse modulo (p− 1)(q − 1), even if it is needlessly larger. It is also true, though much less
important, that the search space for n is greatly reduced by knowledge of e1d1 − 1, since

ϕ(n) | (e1d1 − 1)

Fast exponentiation: Naively, raising large numbers to large powers is slow, so from a naive viewpoint it
may be unclear why the algorithms in authorized execution of RSA are any faster than a hostile attack. In
fact, the required exponentiation can be arranged to be much faster than prime factorizations for numbers in
the relevant range. That is, to compute xe we do not compute all of x1, x2, x3, . . . , xe−1, xe. The square-and-
multiply exponentiation algorithm (4.3) is a simple example of a fast exponentiation algorithm, consisting
of a systematization of the idea of using a binary expansion of the exponent to reduce the total number of
operations. For example,

x17 = x1 · ((((x2)2)2)2)

Key generation: To set up n = pq from secret primes p, q, and to determine a key pair e, d with
ed = 1 mod ϕ(n), requires two large primes p, q. Since the security of RSA is based upon the intractability
of factoring, it is fortunate that primality testing is much easier than factorization. That is, we are able
to obtain many ‘large’ primes p, q >> 2512 cheaply, despite the fact that we cannot generally factor ‘large’
numbers n = pq >> 21024 into primes. The Fermat pseudoprime test (4.13) combined with the Miller-Rabin
strong pseudoprime test (4.13) provide one efficient test for primality.

Relative difficulty of factoring: The various modern factorization tests, such as Pollard’s rho (8.2), or
even the better subexponential sieve methods (8.4), while vastly better than antique trial division (4.7), are
still too slow to compete, for sufficiently large modulus n. Again, there is no proof that factoring is more
difficult than primality testing.

Padding: From a mathematical viewpoint, it is obvious that if an attacker knows the encryptions y1, y2

of two different plaintexts x1, x2 (with the same public key), then the attacker knows the encryption of
x1x2 % n, where n is the RSA modulus. This sort of leakage of information may seem obscure, but can
be systematically exploited. Thus, in reality, with most public-key ciphers, plaintexts must be padded with
various amounts of random material.

It seems that attacks on RSA will succeed only when RSA is improperly implemented, for example,
with too-small modulus. The key size (the size of the RSA modulus n = pq) must not be too small, or a
brute-force attempt to factor n may succeed in a time smaller than one would want. E.g., in 1999 Adi Shamir
designed a specialized computer ‘Twinkle’ which speeded up execution of certain factorization attacks by a
factor of 100 or 1000. To break the RSA function means to invert the function

x −→ xe % n

5

Paul Garrett: Cryptographic Primitives (March 26, 2007)

without being given the decryption exponent d in advance. To break the RSA cipher means something with
more possibilities than breaking the RSA function: it means to recover all or part of a plaintext without
being given the decryption exponent. Unbreakability of the cipher, rather than of the function, is semantic
security.

Both p − 1 and q − 1 should have at least one very large prime factor, since there are factorization attacks
against n = pq that are possible if p − 1 or q − 1 have only smallish prime factors (Pollard’s p − 1 attack
(8.3)). The primes p and q should not be ‘close’ to each other, since there are factorization attacks on n that
succeed in this case (Fermat, etc.). The ratio p/q should not be ‘close’ to a rational number with smallish
numerator and denominator, or else D. H. Lehmer’s Continued Fraction factorization attack on n = pq will
succeed. If quantum computers ever become a reality, 1993 work of Peter Shor [Sho1], [Sho2] shows that
there is a fast quantum algorithm to factor large numbers.

Forward search attack. If the collection of all possible messages is known, and is relatively small, then
the attacker need only encrypt all the messages until a match is found. For example, if the message is known
to be either ‘yes’ or ‘no’, then only one encryption need be computed to know which is the plaintext. To
defend against this, messages should be padded by adding random bits at front and/or back.

Small decryption exponent attack: To save some computation time, one might try to arrange so that
the decryption exponent is small. But if d < 1

3N1/4, then there is an efficient algorithm to recover this
decryption exponent! See [Wie]. In [Bo] it is speculated that using a decryption modulus less than

√
N may

be vulnerable to such attacks.

Small public exponent attacks: A traditional choice of encryption exponent e = 3 is insecure. Suppose
that Alice wishes to send the same secret message to several different people. If she does the obvious thing,
encrypting the message using each of their public keys and sending, then eavesdropper Eve collects all the
encrypted messages. If the number of messages is greater than or equal the encryption exponent e, then Eve
can recover the message. For example, if e = 3 then just 3 different encryptions are sufficient to recover
the message. More sophisticated attacks of this sort are Hastad’s broadcast attack and Coppersmith’s
short pad attack [Co2]. If the larger e = 216+1 = 65537 is used, these vulnerabilities seem to be eliminated.

Partial disclosure: When the (public) encryption exponent is small, partial disclosure of the decryption
key breaks RSA: [Bo]. From [BDF], the n/4 least significant bits of the (private) decryption key d, the entire
decryption key can be recovered in time linear in e ln2 e. This is related to a factorization result: given either
the n/4 highest or n/4 lowest bits of p, one can efficiently factor n = pq [Co2].

Timing, power attacks. Especially in situations such as smart cards where an adversary may have
virtually unlimited opportunities to do known-plaintext attacks and measurements, naive forms of RSA are
vulnerable to timing attacks, where the adversary times the computation, thereby finding the number
of exponentiations occuring in a decryption, thereby getting information on the decryption exponent [Ko].
Similarly, power attacks measure power consumption to acquire information about sizes of keys.

1.2 Diffie-Hellman key exchange

The discovery [DH] of the possibility of a key exchange procedure was a great surprise, even more so than
the notion of public-key cipher. The goal is that Alice and Bob, who have not met previously, establish a
shared secret using only an insecure channel to communicate. The eavesdropper Eve has greater computing
power than Alice and Bob, and hears everything that passes between them. We do suppose that Eve cannot
actively disrupt the communications, but, rather, is a passive eavesdropper.

Typically the shared secret would be used to create a session key, that is, a key for a faster symmetric cipher,
to be used just during the current communication session.

Again, a crucial mathematical point is that computing discrete logarithms modulo primes is relatively
difficult, while exponentiating integers modulo large primes is relatively easy. And, again, it is relatively

6

Paul Garrett: Cryptographic Primitives (March 26, 2007)

easy to find large primes in the first place. And there is the often-tacit assumption that we can generate
sufficiently many high-quality random numbers.

Alice and Bob agree on a large random prime p (at the very least ∼ 21024) and a random base g in the range
1 < g < p. These are public knowledge. Alice secretly chooses a random a in the range 1 < a < p and
computes A = ga % p. Similarly, Bob secretly chooses a random b in the range 1 < b < p and computes
B = gb % p. Alice sends A over the channel, and Bob sends B over the channel. So Alice knows p, g, a, A,B,
Bob knows p, g, A, b, B, and Eve knows p, g, A,B.

Alice computes KA = Ba % p
Bob computes KB = Ab % p

They have computed the same thing, since
KA = (Ba) = (gb)a = (ga)b = Ab = KB mod p

Alice and Bob have a shared secret which it is apparently infeasible for Eve to obtain.

The feasibility for Alice and Bob follows from the feasibility of exponentiating via the square-and-multiply
algorithm, and the feasibility of probabilistic methods (e.g., testing for primality via Miller-Rabin (4.13))
for finding large primes. The infeasibility for the eavesdropper Eve depends (at least) upon the (apparent)
infeasibility of computing discrete logarithms.

2 Complexity

It is apparently unreasonable to demand absolute unbreakability of ciphers. It is far more reasonable, and
sufficient for real use, to require that it be infeasible for an attacker to break a system. As one would
anticipate, this is a context-dependent qualification.

2.1 Polynomial-time algorithms

A common description of the complexity of a computation is as runtime complexity, the number of bit
operations it takes. A bit is a 0 or a 1. A bit operation is the application of one of the 24 functions that
takes two bits as input and produces a single bit as output, or one of the 22 functions that takes a single bit
as input and produces a single bit output. The abstract model of a bit operation ignores the cost and/or
difficulty of reading and writing, and of moving bits among registers.

An algorithm is polynomial-time if the run-time is at most polynomial in the number of bits in the input
(with a polynomial independent of the input). This means that even in the worst-case scenario (for possibly
tricky or nasty inputs) the estimate must hold. It is entirely possible that most often even less time is used,
but the worst-case scenario is accounted for in this traditional terminology. Questions with polynomial-time
algorithms to answer them make up class P.

If the correctness of a guess at an answer to a question can be proven or disproven in polynomial time, then
the question is in class NP (Non-deterministic Polynomial time). This class of questions certainly contains
the class P (Polynomial time). It is widely believed that the class P is strictly smaller than the class NP,
but this is the main open question in complexity theory. Problems in P are considered easy, and those in
NP but not in P are considered hard. Ironically, since we don’t have a proof that P is strictly smaller than
NP, for now we have no proof that there are any hard problems in this sense.

A question A is reducible to another question B (in polynomial time) if there is a polynomial-time algorithm
to answer question A (for a given input) from an answer to question B (with related input). In this context,
a possibly unknown and unspecified process to answer B is an oracle for B. Surprisingly, it has been shown
that there are problems C in NP so that any problem in NP can be reduced to to C in polynomial time.

7

Paul Garrett: Cryptographic Primitives (March 26, 2007)

Such problems are NP-hard or NP-complete. (Finer distinctions can be made which make these two
phrases mean different things.)

In effect, Turing, Church, Post, Kleene, and others verified that computability is machine-independent (given a
sufficiently complicated computing machine). Similar considerations indicate that the notion of polynomial
time is machine-independent. Nevertheless, for practical purposes, the degree of the polynomial and the
constants appearing can have a great practical impact.

To avoid misunderstanding, it might be mentioned that discussion of manipulation of integers typically
tacitly assumes that they are re-written in binary. This re-writing, and conversion back to decimal, are both
polynomial-time, so this conversion does not affect qualitative conclusions about run-time.

It is easy to verify that the usual arithmetic algorithms involving Hindu-Arabic numerals are polynomial-
time. Especially for large-ish integers, there are several algorithms for multiplication which are faster than
the method taught in grade school. See [Kn]. However, the speed-ups don’t occur until the integers are
considerably larger than those used by schoolchildren. Indeed, direct experimentation seems to indicate
that the overhead for clever algorithms makes these inferior to optimized machine-code implementations of
classical algorithms, until the integers become larger than current cryptographic uses demand.

It is more common to worry about time (i.e., runtime) rather than space (i.e., memory used), but this concern
may be simply an artifact of the apparent fact that in practice most bottlenecks are run-time rather than
memory.

If an algorithm does not (in its worst case) run in polynomial time, then (by default) we say it runs in
exponential time. Note that this is measured in terms of input size.

Thus, for example, recall that the naive trial-division test for primality of a number N uses roughly
√

N
steps to prove that N is prime (if it is). The size n of N as input is n = ln2 N , and

√
N = 2ln2 N/2 = 2n/2

This grows faster than any polynomial in n. That is, trial division is an exponential algorithm.

2.2 Probabilistic algorithms

The notion that an algorithm could have random elements is surprising. Even more surprising is that for
some important problems there are much faster probabilistic algorithms than deterministic ones. There is
some charming and colorful terminology for probabilistic algorithms. A Monte Carlo algorithm always
yields an answer (in polynomial time), but this answer has only a probability of being correct. It is yes-
biased if a ‘yes’ answer is true with some probability, but a ‘no’ answer is always correct. (Similarly for
no-biased Monte Carlo algorithms.) A Monte Carlo algorithm is either yes-biased or no-biased, so ‘half’
its answers are certain.

The pseudo-primality tests mentioned in 4.13 are yes-biased Monte Carlo algorithms, since a ‘yes’ answer
(asserting primality) may be wrong, but a ‘no’ answer (asserting compositeness) is always correct. This
holds for the simplest test, the Fermat test, and also for the Miller-Rabin test for strong pseudoprimality.

A Las Vegas algorithm has expected run time which is polynomial, so may occasionally fail to give an answer
(in polynomial time). But if it does give an answer for a particular input (after whatever time) then the
answer is correct.

A less standard usage is that an Atlantic City algorithm gives a correct answer at least 3/4 of the time,
and runs in polynomial time. (The number 3/4 can be replaced with any probability above 1/2.) Atlantic
City algorithms are two-sided versions of Monte Carlo algorithms.

There is notation for these classes of algorithms. The class ZPP (Zero-error Probabilistic Polynomial time)
consists of questions answerable by a (polynomial-time) Las Vegas algorithm. The class RP (Randomized

8

Paul Garrett: Cryptographic Primitives (March 26, 2007)

Polynomial time) consists of those questions answerable in polynomial time by a Monte Carlo method.
Questions answerable by polynomial-time Atlantic City algorithms are in BPP (Bounded-error Probabilistic
Polynomial time).

2.3 Subexponential algorithms

At this time, the best known algorithms for factoring integers into primes, for computing discrete logarithms,
and for other important computations, are not polynomial-time, but are nevertheless significantly faster than
literal exponential-time. We can quantify this distinction. The class of L(a, b) of algorithms consists of those
whose runtime for input of size n is

O(e(b+ε)) · na (ln n)1−a

) (for every ε > 0)

with b ≥ 0, 0 ≤ a ≤ 1. The union ⋃
0<a<1, 0<b

L(a, b)

for all 0 < a < 1, 0 < b is the collection of subexponential algorithms.

E.g., for b ≥ 0 L(0, b) is the collection of polynomial-time algorithms with runtimes O(nb). On the other
hand, L(1, b) is genuinely exponential-time algorithms with runtimes O(ebn).

Currently, the best algorithms currently known for factoring and the best algorithms for computing discrete
logarithms in Z/pe (p prime) are (conjecturally) in a class

L(
1
3
, 1.923)

See [Co1] for factoring and [A] for discrete logs in Z/pe. These run-time estimates are conjectural since
they rely upon plausible but unproven hypotheses on the distributions of various special sorts of integers.
It is a striking coincidence that the two conjectural runtimes are the same. For less elementary abstract
discrete logarithm problems, such as on elliptic curves, no runtime this low is known. This gives a technical
advantage to elliptic curve ciphers, and this margin is important in practice.

2.4 Kolmogoroff complexity

Solomonoff, Chaitin, and Kolmogorov independently developed a version of complexity, program (-length)
complexity, which emphasizes program length rather than runtime. This notion of complexity affords a
useful perspective on (pseudo) random numbers.

The idea is that a rather special string of characters such as

110110110110110110110110110110110110110110110110110

can be described much more briefly than by listing the characters, as ‘17 copies of 110’. By contrast, the
string

111011110111010111111111110001000110000010011000110

admits no obvious simpler description than to just list all the characters directly.

From a probabilistic viewpoint, one might pretend that every string of (for example) 51 0’s and 1’s is equally
likely to be chosen ‘at random’. However, this is naive. For example, of the two strings above, the second is
plausibly ‘random’, but the first is not. That is, we would not be suspicious if we were told that the second
one was chosen ‘at random’ (whatever this means). However, the first is ‘too structured’ and we would doubt
that it was ‘chosen at random’.

9

Paul Garrett: Cryptographic Primitives (March 26, 2007)

We can modify our notion of ‘random string of characters of length n’ to incorporate the idea that a truly
random object should not have a description any simpler than the thing itself. This makes more legitimate
our objection to the 17 copies of the string 110, while still admitting the other string as random, since no
simpler description string is obvious.

An informal definition of the Kolmogorov complexity of an object is the length of the shortest description
of the object. Here the object itself is a description of itself. The issue is whether there is a shorter description
of it than just it itself, where ‘description’ certainly may include a program (in some language, running on
some machine) which generates the thing.

Of course this pseudo-definition makes sense only in relation to a given descriptive apparatus. Otherwise we
are vulnerable to the usual paradoxes concerning such things as ‘the putative first integer not describable in
fewer than twelve words’.

It can be proven, not surprisingly, after making things more precise, that ‘most’ strings of characters of a
given length n have no description significantly shorter than n, so that the shortest description of a typical
one is achieved just by writing it out. A counting argument essentially suffices.

A necessary preliminary to a serious treatment of this subject is proof that program/description length
only depends in a rather shallow manner upon the machine or descriptive apparatus. [LV] gives a thorough
introduction to many facets of this subject, with historical and conceptual background.

2.5 Linear complexity, LFSRs, LCGs

The family of LFSRs (linear feedback shift registers) and LCGs (linear congruential generators) generate
potentially infinite streams

b0, b1, b2, . . .

of values bi from a fixed finite alphabet, specified by very simple rules and short lists of parameters. This
sharply circumscribed model of generation of an output stream can be viewed as a much simpler restricted
cousin of Kolmogoroff (program) complexity. These LFSRs and LCGs incidentally give examples of pRNGs
(pseudo-random number generators) unsuitable for cryptographic uses, though useful in other situations if
used carefully.

For example, a linear feedback shift register (LFSR) most often uses alphabet Z/2, is specified completely
by a length n and coefficients c1, c1, . . . , cn ∈ Z/2, and the values bi with i ≥ n are produced by a recursion

bi = c1bi−1 + c2bi−2 + . . . cnbi−n

Thus, the seed consisting of the first n values

seed = (b0, b1, . . . , bn−1)

together with the n coefficients ci completely determine the output stream. In this simple case of alphabet
Z/2, the non-zero coefficients are necessarily 1, so it suffices to tell merely the indices i such that ci 6= 0.
Engineering terminology of circuit diagrams often refers to indices with non-zero coefficients as taps.

The elementary features of LFSRs are easily analyzed by linear algebra: the matrix giving the linear
recurrence relation

c1 c2 c3 . . . cn−1 cn

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
0 0 0 0
0 0 . . . 1 0

bi

bi−1

...
bi−n+2

bi−n+1

=

bi+1

bi

...
bi−n+3

bi−n+2

10

Paul Garrett: Cryptographic Primitives (March 26, 2007)

has (as usual) characteristic polynomial

P (x) = xn + c1x
n−1 + c2x

n−2 + . . . + cn−1x + cn

where we take advantage of the fact that the characteristic is 2 to ignore signs.

Since the internal state
(bi−n+1, bi−n+2, . . . , bi−1, bi)

has 2n − 1 possible non-zero values when all bj are in F2, this internal state will return to its initial state
in at most 2n − 1 steps. This maximum is achieved when the degree-n characteristic polynomial P (x) is
primitive, meaning that

x2n−1 = 1 mod P (x)

but
x` 6= 1 mod P (x)

for 1 ≤ ` < 2n − 1. Since the multiplicative group F×q of a finite field Fq is cyclic, the primitive polynomials
P (x) in F2[x] are exactly the irreducibles (over F2) of generators for F×2n . There are ϕ(2n−1) such generators
(with Euler’s totient function ϕ (4.5)), and thus there are ϕ(2n − 1)/n such primitive polynomials of degree
n. Similar counting arguments apply generally.

The further issue of finding sparse primitive polynomials (i.e., with very few non-zero coefficients) is of
obvious interest for speed-up of computation. The extreme case of trinomials is already non-trivial. See
[Go].

The linear complexity of a stream of outputs in {0, 1} is the smallest value of n such that the outputs can
be produced by a length n LFSR.

Unlike other notions of complexity which are not effectively computable, the linear complexity of a stream
of bits is computable in polynomial time (for given length of bit stream). This is the Massey-Berlekamp
algorithm [Ma], which computes the constants for a LFSR of length n given just 2n initial bits. Since
presumably any LFSR used in practice would be essentially primitive, the output bitstream would give
2n − 1 bits before repeating. Thus, the number (i.e., 2n) of (initial) bits needed to determine the constants
is polynomial in the logarithm of the size of the output (i.e., 2n − 1). The procedure of finding a LFSR to
generate a given bit stream is also called shift register synthesis.

Linear congruential generators (LCGs) generate streams of values

b0, b1, . . .

in a finite field Fq given the initial state b0 and given structure constants A,B in Fq, by

bi = Abi−1 + B

Since (
A B
0 1

) (
bi

1

)
=

(
bi+1

1

)
these also admit an elementary analysis by linear algebra, and, therefore, are inappropriate for cryptographic
use.

2.6 Quantum algorithms

One should be aware that quantum cryptography and quantum computing are very different things. Quantum
crypto is already feasible, if not widely used. Quantum computing is not yet publicly known to be feasible.

11

Paul Garrett: Cryptographic Primitives (March 26, 2007)

The practical impact of the feasibility of quantum cryptography is modest, given its complication and given
the efficacy of other more familiar cryptographic schemes.

That is, it does appear that practical quantum channels can be and are being used to communicate
with absolute security, in a certain qualified sense. In very rough terms, these are channels designed to be
very sensitive to quantum effects, such as changes in state due to observation. The idea is that if anyone
eavesdrops on (observes) the channel, this will alter the message for reasons of basic quantum mechanics.
Thus, detection of eavesdropping is certain.

A less practical but more dramatic sort of quantum cryptography is quantum teleportation, i.e., using
the Einstein-Podolsky-Rosen effect [EPR], related to Bell’s theorem [Be]. The idea is that if two particles
have quantum states which are ‘entangled’, and then they are separated widely in space, a change of state
in one (perhaps caused by an observation being made) instantly causes a corresponding change of state in
the other. Information has traveled faster than light, and without interaction with any intervening medium.
If we could really do this reliably, quantum teleportation would provide absolutely secure communication of
a novel type.

There is only very primitive progress (in the public domain, at least) toward building a quantum computer.
While transistors make use of quantum effects, designers intend for these circuits to behave compatibly with
macroscopic objects, avoiding the peculiarities of quantum behavior. But by the 1980s exploitation rather
than avoidance of quantum effects had been explicitly considered. For example, R. Feynman noted the
infeasibility of using classical computers to efficiently simulate quantum events.

The possible impact of hypothetical quantum computers was unclear until about 1993, at which time Peter
Shor’s algorithm for factoring large numbers quickly on a quantum computer [Sho1], [Sho2] decisively
illustrated the cataclysmic changes that could occur in computation. For example, RSA would be
irretrievably broken. Similarly, the discrete log problem in (Z/p)× (p prime) has a polynomial-time quantum
algorithm.

Another example of a quantum algorithm which transcends human intuition based on macroscopic processes
is Grover’s algorithm, which allows a search of an unstructured collection of n things in

√
n time. Even for

ciphers not dependent upon number theoretic issues with polynomial-time quantum algorithms, widespread
availability of Grover’s algorithm would speed up brute-force attacks, necessitating substantial increases in
key lengths in all ciphers.

In the early 1990s enthusiasts were optimistic, but (public-domain) progress toward building a sufficiently
large quantum computer has been much slower than hoped. For example, in 2000 [KLMT] reported successful
manipulation of 3 qubits, then 5 qubits, and now 7 qubits. In all cases they used nuclear magnetic resonance
(NMR).

Even if we imagine that quantum computers will be constructed some time soon, low-level traditional
computational techniques must be rebuilt. For example, from [PB], it is impossible to delete a copy of
an arbitrary quantum state perfectly. While a classical computer can delete information, and can undo the
deletion using a copy, a quantum computer cannot delete quantum information.

A technical issue which has effectively disappeared for classical computers is (internal) error correction, and
fault-tolerant computing. Nowadays classical computers are sufficiently reliable (in hardware) that little
internal redundancy is built in. By contrast, the very nature of quantum effects exploited by (hypothetical)
quantum computers will require development of quantum error-correction techniques. As a sample, see [CS].

It is unclear whether there will ever be quantum computers accessible to ordinary people. Indeed, one might
speculate upon whether ordinary people would be allowed to own them.

3 Background on Symmetric Ciphers

12

Paul Garrett: Cryptographic Primitives (March 26, 2007)

Until the 1960’s, the only ciphers were symmetric ciphers, meaning that knowledge of the encryption key
is equivalent to knowledge of the decryption key (modulo feasible computations). It is worthwhile to see
why certain old symmetric ciphers fail, as these failures illustrate possible difficulties for the asymmetric
(public-key) cipher situation as well. Further, many contemporary applications of public-key ciphers also
make substantial use of (modern) symmetric ciphers, so it would be naive to discuss public-key ciphers
without some acknowledgment of symmetric ciphers.

3.1 Bad Old Symmetric Ciphers

Cryptograms (substitution ciphers), are broken by analysis of letter frequences and small words in English
(or other alphabet-based natural languages). The fact that these occur in many newspapers as puzzles
should already suggest that they are completely insecure. Shift ciphers and affine ciphers are special cases
of cryptograms. Cryptograms give an immediate example of a cipher in which the key space (i.e., set of all
possible keys) is fairly large (26! ∼ 4 · 1026) but the cipher is nevertheless insecure.

Anagrams (permutation ciphers) can be broken by multiple anagramming. This means to consider two (or
more) ciphertexts encrypted with the same key, to attempt simultaneous decryption, rejecting rearrangements
if prohibited pairs or triples of letters occur in either putative decryption. In a language such as English
where many letter combinations are rare or effectively prohibited, this procedure is surprisingly effective.
Again, anagrams are ciphers with unlimited key space but nevertheless insecure.

It is worth noting that an invidious systemic weakness in many classical ciphers is that they admit incremental
or gradual decryption, wherein information about the key or plaintext is found a little bit at a time. A good
cipher does not allow this, as it is a fatal weakness. And note that various forms of information leakage in
naive implementations of modern ciphers give an opening to incremental decryption. From the viewpoint
of computational feasibility, a cipher which permits incremental decryption in effect allows an attacker to
replace a search through an unstructured set of (for example) 2n possible decryptions with a search through
a binary tree with 2n leaves, eliminating branches of the tree at each step, rather than single leaves. Thus,
rather than the 2n steps for the unstructured case, an attacker may face only n steps to break the cipher.

Vigenère ciphers are interesting polyalphabetic ciphers, meaning that they may encrypt the same
plaintext character differently depending upon its position. They do not change the position of characters
in the plaintext. A Vigenère cipher encrypts a stream

x0 x1 x2 . . .

from an alphabet Z/N using a key k0, . . . , kn−1 of length n (from Z/N) to the ciphertext

..., yi = (xi + ki % n), . . .

That is, a potentially infinite sequence is made from the key material by forcing it to repeat, and then the
plaintext sequence and periodic key sequence are added termwise. These ciphers do not admit quite so
obvious an attack as cryptograms and anagrams, but, nevertheless, are completely broken. An attack using
trigrams due to Kasiski as early as 1880 breaks the cipher, as does the even-stronger Friedman attack from
the early 20th century (see [G] or [St], for example), unless the key is random and nearly as long as the
plaintext itself. Again, Vigenère ciphers have an indefinitely large key space, but this fails to assure security.

Enigma and Purple ciphers were WWII ciphers which were broken due to a combination of key distribution
flaws, human error, and modest keyspace size. It is worth noting that the break would have been impossible
without Alan Turing’s innovations in automated computing. One broader lesson from those episodes is that,
even though a hardware or software improvement may not convert an exponential-time computation to a
polynomial-time computation, reduction by a large constant factor may be decisive in practical terms.

3.2 One-time pads and their failure modes

13

Paul Garrett: Cryptographic Primitives (March 26, 2007)

The OTP (One-Time Pad) seems to be the only cipher provably secure in absolute terms, i.e., not relative
to any unproven assumptions about feasibility of computation. An OTP for a message of length ≤ n in
alphabet Z/2 uses a random key

k0, k1, . . . , kn−1

of length n, and encrypts a binary plaintext

x0, x1, . . . , xn−1

to ciphertext
..., yi = xi + ki, . . . (all in Z/2)

Each key can be used only once. This set-up obviously admits variation. The binary case is sometimes called
a Vernam cipher.

The proof of security is simply that the conditional probability that the plaintext is a particular message
given the ciphertext is the same as the unconditional probability of the message (i.e., without knowing the
ciphertext). In effect, this is the definition of the randomness of the key. Intuitively, an attacker learns
nothing about the plaintext from seeing the ciphertext.

The operational difficulty is the non-reusability of the key(s), and the requirement that the key(s) be random.
Indeed, the failure modes of the OTP are catastrophic. For example, if a periodic key is used then the OTP
becomes a Vigenère cipher, and is broken. If a key is reused, the two messages together effectively create a
Vigenère cipher, again creating a break. For that matter, creating securely-random keys is a non-trivial task
(9.6).

Thus, key distribution and key generation are critical bottlenecks for use of OTPs. Nevertheless, because
of the security when used properly, OTPs are used in critical applications such as nuclear launch security,
and highest-level diplomatic communications. The infrastructure costs are too high for more mundane uses.

3.3 DES and AES

The DES (Digital Encryption Standard) from 1976 was a stop-gap measure which accidentally became a de
facto standard for 30 years, at least in the United States. It is a symmetric cipher whose antecedent Lucifer
was designed at IBM, and subsequently tweaked at NSA for reasons which were not explained at the time,
and perhaps never quite explained fully. The role of the NSA (perhaps unduly) compromised the world’s
opinion of this modern cipher. It was never publicly broken structurally, but its too-small keyspace made
it obsolete by rendering it vulnerable to brute-force attacks [EFF]. [L1] is a more substantial review of the
story of DES.

The new standard, the AES (Advanced Encryption Standard), Rijndael, was chosen in late 2000 as a
replacement, from among finalists MARS from IBM, RC6 from RSA Laboratories, Rijndael from Joan
Daemen and Vincent Rijmen [DR], Serpent from Ross Anderson, Eli Biham, and Lars Knudsen, Twofish
from Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson [ST]. The
NIST (National Institute of Standards) had stipulated that any patent rights to a candidate cipher would
have to be relinquished if the cipher were chosen as the new standard. [L2] discusses AES in a fashion
parallel to the discussion of DES in [L1].

DES uses a 64-bit key, of which 8 bits are error-check bits, so it actually has a 56-bit key. The new standard,
AES, was mandated by NIST to have 128-bit, 192-bit, and 256-bit keys, and available block sizes of 128,
192, and 256 bits. DES encrypts blocks of 64 bits of plaintext at a time. The AES encrypts blocks of 128,
196, or 256 bits, as mandated.

It is not unreasonable to suppose that the NSA was ahead of public cryptanalytic technique, and in particular
was aware of two ‘modern’ cryptanalytic attacks: differential cryptanalysis and linear cryptanalysis,
beyond brute-force attacks. Very roughly, differential cryptanalysis makes a systematic study of how small

14

Paul Garrett: Cryptographic Primitives (March 26, 2007)

changes in plaintext affect the ciphertext. Linear cryptanalysis tries to approximate the effect of encryption
by linear functions. These and other attacks can be viewed as aiming to effectively demonstrate that the
complexity of a cipher is significantly lower than intended. In either case, any detectable pattern allows
an attacker increased efficiency. See [St] for a readable account of both these techniques. Differential
cryptanalysis was developed by Biham and Shamir [BS1], [BS2], [BS3]. Linear cryptanalysis by Matsui
[Mat1], [Mat2]. The analysis of Twofish in [ST] also gives clear examples of these attacks.

We give a rough description of DES for contrast both to AES and to public-key ciphers. A DES encryption
consists of 16 rounds, meaning repetitions of a simpler process. Each round is Feistel network, described
just below. Many modern symmetric ciphers are composed of rounds each of which is a Feistel network.
Rijndael is unusual in that its rounds are not Feistel networks.

A Feistel network is simple and gives a function guaranteed to be invertible and to be its own inverse. Fix
a positive integer n, which would be 32 in the case of DES. Given a string of 2n bits, break them into two
parts, the left and right halves, L and R. View L and R as vectors of length n with entries in F2 = Z/2.
For any function f that accepts as inputs n bits and produces an output of n bits, the corresponding Feistel
network Ff takes two n-bit pieces L and R as inputs, and produces 2n bits of output by

Ff (L,R) = (L + f(R), R)

where + is vector addition in Fn
2 . The key property of a Feistel network is the obvious feature that Ff is

invertible and is its own inverse. Each round of DES is an enhanced version of the Feistel network we just
described, with a specific choice of the function f , depending on the key.

In DES, at the very outset, the 64-bit key has every eighth bit removed, leaving just 56 bits of key material.
An important feature of DES (as with most symmetric ciphers) is that each round uses a different 48-bit
subkey of the 56-bit key. The description of the round subkeys is key scheduling, and is a critical feature
of any cipher. For each round of DES, the key is broken into two 28-bit halves, each of which is shifted left
(with wrap-around) by either 1 or 2 bits, depending upon which round we’re in, by an irregular pattern which
we’ll suppress. Then the shifted batch of 56 bits is mapped to 48 bits by a ‘compression permutation’
(it’s not invertible). The compression permutation is the same for each round, though we won’t give it here.
So the result of the initial key permutation, with the round-dependent shifts by 1 or 2 bits, followed by the
compression permutation, produces a 48-bit subkey for each of the 16 rounds.

As indicated above, each round of DES manipulates halves of the text, in a manner that depends on the
round subkey. Let Li be the left half in the ith round, and let Ri be the right half in the ith round. The
formula to get from one round to the next is of the form

(Li, Ri) = (Ri−1, Li−1 + f(Ri−1))

where f depends on the ith subkey. That is, in addition to the Feistel trick we interchange halves of the
text, so that both halves will get obscured in the course of several rounds. We must describe the function f
and how it depends on the round subkey.

For each round, the right half Ri−1 has applied to it a fixed (rather simple) ‘expansion permutation’
or E-box, which accepts 32-bit inputs and creates 48-bit outputs, given by a random-looking formula we’ll
suppress. The pattern is not very complicated, but does have the critical effect of allowing one bit of the
text to affect more than one bit of the expanded version. This is an avalanche effect. At each round, the
48-bit output from the E-box is added to the 48-bit subkey for that round, both treated as vectors in F48

2 .

The most serious and mysterious part of DES, critical to security, is the application of the substitution
boxes, or S-boxes to the 48 bits coming from adding the subkey to the output from the E-box. There are
8 S-boxes, each of which takes a 6-bit input and produces a 4-bit output. The 48 bits are broken into 8
pieces of 6 bits each and fed to the S-boxes. The outputs are concatenated to give a 32-bit output. Each of
the S-boxes is given by an input-output table. (The explicit listing of these would be unenlightening, and
we resist the temptation to prove the point.)

15

Paul Garrett: Cryptographic Primitives (March 26, 2007)

After all 16 rounds, not exchanging left and right halves after the last (16th) round, a final permutation
is applied to the text. The output is the completed ciphertext. Happily, because of the Feistel network
property, and by the relatively simple choice of the initial and final permutation, exactly the same process
(with the same key) decrypts.

The details we’ve suppressed seem to admit no simple description, which is to say that there appears
to be no clarifying underlying pattern offering an explanation. While possibly frustrating from a certain
viewpoint which effectively believes in unlimited compressibility of description, from a Kolmogoroff (program)
complexity viewpoint the situation is reasonable, or even desirable in terms of resistance to cryptanalytic
attacks. That is, it might be argued that the ineffability of the details of DES (as opposed to its broad
description as 16 rounds of a Feistel network) is essential to its security.

Once more, it appears that DES eventually failed only because its keyspace was too small, not because of
any (public-knowledge) structural weakness. It is also true that its block size was small enough so that, with
vastly increased machine capabilities, one could contemplate dictionary attacks if DES were operated in the
most naive mode (which no cipher should be).

AES, Rijndael: Of all the AES candidates, Rijndael is/was the most mathematically structured. Rijndael
can accommodate key sizes of 128, 192, or 256 bits (versus 56 for DES). It acts on plaintexts of block sizes
128, 192, or 256 bits. Rijndael is composed of rounds, with 10, 12, or 16 rounds depending on the key size.
Each round, rather than being a Feistel network, has four parts:

State −→ ByteSub(State) = Affine(Inverse(State))

State −→ ShiftRow(State)

State −→ MixColumn(State) (except in the final round)

State −→ AddRoundKey(State)

described in more detail below. (These names are used in the semi-official Java description/implementation
of Rijndael.)

First, whatever the block size, the 128, 196, or 256 bits are grouped into bunches of 8 bits as bytes, and then
read into a 4-by-n matrix, where n is 4, 6, or 8, respectively.

The ByteSub operation acts on each byte of the text, and is the analogue of the S-boxes in DES and many
other ciphers. The Inverse operation is inversion in the finite field F28 with 28 elements, modeled as F2[x]
modulo the irreducible (‘Rijndael’) octic

x8 + x4 + x3 + x + 1

and taking representatives which are polynomials of degree less than 8. The 8 bits are taken as the coefficients
in F2 of such a representative polynomial. The Affine map is the second half of Rijndael’s S-box, consisting
of the F2-affine map

x −→ Ax + b

on F8
2 where

A =

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

b =

1
1
0
0
0
1
1
0

and now a byte is viewed as an element of F8

2. Note that A is a circulant matrix.

16

Paul Garrett: Cryptographic Primitives (March 26, 2007)

The ShiftRow and MixColumn operations are more elementary diffusion operations. ShiftRow acts on the
4-by-n matrix of bytes by leaving the top row alone, shifting the second row to the right by 1 (with wrap-
around), shifting the third row to the right by 2 (with wrap-around), and the bottom row by 3 (with wrap-
around). The MixColumn operation acts on each column of the 4-by-n matrix of bytes, by left multiplication
by the (circulant) matrix

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

where the entries are in hexadecimal (i.e., base 16).

The AddKey operation is, as usual, simply an addition of the text with the round subkey (as vectors over F2).
The non-trivial part of the keyed part of each round is key scheduling. In the case of Rijndael, key scheduling
is the least comprehensible and least obviously structured of the whole, using an irregular recursion which
invokes hard-coded constants. See the AES homepage [AES] for these details.

4 Review of Number Theory

The algorithms here are well-known and are discussed in many sources. We emphasize that the fundamental
arithmetic operations, namely addition, subtraction, multiplication, and division-with-remainder, all require
a number of single-digit operations (or, essentially equivalently, bit-operations) at most polynomial in the
number of digits of the integers. Optimization of these operations is not our immediate concern, but can
have a practical impact (see [Ber], [Kn]).

4.1 Euclidean algorithm

To compute gcd’s, and to compute e−1 mod m, use the familiar Euclidean algorithm. To compute gcd(x, y):
Initialize X = x, Y = y, R = X mod Y
while R > 0

replace X by Y
replace Y by R
replace R by X mod Y

When R = 0, Y = gcd(x, y)

To compute gcd(x, y) takes at most 2 ln2 y steps, if x ≥ y, since one can readily show that in any two steps
the sizes of the variables X, Y decrease by at least a factor of 2.

17

Paul Garrett: Cryptographic Primitives (March 26, 2007)

4.2 Extended Euclidean algorithm

To compute multiplicative inverses e−1 mod x with gcd(e, x) = 1, minimizing memory use, rewrite each of
the steps in the previous as (

0 1
1 0

) (
1 −q
0 1

) (
X
Y

)
=

(
new X
new Y

)
where R = X − qY with |R| < Y . Thus, we obtain an integral matrix

(
a b
c d

)
with determinant ±1 such

that (
a b
c d

) (
x
e

)
=

(
gcd(x, e)

0

)
When gcd(x, e) = 1, we have

ax + be = 1

and thus
b = e−1 mod x

The two integers a, b with that property ax + be = 1 are useful in a computational form of Sun-Ze’s
theorem (the so-called Chinese Remainder Theorem): given x and e relatively prime, and arbitrary s, t, the
simultaneous system of congruences {

y = s mod x
y = t mod e

has a unique solution y modulo x · e, given by

y = ax · t + be · s mod xe

4.3 Square-and-multiply fast exponentiation

To compute xe % m, keep track of a triple (X, E, Y) initialized to be (X, E, Y) = (x, e, 1). At each step of
the algorithm:

For E odd replace Y by by (X × Y) % m and replace E by E − 1
For E even replace X by (X ×X) % m and replace E by E/2
When E = 0 the value of Y is xe % m

This algorithm takes at most 2 ln2 E steps.

4.4 Fermat’s Little Theorem

This asserts that for p prime, for an arbitrary integer b

bp = b mod p

This has an elementary proof by induction on b, using properties of binomial coefficients, but also is a special
case of Euler’s theorem (4.5).

The converse of Fermat’s theorem is false, but not very false. The only non-prime n < 5000 with
2n = 2 mod n are

341, 561, 645, 1105, 1387, 1729, 1905, 2047

2465, 2701, 2821, 3277, 4033, 4369 4371, 4681

18

Paul Garrett: Cryptographic Primitives (March 26, 2007)

Requiring also 3n = 3 mod n leaves

561, 1105, 1729, 2465, 2701, 2821

Requiring also 5n = 5 mod n leaves

561, 1105, 1729, 2465, 2821

Compared with 669 primes under 5000, this is a false positive failure rate of less than 1%. We say that n is
a Fermat pseudoprime base b if bn = b mod n. There are only 172 non-prime Fermat pseudoprimes base
2 under 500,000 versus 41,538 primes, a false positive rate of less than 0.41% There are only 49 non-prime
Fermat pseudoprimes base 2 and 3 under 500,000, a false positive rate of less than 0.118% There are only
32 non-prime Fermat pseudoprimes base 2, 3, 5 under 500,000:

561 1105 1729 2465 2821 6601 8911 10585
15841 29341 41041 46657 52633 62745 63973 75361
101101 115921 126217 162401 172081 188461 252601 278545
294409 314821 334153 340561 399001 410041 449065 488881

Sadly, adding more such requirements does not shrink this list further. n is a Carmichael number if it is
a non-prime Fermat pseudoprime to every base b. In 1994 Alford, Granville, and Pomerance [AGP] showed
that there are infinitely-many Carmichael numbers. And it appears that among large numbers Carmichael
numbers become more common. It is relatively elementary to prove that a Carmichael number must be odd,
square-free, and divisible by at least three primes.

4.5 Euler’s Theorem

This is a generalization of Fermat’s Little Theorem to composite moduli. Let ϕ(n) be Euler’s totient function,
which counts the integers ` in the range 1 ≤ ` ≤ n which are relatively prime to n. For gcd(x,m) = 1

xϕ(n) = 1 mod n

This is an immediate corollary of Lagrange’s theorem, applied to the multplicative group Z/n× of Z/n.

Euler’s theorem proves that RSA decryption works, using ϕ(pq) = (p− 1)(q − 1): with y = xe mod n,
letting ed = 1 + M ·ϕ(n), all equalities modulo n,

yd = (xe)d = x1+M ·ϕ(n) = x · (xϕ(n))M = x · 1M = x mod n

4.6 Primitive roots, discrete logarithms

A primitive root b modulo m is a generator for the group (Z/m)×. Existence of a primitive root modulo m
is equivalent to the cyclic-ness of the multiplicative group (Z/m)×. For p prime, (Z/p)× is cyclic, because
Z/p is a field. Relatively elementary arguments then show that there are primitive roots modulo p` and 2p`

for p > 2 prime, and modulo 4. Non-existence of primitive roots for all other moduli is easier. This was
understood by Fermat and Euler.

Because of the cyclic-ness of (Z/p)× for p > 2 prime, we have Euler’s criterion: b ∈ (Z/p)× is a square
modulo p if and only if

b(p−1)/2 = 1 mod p

An analogous result holds for qth powers when p is a prime with p = 1 mod q.

19

Paul Garrett: Cryptographic Primitives (March 26, 2007)

Modulo a prime p, for a fixed primitive root b, for x ∈ (Z/p)× the discrete logarithm or index of x
modulo p base g is the integer ` (uniquely determined modulo p− 1) such that

x = b` mod p

4.7 Futility of trial division

Trial division attempts to divide a given number N by integers from 2 up through
√

N . Either we find a
proper factor of N , or N is prime. (If N has a proper factor ` larger than

√
N , then N/` ≤

√
N .) The

extreme case takes roughly
√

N steps. A crude estimate shows the hopelessness of factoring integers by trial
division in the range relevant to public-key cryptography. If N ∼ 10200 is prime, or if it is the product of
two primes each ∼ 10100, then it will take about 10100 trial divisions to discover this. (Minor clevernesses
do not seriously reduce this number.) If we could do 1012 trials per second, and if there were a 1012 hosts
on the internet, with < 108 seconds per year, a massively parallel trial division would take 1068 years. Even
if CPU speeds were to increase by a factor of 1010, this would still leave 1058 years.

Concrete examples of trial division runtimes. Someone who had not been paying attention might
still think that trial division does succeed. Some very specific examples, done on a 2.44 Gigahertz machine,
coded in C++ using GMP:

1002904102901 has factor 1001401 (‘instantaneous’)
100001220001957 has factor 10000019 (3 seconds)
10000013000000861 has factor 100000007 (27 seconds)
1000000110000000721 has factor 1000000007 (4 minutes)

Nowhere near 10200, and the runtimes are ballooning already.

4.8 Quadratic reciprocity

For an odd prime p, the quadratic symbol or Legendre symbol (b/p)2 is

(
b

p

)
2

=

 0 if gcd(b, p) > 1
1 if x2 = b mod p has a solution x and gcd(b, p) = 1

−1 if x2 = b mod p has no solution x and gcd(b, p) = 1

For arbitrary integers n factored as
n = 2e0 pe1

1 . . . pek

k

with odd primes pi, the extended quadratic symbol or Jacobi symbol is(
b

n

)
2

=
(

b

p1

)e1

2

. . .

(
b

pk

)ek

2

While for p prime the quadratic (Legendre) symbol (b/p)2 tells whether or not b is a square modulo p, this
is not the case for non-prime n. Thus, the Jacobi symbol is of interest mostly as an auxiliary gadget useful
in computation of Legendre symbols. Its utility in this auxiliary role is due to the fact that Jacobi symbols
can be computed quickly using quadratic reciprocity (4.8).

With this notation, Euler’s criterion for b to be a square modulo prime p is(
b

p

)
2

= b(p−1)/2 mod p

20

Paul Garrett: Cryptographic Primitives (March 26, 2007)

From this follows the basic multiplicative property of quadratic symbols (for prime p)(
ab

p

)
2

=
(

a

p

)
2

·
(

b

p

)
2

The multiplicative property for the Jacobi symbols is analogous: For arbitrary odd integer n, and for a and
b relatively prime to n, (

ab

n

)
2

=
(a

n

)
2
·
(

b

n

)
2

This follows directly from considering a prime factorization of n and invoking the multiplicativity of the
Legendre symbol.

The Law of Quadratic Reciprocity is the first result of modern number theory. Lagrange had conjectured
it in the late 18th century, but it was not proven until 1796, by Gauss. From a naive viewpoint, there is no
reason why any such thing should be true. But, by now, 200 years later, this result has been well assimilated
and is understood as the simplest representative of a whole family of reciprocity laws, themselves part of
classfield theory, itself has been assimilated into the Langlands program. Quadratic reciprocity asserts that,
for distinct odd primes p and q, (

p

q

)
2

= (−1)(p−1)·(q−1)/4

(
q

p

)
2

Also there are the supplementary laws (
−1
p

)
2

= (−1)(p−1)/2

(
2
p

)
2

= (−1)(p
2−1)/8

Granting this, we have an algorithm for telling whether x2 = c mod p is solvable or not, although this does
not find the square root if it exists. The difference between proving existence of the square root and the
harder task of finding it is parallel to the difference between proving that a number fails to be prime and
actually finding a proper factor. Indeed, apart from taking out powers of 2, there is no reason to factor into
primes the inputs to these quadratic symbols! This is especially relevant for large integers.

As a corollary, we have(Quadratic Reciprocity for Jacobi symbols): For m,n odd positive integers(m

n

)
2

= (−1)(m−1)(n−1)/4
(n

m

)
2

4.9 The Prime Number Theorem

This theorem asserts that the number π(x) of primes below x has the asymptotic property

π(x) ∼ x

lnx

meaning that

lim
x−→∞

π(x)
x/ lnx

= 1

This was proven independently in 1896 by Hadamard and de la Vallèe Poussin. The argument has been
greatly simplified since then, but still makes essential use of the fact that the (analytically continued)
Riemann-Euler zeta function

ζ(s) =
∞∑

n=1

1
ns

21

Paul Garrett: Cryptographic Primitives (March 26, 2007)

is non-zero on the line Re(s) = 1, at the edge of the region of convergence in the complex plane.

As a raw heuristic, from the Prime Number Theorem we imagine that roughly 1/ lnn of integers near n are
prime. Equivalently, we expect to test about 1

2 lnn randomly chosen integers near n before finding a prime.
Note that this is laughably unsupported without knowing an error term in the assertion of asymptotics of
the prime-counting function π(x). Nevertheless, it is useful to think of the primes as having density 1/ lnn
near n.

4.10 The Riemann Hypothesis (RH)

From 1858 or so, this is the conjecture that all the zeros of (the analytically continued) ζ(s) in the strip
0 < Re(s) < 1 actually lie on the middle critical line Re(s) = 1/2. If this were true, then we would have a
much better error term in the prime number theorem than any presently known, namely

π(x) = li(x) + O(
√

x lnx)

where
li(x) =

∫ x

2

dt

ln t
∼ x

lnx

differs slightly from x/ lnx, though is roughly asymptotic to it. (The proof that RH implies this error term
took several decades of development in complex analysis.) If this were so, then there would be rigorous
justification for the heuristic that primes have density 1/ lnn near n.

4.11 Dirichlet’s Theorem

This theorem on primes in arithmetic progressions is that for gcd(a,N) = 1 there are infinitely many primes
in the arithmetic progression

{a + N` : ` = 1, 2, 3, . . .}
This can be proven simply for some special values of a, such as a = 1, but is best proven using the behavior
of Dirichlet L-functions

L(s, χ) =
∑
n≥1

χ(n)
ns

where χ is a Dirichlet character modulo some N , meaning that χ(n) depends only upon n mod N , and
that χ has the multiplicative property χ(mn) = χ(m)χ(n). A little more specifically, as Euler proved the
infinitude of primes from the blowing-up of ζ(s) as s −→ 1+, Dirichlet proved this theorem from the fact
that for χ taking values other than 1 the L-function L(s, χ) has a non-zero finite limit as s −→ 1+.

4.12 The Extended Riemann Hypothesis (ERH)

This is a similar conjecture about the zeros of the (analytically continued) Dirichlet L-functions, that the
only zeros of these L-functions in the strip 0 < Re(s) < 1 actually lie on the middle critical line Re(s) = 1/2.
This conjecture would imply a sharp error term for the asymptotics of primes in arithmetic sequences. Also,
the ERH arises in many questions other basic questions, such as estimates relevant to a deterministic form
of the Miller-Rabin pseudoprimality test (4.13).

4.13 Pseudoprimes, probable primes

We should substantiate the assertion that testing large integers for primality is feasible. First, any practical
procedure to hunt for large primes typically uses Fermat’s pseudo-primality testing base 2 as a first filter,

22

Paul Garrett: Cryptographic Primitives (March 26, 2007)

given the simplicity of this test (and the square-and-multiply algorithm). Recently it has been shown [AKS],
[Bor], [Ber] that there is a deterministic polynomial-time algorithm to test primality. However, it seems that
the algorithm is slower than the best probabilistic algorithms, so will not replace them in the short run.
About terminology: we will call an integer that has passed some primality test a pseudoprime. This usage
is not universal. Sometimes the term pseudoprime is meant to refer only to a non-prime integer that has,
nevertheless, passed a primality test, reserving the term probable prime for integers that have passed a test
but whose actual primality is unknown.

The first probabilistic (pseudo-) primality test which admitted a useful analysis was that of Solovay and
Strassen [So] from 1977. The provable result is that, if n were composite, then at least half the integers b
in the range 1 < b < n would detect this via the Solovay-Strassen test. Specifically, an integer n passes the
Euler pseudoprime (Solovay-Strassen) test base b if

b(n−1)/2 =
(

b

n

)
2

mod n

where the right-hand side is an extended (Jacobi) quadratic symbol.

A better test with provable behavior is the Miller-Rabin test [Ra], [M] for ‘strong’ pseudoprimes, from
1978–80. To explain why this test might work, first note that for n = r · s composite (with gcd(r, s) = 1),
by Sun-Ze’s theorem there are at least 4 solutions to

x2 = 1 mod n

Namely, there are 4 choices of sign in

x = ±1 mod r x = ±1 mod s

Thus, if we find b 6= ±1 mod n such that b2 = 1 mod n, n is definitely not composite. Roughly, the Miller-
Rabin test (details shortly) looks for such extra square roots of 1 modulo n.

Theorem: (Miller-Rabin) For composite n, at least 3/4 of b in the range 1 < b < n will detect the
compositeness (via the Miller-Rabin test).

Pseudo-corollary: If n passes the Miller-Rabin test with k random bases b, then

‘probability n is prime’ ≥ 1−
(

1
4

)k

The Miller-Rabin test base b is
factor n− 1 = 2s ·m with m odd
replace b by bm mod n

if b = ±1 mod n stop: n is 3/4 prime
else continue

set r = 0
while r < s

replace b by b2 mod n
if b = −1 mod n stop: n is 3/4 prime
elsif b = +1 mod n stop: n is composite
else continue
replace r by r + 1

if we fall out of the loop, n is composite.

If n passes this test it is a strong pseudoprime base b. The proof is not terribly difficulty, but is not
short, and requires attention to detail. See [BS], [Ko1], [G]. In the course of the proof one also verifies that

23

Paul Garrett: Cryptographic Primitives (March 26, 2007)

strong pseudoprimes base b are a subset of Euler pseudoprimes base b, which are themselves a subset of the
Fermat pseudoprimes base b.

If the Generalized Riemann Hypothesis were true, then for composite n there would be 1 < b < 2 ln2 n such
that n fails the test base b (see [M]). But even if we knew the truth of the Generalized Riemann Hypothesis,
we would not use 2 ln2 n bases b in the Miller-Rabin test, since a mere 20 (or 50, or 100 would provide
sufficient surety, and would take much less time.

Failure rate of Miller-Rabin? The fraction of b’s which detect compositeness is apparently much greater
than 3/4. For n = 21311 the detection rate is 0.9976. For 64777 the detection rate is 0.99972. For 1112927
the detection rate is 0.9999973. Under 50, 000 there are only 9 non-prime strong pseudoprimes base 2, namely
2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141. Under 500, 000 there are only 33 non-prime strong
pseudoprimes base 2. Under 500, 000 there are no non-prime strong pseudoprimes base 2 and 3. In the range
100, 000, 000 < n < 101, 000, 000 there are 3 strong pseudoprimes base 2 whose compositeness is detected
base 3, namely 100463443, 100618933, 100943201.

4.14 Hunting for big primes

A naive but reasonable approach to find a (probable) prime above a lower bound 2n, assuming no randomness
properties are needed, is as follows. The test to which we will subject each candidate N is:

Trial division by a few small primes:
if N passes, continue, else reject N at this point

Fermat pseudoprime test base 2
if N passes, continue, else reject N at this point

Miller-Rabin pseudoprime test base with bases
the first 20 primes

Then test N = 2n + 1. If it passes, we’re done. If not, replace N by N + 2 and continue. Our heuristic
from the Prime Number Theorem is that we expect to test roughly 1

2 · lnn candidates near n before finding
a prime.

As examples, we hunt using Fermat base 2, and then Miller-Rabin base 2, 3, 5, to find the next prime after
some representative starting points. Even the 1000-digit computation took only 90 seconds.

First ‘prime’ after 1021 is 1021 + 117
First ‘prime’ after 1050 is 1050 + 151
First ‘prime’ after 10100 is 10100 + 267
First ‘prime’ after 10200 is 10200 + 357
First ‘prime’ after 10300 is 10300 + 331
First ‘prime’ after 101000 is 101000 + 453

4.15 Generating big random primes

When a cipher or protocol calls for a random prime above 21024, one should not pick the first (probable)
prime above 21024 each time, to say the least. Rather, for example, one could reasonably use 1024 random
bits b0, b1, . . . , b1023 and start testing at

N = 21024 +
1023∑
i=0

bi · 2i

This leaves open the question of generating high-enough quality random bits for this purpose.

24

Paul Garrett: Cryptographic Primitives (March 26, 2007)

4.16 Continued fractions

For real x the recursion
a0 = floor(x) x1 = 1/(x− a0)
a1 = floor(x1) x2 = 1/(x− a1)
a2 = floor(x2) x3 = 1/(x− a2)

. . .

gives

x = a0 +
1

a0 + 1
a1+

1

a2+ ...+ 1
an+xn

The usual notational relief is to write this as

x = a0 +
1

a1+
1

a2+
. . .

1
an + xn

The nth convergent pn/qn is obtained by truncating

pn

qn
= a0 +

1
a1+

1
a2+

. . .
1
an

where the numerator pn and denominator qn are relatively prime integers. For example, because

x = 1 +
1

1 + x

has positive root
√

2
√

2 = 1 +
1

2+
1

2+
. . .

Similarly,
1 +

√
5

2
= 1 +

1
1+

1
1+

. . .

The recursion for the convergents in terms of the integers ai appearing in the expansion is

pi = aipi−1 + pi−2

qi = aiqi−1 + qi−2

In a similar vein, one can easily verify that

pn+1/qn+1 − pn/qn =
(−1)n

qn qn+1

and x is always between successive convergents

p2n/q2n ≤ x ≤ p2n+1/q2n+1

These convergents are the best rational approximations to x for given size of denominator.

4.17 Square roots modulo primes

These can be computed quickly by a probabilistic algorithm. This is a necessary ingredient in the quadratic
sieve (8.4). As a preamble, recall from above that for a prime p equal to 3 modulo 4, and for a square b mod
p we have

square root of b mod p = b(p+1)/4 mod p

25

Paul Garrett: Cryptographic Primitives (March 26, 2007)

This (deterministic) formula is a special case of the following (probabilistic) algorithm.

Suppose that b is a square modulo p. This can be tested efficiently by Euler’s criterion, or by quadratic
symbol computations. Remove all the factors of 2 from p− 1, giving

p− 1 = 2s · (odd)m

Our first approximation at a square root of b mod p is

c = b(m+1)/2 mod p

Specifically, we claim that
c2/b = 2s−1th root of unity mod p

Indeed, modulo p,

(c2/b)2
s−1

= ((b(m+1)/2)2 · b−1)2
s−1

= b(m+1)·2s−1
· b−2s−1

= b(p−1)/2 =
(

b

p

)
2

by Euler. So it remains to modify c by a 2sth root of unity mod p to get the actual square root of b.

Let g be a non-square modulo p. Again, testing whether a randomly chosen g is a square or not is easy, and
if one chooses unluckily one simply tries again, knowing that half the integers mod p are non-squares. Claim
that h = gm % p is a primitive 2sth root of 1 modulo p. Indeed, by Fermat’s Little Theorem it is a 2sth root
of unity. If h were a 2s−1th root of unity, then (since primitive roots exist modulo p) h would be a square,
which it is not.

Thus, we wish to determine an integer 0 ≤ j < 2s−1 such that

hj · c = square root of b mod p

Write j in binary
j = j0 + j1 · 21 + j2 · 22 + . . . + js−2 · 2s−2

with ji ∈ {0, 1}. We recursively determine the coefficients ji as follows. First, compute

(c2/b)2
s−2

% p

Above, we saw that the square of this is 1 mod p so it is ±1. If it is +1, take j0 = 0, and if it is −1, take
j0 = 1. Thus

(hj0c)2/a is a 2s−2th root of 1 mod p

Inductively, suppose j0, . . . , jk have been chosen, such that

(hj0+...+jk2k

· c)2/b

is a 2s−k−2th root of 1 mod p. Compute(
(hj0+...+jk2k

· c)2/b
)2s−k−3

= ±1

If the value is +1, take jk+1 = 0, and take jk+1 = 0 if the value is −1. Thus, finally,

(hj0+...+js−22
s−2

· c)2/b = 1

which is to say that
hj0+...+js−22

s−2
· c = square root of b mod p

26

Paul Garrett: Cryptographic Primitives (March 26, 2007)

Example: To find a square root of b = 2 modulo p = 401, first take out the powers of 2 from p− 1

p− 1 = 401− 1 = 24 · 25

Thus, in the notation above, m = 25, and s = 4. Let

c = b(m+1)/2 = 2(25+1)/2 = 213 = 172 mod 401

From above,
c2/b = 1722/2 = 1722 · 201 = 356 mod 101

is not 1, so c = 172 is not a square root of 2 mod 401. Test g = 3 to see whether or not it is a square mod
401: via the square and multiply algorithm gives

3(401−1)/2 = −1 mod 401

so g = 3 is a non-square. Thus, a primitive 2s = 24 root of unity mod p is

h = gm = 325 = 268 mod 401

Compute
(c2/b)2

s−2
= (1722/2)4 = −1 mod 401

so take j0 = 1. Next, compute

((hj0 · c)2/b)2
s−3

= ((268 · 172)2/2)2 = −1 mod 401

so j1 = 1. According to the discussion, it should be that

hj0+j12 · c = 2681+2 · 172 = 348 mod 401

is a square root of 2 modulo 401, as indeed can be checked.

4.18 Hensel’s lemma

This is an efficient device to find solutions of polynomial equations modulo pe+1 from solutions modulo pe. It
is an ingredient in the quadratic sieve, among many other things. It is an analogue of the Newton-Raphson
method of approximating real roots of polynomials over R, but works better.

Let f(x) be a polynomial with integer coefficients, let p be a prime, and suppose that we have an integer x0

such that for an integer exponent e > 0
f(x0) = 0 mod pe

while
f ′(x0) 6= 0 mod p

where f ′ is the usual derivative of f . Let f ′(x0)−1 be an integer which is a multiplicative inverse to f ′(x0)
mod p. Then the simplest form of Hensel’s lemma asserts that

x1 = x0 − f(x0) · f ′(x0)−1

satisfies
f(x1) = 0 mod pe+1

For example to find a square root of 2 modulo 173, take f(x) = x2 − 2, and begin with x0 = 6, since
f(6) = 0 mod 17. Here

f ′(6) = 2 · 6 = 12

27

Paul Garrett: Cryptographic Primitives (March 26, 2007)

for which an inverse modulo 17 is 10 (e.g., by extended Euclid). Thus,

x1 = x0 − f(x0) · f ′(x0)−1 = 6− 34 · 10 = 244 mod 172

For a square root x2 modulo 173, we can re-use f ′(x0), and continue to obtain

x2 = x1 − f(x1) · 10 = 244− (244 · 244− 2) · 10 = 4290 mod 173

which (as can be readily verified) is a square root of 2 modulo 173.

Solving equations x2 = n mod 2e is slightly more complicated, and, at some point one certainly will view
Hensel’s lemma as a p-adic algorithm in order to fit the whole thing into a more stable world-view. But for
our immediate purposes (e.g., the quadratic sieve (8.4)), observe that the only odd square modulo 4 is 1,
and the only odd square modulo 8 is still 1. But for n = 1 mod 8, and with x2 = n mod 2e with e ≥ 3, the
step becomes

replace x by x− (x2 − n)/2
x

mod 2e+1

Then x2 = n mod 2e+1.

5 More public-key ciphers

We briefly describe some other public-key ciphers, to illustrate the variety of trapdoors which have been
exploited.

5.1 El Gamal Ciphers

This idea appeared in [ElGamal 1985]. It is slightly more complicated than RSA, but still essentially
elementary, and admits abstraction to arbitrary groups in place of Z/p×. For example, the elliptic-curve
cryptosystems are of this nature. See [Sil3], [Wh] in this volume, and many other sources concerning elliptic
curves in cryptography, such as [Ko3], [KMV], [BSS]. The hard task here is computation of discrete
logs, for example in the group Z/p× with p prime. The easy task is exponentiation (e.g., by square-and-
multiply).

Note that computation of discrete logs is not necessarily difficult in every group: in the additive group Z/n
computation of the discrete log of m for a base b amounts to solving for x in

x · b = m mod n

That is, the problem becomes that of finding a multiplicative inverse, easily accomplished via the extended
Euclidean algorithm.

Description of encryption and decryption. Alice chooses a large random prime p > 10150, a primitive
root b modulo p, and a random key `, an integer in the range 1 < ` < p. Alice computes c = b` % p and
publishes p, b, and c.

Bob, who has no prior contact with Alice, can send a message that only Alice can decrypt is as follows. We
can assume that Bob’s plaintext x is an integer in the range 0 < x < p. Bob chooses an auxiliary random
integer r, a temporary secret known only to Bob, and encrypts the plaintext x as

y = Eb,c,p,r(x) = (x× cr) % p

Along with this encrypted message is sent the header br % p.

28

Paul Garrett: Cryptographic Primitives (March 26, 2007)

Alice’s decryption step requires knowledge of the discrete logarithm `, but not the random integer r. First,
from the header br the Alice computes

(br)` = br·` = (b`)r = cr mod p

Then the plaintext is recovered by multiplying by the multiplicative inverse (cr)−1 of cr modulo p:

Db,c,p,r,`(y) = ((cr)−1 · y) % p = (cr)−1 · cr · x mod p = x mod p

5.2 Knapsack ciphers

There is no single knapsack cipher, but rather a family of ciphers using the same underlying mathematical
problem, the knapsack or subset sum problem. Merkle and Hellman [MH] first made a cipher of this type.
Adi Shamir [Sh] found a decisive attack. In fact, the progression of attacks and attempts to defeat them
is representative of the iterative processes by which real ciphers come into existence. We describe the basic
version here and briefly indicate the nature of Shamir’s attack.

The knapsack problem is: given a list of positive integers a1, · · · , an, and given another integer b, find a
subset ai1 , · · · , aik

so that
ai1 + · · ·+ aik

= b

if this is possible. Each element ai can be used at most once, although some of the values ai may be the
same. There are variants: one is to tell, for given ai’s and b, whether or not a solution exists. Or, granting
that a solution exists, find it. All of these are provably NP -complete. Visibly, a brute-force search adding
up all possible 2n subsets of the ai’s rapidly becomes infeasible.

Call a = (a1, . . . , an) the knapsack vector, and b the size of the knapsack. The ai’s which occur in a
solution

b = ai1 + · · ·+ aik

are in the knapsack of size b. A knapsack vector a = (a1, . . . , an) of length n can be used to encrypt a
vector x = (x1, . . . , xn) of bits (0’s and 1’s) by computing a function

b = fa(x) = x1 a1 + · · ·+ xn an

The knapsack vector a and the size b are transmitted. Decryption consists of finding a subset of the knapsack
vector entries which add up to the size. Thus, the decryption step solves a knapsack problem. As it stands,
authorized decryption would be no easier than unauthorized decryption.

There might be more than one possible decryption, which would be bad, so a knapsack vector with the
property that for a given size there is at most one solution to the knapsack problem is called injective. The
function

fa(x) = x1 a1 + · · ·+ xn an

above is injective if and only if the knapsack vector a = (a1, . . . , an) is injective.

By the NP -completeness of the general knapsack problem, we might be confident of the difficulty of
unauthorized decryption. But for the authorized decryptor to decrypt, we must arrange things so that
the authorized decryption amounts to solving a much easier subproblem.

A knapsack vector a = (a1, . . . , an) is superincreasing if each ai is strictly greater than the sum of the
preceding elements in the vector, that is, for every index i

a1 + · · ·+ ai−1 < ai

29

Paul Garrett: Cryptographic Primitives (March 26, 2007)

If the knapsack vector a = (a1, . . . , an) is superincreasing, then there is a much easier method for solving
the knapsack problem with size b:

If b < an, then an cannot be in the knapsack of size b (it just won’t fit)
If b ≥ an, then an must be in the knapsack of size b

(since by the superincreasing property the other ai’s add up to less than an, so cannot add up to b.) In the
first case, keep the same knapsack size b. In the second case, replace b by b− an. In either case, replace the
knapsack vector by (a1, . . . , an−1). This converts the problem into a new knapsack problem with a shorter
knapsack vector. The process terminates when we reach a1. The problem will be solved in the affirmative
if a1 = b (with the value of b at that time), and in the negative if a1 6= b. If the authorized decryptor can
decrypt by solving a superincreasing knapsack problem, the decryption is acceptably easy.

On the other hand, if the knapsack were visibly superincreasing, then an unauthorized decryptor could do
the same. So try to disguise the superincreasing property in a manner known to the authorized decryptor,
but unknown to adversaries. Even if the list of knapsack items were wildly rearranged, sorting n things takes
only O(n lnn) steps if done slightly cleverly.

The first idea of hiding is by a secret multiplication and reduction modulo some modulus. Alice chooses a
superincreasing knapsack vector (a1, . . . , an), and chooses an integer (the modulus)

m > a1 + · · ·+ an

Choosing m to be larger than the sum of the ai’s is what causes this procedure sometimes to be called
strong modular multiplication. Alice chooses another number (the multiplier) t relatively prime to m.
Then Alice computes

ci = (tai) % m

This gives a new knapsack vector c = (c1, . . . , cn), which Alice publishes as her public key. Alice keeps t and
m (and the inverse of t modulo m) secret. For Bob to encrypt an n-bit message x so that (supposedly) only
Alice can read it, the encryption step is similar to what was done before, encrypting x = (x1, . . . , xn) as

b = fc(x) = c1x1 + · · ·+ cnxn

with altered knapsack vector c. Bob transmits ciphertext b to Alice. Alice’s decryption procedure is to
compute

t−1 · b % m = t−1(c1x1 + · · ·+ cnxn)

= (t−1c1)x1 + · · ·+ (t−1cn)xn = a1x1 + · · ·+ anxn mod m

Since m is larger than the sum of all the ai’s, the equality modulo m is actually an equality of integers,

(t−1b) % m = a1x1 + · · ·+ anxn

Since Alice knows the superincreasing knapsack vector of ai’s, or can compute them from the ci’s by

ai = (t−1 · bi) % m

she can solve the knapsack problem and decrypt.

Big Problem: Although implicitly we might have thought that an adversary must find the secret t and
m in order to convert the problem into a superincreasing knapsack problem, this turned out not to be so.
Certainly if an adversary is lucky enough to find any t′ and m′ so that

a′ = (t′−1
c1 % m′, . . . , t′

−1
cn % m′)

is superincreasing, this converts the problem to an easy one. Adi Shamir [Sh] found a way to find (t′,m′) in
polynomial time to convert the published vector to a superincreasing one. This breaks this simplest knapsack
cipher.

30

Paul Garrett: Cryptographic Primitives (March 26, 2007)

(Note, too, that as it stood this cipher was completely vulnerable to chosen-plaintext attacks.)

5.3 NTRU

The NTRU cipher, invented in 1995 by J. Hoffstein, J. Pipher, and J. Silverman [HPS], is mathematically
more complicated than RSA or ElGamal, although it still uses only basic abstract algebra and number
theory. W. Banks’ article [Ba] in this volume discusses this cipher in more detail. The NTRU cipher is
patented.

The hard task. The computational task which is presumed to be difficult, thereby presumed to assure
the security of the NTRU cipher, is not as readily described as prime factorization or discrete logarithms:
it must be hard to find the smallest vector in a lattice Zn ≈ Λ ⊂ Rn. There is a relatively good algorithm,
the LLL (Lenstra-Lenstra-Lovasz) algorithm [LLL], improved in [SE], which quickly finds a short vector in a
typical lattice. But when the smallest vector is near to or longer than the ‘expected value’ of sizes of shortest
vectors, the LLL algorithm does not perform well. Parameter choices for NTRU must be made to play upon
this effect.

Description of encryption and decryption. Fix positive integer parameters N, p, q, where p, q need not
be prime but must be relatively prime, and probably gcd(N, pq) = 1. Let R be the set of polynomials in x
with integer coefficients and with degree strictly less than N , with the multiplication ? that is polynomial
multiplication followed by reduction modulo xN − 1

xi ? xj = xi+j % N

That is, ∑
0≤i<N

aix
i

 ?

 ∑
0≤j<N

bix
i

 =
∑
i,j

aibj xi+j % N =
∑

0≤k<N

 ∑
i+j=k % N

a`bk

 xk

The addition in R is addition of polynomials.

On R we also have reduction mod p and reduction mod q of the coefficients of polynomials. Write

f % p = polynomial f with coefficients reduced mod p

f % q = polynomial f with coefficients reduced mod q

Say that a polynomial f has an inverse F mod p if the polynomial F satisfies

(f ? F) % p = 1

To create an NTRU key, Alice chooses two polynomials f and g of degrees N − 1, making sure that f has
an inverse Fp mod p and an inverse Fq mod q. Alice’s public key is

h = (Fq ? g) % q

Alice’s private key is f .

A message is a polynomial of degree N − 1 with coefficients reduced mod p (in the sense that they lie in
the range (−p/2, p/2]). For Bob to encrypt a message m for Alice, he randomly chooses a polynomial ϕ of
degree N − 1 and computes

y = (pϕ ? h + m) % q

and transmits this to Alice.

31

Paul Garrett: Cryptographic Primitives (March 26, 2007)

To decrypt, Alice computes
a = (f ? y) % q

and then
m = (Fp ? a) % p

It is not clear that the alleged decryption decrypts. Indeed, the parameters must be chosen properly in order
to arrange that correct decryption occurs with high probability.

Why does decryption (mostly) work? The polynomial that Alice computes in the decryption step is

a = f ? y
= f ? (pϕ ? h + m) % q (by definition of encryption)
= f ? (pϕ ? Fq ? g + m) % q (by construction of h)
= (f ? pϕ ? Fq ? g + f ? m) % q (by distributivity)
= (f ? Fq ? pϕ ? g + f ? m) % q (by commutativity)
= (1 ? pϕ ? g + f ? m) % q (by inverse property of Fq mod q)
= (pϕ ? g + f ? m) % q

Alice shifts the coefficients by subtracting q if necessary to put them into the interval (−q/2, q/2]. By careful
choices of parameters, it can be arranged that all the coefficients lie in the range (−q/2, q/2] even before
reduction modulo q, so that reduction mod q does nothing. So Alice is really computing

(a% p) = (pϕ ? g + f ? m) % q % p
= (pϕ ? g + f ? m) % p
= 0 ? g + f ? m% p (since pϕ % p = 0)
= f ? m% p

Then the star-multiplication by Fp recovers the plaintext:

(f ? m) ? Fp % p = (f ? Fp) ? m % p
= 1 ? m
= m

The most serious type of attack on the NTRU cipher seems to be what are called lattice attacks, which view
the key f as more or less the shortest vector in a special collection (‘lattice’) of vectors. The LLL algorithm
will quickly find a short vector, unless it is frustrated by having the length of the shortest vector be close
to or even larger than the expected value of such length (for suitably ‘random’ lattice). In order to break
NTRU, however, the LLL algorithm would have to find one of the shortest vectors in a lattice where all the
‘short’ vectors have moderate length. Suitable parameter settings in NTRU seem to achieve the effect of
frustrating LLL.

NTRU sends roughly ln q
ln p > 1 bits of ciphertext for each bit of plaintext, unlike many older ciphers, which

send one bit of ciphertext for each bit of plaintext. For discussion of relative speeds of encryption/decryption,
parameter setting, apparent security, and more details, see NTRU’s home page at

http://www.ntru.com/

5.4 Arithmetica Key Exchange

The Arithmetica key exchange of Anshel, Anshel, and Goldfeld, [AAG], is a new key exchange mechanism
(and cipher). By extreme constrast with Diffie–Hellman, it plays upon sophisticated mathematics to make
a plausible claim of security. Some general ideas about using word problems in groups to make ciphers
appeared earlier in [WM]. A significant new idea in [AAG] is use of the braid group, or more generally Artin
groups, making use of a new algorithm discovered in [BKL]. The Arithmetica key exchange is patented.

32

Paul Garrett: Cryptographic Primitives (March 26, 2007)

Let G be a group. For a fixed set of elements S = {s1, . . . , sn} in G, a word in S is any expression

sk1
i1

sk2
i2

. . . skN
iN

where the exponents kj are positive or negative integers. The set S generates G if every element of G is
expressible as a word in the elements of S and their inverses.

The word problem in a group G with respect to a subset S = {s1, . . . , sn} is the question of determining
whether or not two words in S are equal, as elements of G. The conjugacy problem in a group G with
respect to S is the question of determining whether or not two words x, y in S are conjugate (meaning, as
usual that there is g ∈ G so that gxg−1 = y). It is known that in general the word problem is undecidable,
and the conjugacy problem has a similar status. But note that, even for specific groups where there is an
algorithm, the algorithm may be ‘bad’ in that it runs in exponential time in the length of the inputs.

So in general the word problem and conjugacy problem are hard. But in [BKL] a class of groups, the
braid groups (see below), was distinguished in which the word problem has a polynomial-time solution, and
seemingly the conjugacy problem does not. This suggests making a cipher in which authorized decryption
requires solving such a word problem, and unauthorized decryption requires solving the conjugacy problem.

A braid group with n generators is a group G generated by a set S = {s1, . . . , sn} with relations

sisi+1si = si+1sisi+1

and
sisj = sjsi for |i− j| > 1

The definition of Artin group includes braid groups as a special case where all parameters mi are 3 (see
just below). An Artin group is a group G generated by a set S = {s1, . . . , sn} with relations

sisi+1si . . . sisi+1si︸ ︷︷ ︸
mi factors

= si+1sisi+1 . . . si+1sisi+1︸ ︷︷ ︸
mi factors

and
sisj = sjsi for |i− j| > 1

Coxeter groups are quotients of Artin groups, by additional relations

s2
i = e for all indices i

The key exchange. Here Alice and Bob proceed as follows. The public information is a group G and two
lists SA = {a1, . . . , am}, SB = {b1, . . . , bn} of elements of G. Alice chooses a secret word a in SA, and Bob
chooses a secret word b in SB . Alice transmits to Bob the list

ab1a
−1, ab

2a
−1, . . . , abna−1

and Bob transmits to Alice the list

ba1b
−1, ba2b

−1, . . . , bamb−1

(These must be disguised, rewritten, to make this secure.) Then the common key for Alice and Bob will be
the expression (the commutator of a and b)

common key = aba−1b−1

which they can both compute, as follows.

33

Paul Garrett: Cryptographic Primitives (March 26, 2007)

Let
a−1 = a

ei1
i1

. . . a
kiN
iN

be an expression of the inverse a−1 of Alice’s secret a in terms of Alice’s ai’s. Then

ba−1b−1 = b(aei1
iN

. . . a
kiN
iN

)b−1

= (bai1b
−1)ei1 . . . (baiN

b−1)kiN

These bajb
−1 are exactly what Bob had sent to Alice, so she knows what they are. That is, Alice can

compute ba−1b−1. And then, since she knows her own secret a, she can compute

a · (ba−1b−1) = aba−1b−1

Symmetrically, Bob can compute aba−1, and since he knows his own secret b (and its inverse b−1), he can
compute

(aba−1) · b−1 = aba−1b−1

Thus, Alice and Bob have a shared secret.

The above description did not depend upon specifics concerning the group G. But for the shared secret
aba−1b−1 to be unambiguous, it must be convertible to some ‘canonical’ form. For braid groups this is in
effect accomplished in [BKL].

Certainly the most obvious attack on such a cipher would solve the conjugacy problem. At this time the
conjugacy problem is not known to have a fast algorithm for braid groups, for example.

6 Protocol Sketches

Beyond key exchanges, trapdoor mechanisms allow other important effects to be achieved. We give simple
illustrations below, with the warning that these are (mostly) very naive versions and require considerable
further refinement to achieve their stated goals. Typical weaknesses involve set-up, cheating, and issues
about whether cheating can be prevented, or merely detected.

6.1 Signatures

Signatures are as important an application as secrecy. For example, the RSA mechanism can be re-used,
effectively run backward, to allow Bob to convince Alice that the message he sent her really came from him,
as follows. We assume that Bob has published an RSA modulus n and encryption exponent e, with secret
decryption exponent d. To convince Alice that the message x purporting to be from Bob really is from him,
Bob computes

y = xd % n (yes, using the decryption exponent)

and sends this to Alice, together with a little header in plain text explaining to Alice where she can look up
Bob’s public key e (and modulus n) to use to compute

x = ye % n

If this computation yields non-gibberish, since d is secret, Alice will believe that Bob sent the message
(assuming, as usual, the difficulty of factoring, etc.). This does require that the collection of possible messages
x be sufficiently structured, e.g., be in a natural language such as English. However, any eavesdropper can
also decrypt. Thus, while this procedure makes a good attempt at authentication, it does not in itself
provide secrecy.

34

Paul Garrett: Cryptographic Primitives (March 26, 2007)

There is also the ElGamal signature scheme [E], which has been adopted as the Digital Signature
Standard (DSA) by the National Institute of Standards and Technology in 1994. To set this up, Bob
chooses a large prime p and primitive root g mod p. Bob chooses a secret random private key k, and
computes h = gk % p. The data p, g, h are the public key.

Given a message x which he wants to sign, Bob chooses an auxiliary random n ∈ Z/(p− 1)×, and computes

a = gn % p

b = (x− ka) · n−1 % p− 1

Bob sends x, a, and b to Alice (in addition to the public p, g, h). Alice computes

ha · ab % p

and
gx % p

If these are the same, Alice believes that Bob sent the message x. We can see directly that if a, b are
computed propertly then these values will be the same. Indeed, in that case

ha · ab = gak gnb = gak+nb = gak+n(x−ka)n−1
= gx mod p

Why can Eve not forge a signature in the El Gamal scheme? Clearly several approaches that Eve might take
to compute a, b without knowing the key k involve computing a discrete log. There are, however, further
possible attacks, such as the existential attack discussed in Stinson [St] chapter 7, wherein Eve manages to
sign a random message.

And, as one might anticipate, the nonce n should not be used to sign two different messages, or Eve can do
a feasible computation to break the scheme.

It must be emphasized that for real use, such as in long-lasting documents, considerable refinement of these
basic ideas is necessary. Again, see Stinson’s [St] chapter 7 for further discussion of signatures.

6.2 Thresh-hold schemes

Also called secret-sharing schemes, these are arrangements by which a group of entities restrict access to
a secret, so that the secret is inaccessible unless a sufficient number (but not necessarily all) of the entities
cooperate.

Say that a secret is k-shared among t people if any k or more of them can learn the secret, but a group
of fewer than k cannot learn the secret. The problem is: given a secret x to be k-shared among t people
A1, A2, . . . , At, give Ai a piece of information ai so that Ai knows ai (but not aj for j 6= i), no part of the
secret x can be recovered from any k − 1 of the ai, and the secret x can be computed (feasibly) from any
k of the ai’s. For given t and x, a list of a1, . . . , at accomplishing this is a (k, t)-thresh-hold scheme. A
simple example uses Sun-Ze’s theorem, as follows.

Let m1, . . . ,mt be mutually relatively prime integers greater than 1. Let a1, . . . , at be integers. Let
M = m1 . . .mt, Mi = M/mi, and let ni = M−1

i mod mi. Since mi is relatively prime to mj for j 6= i,
mi is also relatively prime to Mi, by unique factorization. Thus, the multiplicative inverse Ni exists and is
computable, via Euclid. The family

x = ai mod mi for all i

is equivalent to the single congruence

x =
t∑

i=1

ai Mi ni mod M

35

Paul Garrett: Cryptographic Primitives (March 26, 2007)

Fix k with 1 < k ≤ t. Let Hk be the smallest product of k different mi’s, and let hk−1 be the largest product
of k − 1 different mi’s. We must assume that

Hk ≥ (N + 1) · hk−1

for some large positive integer N . For any secret number x in the range

hk−1 < x < Hk

let ai = x% mi. Then the set {a1, . . . , at} is a (k, t) thresh-hold scheme for x.

This is not hard to see. Suppose that a1, . . . , ak are known. Let M ′ = a1 . . . ak, and M ′
i = M ′/mi for

1 ≤ i ≤ k. Let n′i = M ′
i
−1 mod mi for 1 ≤ i ≤ k. Let

x′ =
k∑

i=1

ai M ′
i ni mod M ′

Then
x′ = x mod M ′

Since M ′ ≥ Hk > x, the secret x is already reduced modulo M ′, so can be computed by

x = x′% M ′

On the other hand, suppose only a1, . . . , ak−1 are known. Let M ′ = a1 . . . ak−1, and M ′
i = M ′/mi for

1 ≤ i ≤ k − 1. Let n′i = M ′
i
−1 mod mi for 1 ≤ i ≤ k − 1. Let

x′ =
k−1∑
i=1

ai M ′
i ni mod M ′

Since M ′ = m1 . . .mk−1,
x′ = x mod m1m2 . . .mk−1

Also m1m2 . . .mk−1 ≤ hk−1. Since hk−1 < x < Hk and

(Hk − hk−1)/hk−1 > N

there are at least N possibilities for y mod M , so

x′ = y mod M ′

Thus, knowledge of only k − 1 of the ai’s is insufficient to discover the secret x.

6.3 Zero-knowledge proofs

As a simple case, we look at a protocol for Peter (the prover) to prove to Vera (the verifier) that he knows
the factorization of a large integer n which is the product of two large primes p, q (both equal to 3 modulo
4), without imparting to Vera the factorization itself. Our first attempt will fail, since it will allow Vera to
cheat. However, this too-naive attempt is enlightening.

First, for prime p = 3 mod 4, and for x 6= 0 mod p, if x is a square modulo p then there is a distinguished
square root b of x, the so-called principal square root of x, given by the formula

b = x(p+1)/4 mod p

36

Paul Garrett: Cryptographic Primitives (March 26, 2007)

This principal square root b is also characterized as the square root of x which is itself a square. And, indeed,
if x = a2 mod p, then a direct computation (using Fermat’s little theorem) verifies that the formula works,
and yields a value which is itself a square.

The (faulty) protocol is as follows. Vera chooses random integer x and sends x4 % n to Peter. Peter computes
the principal square root y1 = (x4)(p+1)/4 of x4 mod p and principal square root y2 = (x4)(q+1)/2 of x4

mod q, and uses Sun-Ze’s theorem (via the Euclidean algorithm) to compute y so that y = y1 mod p and
y = y2 mod q. Peter sends this value back to Vera.

Since the principal square root of x4 mod p is certainly x2 (modulo p), and similarly modulo q, Peter must
have computed

y = x2 mod pq

Since Vera already can compute x2, Peter has imparted no new information to Vera. (But Vera can cheat!
See below.)

Why should Vera be convinced that Peter can factor n into p and q? Because, in any case, being able to
take square roots modulo n (a product of two secret primes p and q) by whatever means gives a probabilistic
algorithm for factoring n, as follows. Given an oracle (an otherwise unexplained mechanism) which computes
square roots mod n, repeatedly do the following: choose random x, compute x2 % n, and give the result to
the oracle, which returns a square root y of x2 modulo n. Since there are exactly two square roots of any
nonzero square modulo a prime, by Sun-Ze there are exactly 4 square roots of any square modulo n = pq,
and ±x are just 2 of them. Let the other two be ±x′. Assuming that the original x really was ‘random’, the
probability is 1/2 that the oracle will return ±x′ as y. If so, then n does not divide either of x ± y (since
y 6= ±x mod n), but nevertheless n divides x2 − y2 (since x2 = y2 mod n). So p divides one of x ± y and
q divides the other of the two. Therefore, gcd(x − y, n) (computed via Euclid) is either p or q. The oracle
can be called repeatedly, with probability 1/2 that a factorization will be obtained at each step. So the
probability that we fail to obtain a factorization after ` invocations of the oracle is (1/2)`, which goes to 0
quickly. Thus, even if Peter did not know the factorization initially, his ability to take square roots modulo
n would allow him to factor n.

But the fact that a square root oracle for n can be used to factor n also allows Vera to cheat, as follows.
Instead of giving Peter fourth powers x4 mod n she chooses random x and gives Peter just the square
x2 mod p. If she can do this repeatedly then she is using Peter as a square-root oracle for n, and thus Vera
can factor n, defeating the purpose of the protocol.

The following much-enhanced version of the above idea is the Fiege-Fiat-Shamir scheme. Again, Peter
knows the factorization n = p · q with secret distinct primes p, q. He wishes to prove to Vera that he knows
p and q, without divulging p and q. (Thus, by the way, such a proof would be reproducible.)

Peter chooses random (secret) v, and computes and publishes s = v2 % n. We already know that if one can
compute square roots modulo n then one can (probabilistically) factor n. Thus, whoever can prove that
they know v may reasonably claim that they are Peter.

To prove to Vera that he’s Peter, Peter chooses r1, . . . , rk random, and sends to Vera the set of squares
s1 = r2

1 % n, . . . , sk = r2
k % n. (Again, if anyone can find all the square roots mod n, then they can probably

factor n.)

Vera chooses a partition of the set of indices 1, 2, . . . , k into two sets S1 and S2, and sends these sets of
indices back to Peter. For i ∈ S1, Peters further sends ti = v · ri to Vera, and for i ∈ S2 Peter sends ri to
Vera. Vera checks whether or not t2i = v · si mod n and whether r2

i = si mod n. If so, she believes that Peter
is himself, that is, that he knows the factorization.

37

Paul Garrett: Cryptographic Primitives (March 26, 2007)

6.4 Electronic money

A drawback to conventional credit cards, as opposed to paper money, is that the credit card’s value exists
only insofar as it is connected to the identity of the cardholder. And, then, the cardholder’s transactions
are traceable. By contrast, traditional paper money has value in itself, and in particular has no connection
to one’s identity, so does not yield information about other transactions. Current electronic banking and
commercial transactions have the same problem as credit cards, in that someone knows quite a lot about
your on-line financial transactions, where you are when they are made, and your general spending patterns.

Ideally, e-money would have a value independent of the possessor’s identity, would be divisible, would be
transferable, would not be reusable (meaning that you could not spend the same dollar twice), would not
depend upon a central authority, and transactions could take place offline. These requirements were laid out
and met in [OO]. Systems meeting varying subsets of these desiderata appear in [Ch] and [CFN]. See also
[Br], which is given a careful exposition in [TW].

A technical but important issue in electronic transactions is failure mode: what happens if an electronic
transaction is interrupted before completion? Is money withdrawn from your bank, or not? Perhaps it is
withdrawn from your account, but doesn’t make it to your hands? Protocols, software and hardware ensuring
atomicity of transactions are important.

6.5 More...

realized via trapdoor mechanisms. Bit commitment schemes effectively allow Alice the electronic
equivalent of putting either a ‘yes’ or a ‘no’ into a sealed envelope and giving the envelope to Bob to
be opened later. Coin flipping over the phone allows two parties who don’t trust each other to be
confident that the other reports honestly the outcomes of certain events. Many questions about electronic
voting remain open.

7 Certifiable Large Primes

For those who must have the traditional version of certainty, there are some reasonable algorithms for
producing very large numbers together with additional data which makes possible a feasible computation
whereby to prove primality. The additional data (and explanation of its role) is a primality certificate.
At the very least, observe that for an integer p ∼ 21024 it is ridiculously infeasible to pretend to list the failed
trial divisions that would prove p prime. Yet to make the claim that one has done the trial divisions is not
necessarily persuasive at all.

The oldest and very simple way to feasibly certify the primality of a large number is the Lucas–
Pocklington–Lehmer criterion, originating in work of Edouard Lucas in 1876 and 1891. This is a technique
especially useful to test primality of numbers N where the factorization of N−1 is known, most often applied
to numbers of special forms, such as Fermat numbers 22n

+ 1. A more sophisticated variant of it gives the
Lucas-Lehmer test for primality of Mersenne numbers 2n − 1, among which are the largest explicitly known
primes. We give a sufficiently simple version so that we can give the quick proof.

Theorem: Let N−1 = p·U , where p is prime, p > U , and suppose that there is b such that bN−1 = 1 mod N
but gcd(bU − 1, N) = 1. Then N is prime.

To see this, we recall a fact observed by Fermat and Euler. Namely, for an integer N and integer b with
bN−1 =1modN but gcd(b(N−1)/p−1, N)=1, we claim that any prime divisor q of N satisfies q=1 mod p.
To see this, as b · bN−2 = 1 mod N it must be that b is prime to N , so b is prime to q. Let t be the order of

38

Paul Garrett: Cryptographic Primitives (March 26, 2007)

b in Z/q×. By Fermat’s Little Theorem bq−1 = 1 mod q, so t|q − 1. But the gcd condition implies that

b(N−1)/p 6= 1 mod q

Thus, t does not divide (N−1)/p. Yet, t|N−1. Thus, p|t. From t|q−1 and p|t we get p|q−1, or q = 1 mod p.
This proves the claim. Thus, if the conditions of the theorem are met, then all divisors of N are 1 modulo
p. If N were not prime, it would have a prime divisor q in the range 1 < q ≤

√
N . But q = 1 mod p and

p >
√

N make this impossible. Thus, N is prime.

Let’s construct a chain of every-larger certified primes. To get started, by trial division, p = 1000003
is prime. Testing by Miller–Rabin, the first strong pseudoprime above 1000 · p of the form p · U + 1
is N = 1032003097 = 1032 · p + 1. By luck, with b = 2 2N−1 = 1 mod N while (by Euclid)
gcd(2(N−1)/p − 1, N) = gcd(21032 − 1, N) = 1 Therefore, N is certified prime.

Now let p be the certified prime 1032003097. The first strong pseudoprime above 109 · p of the form p ·U +1
is

N = 1032003247672452163 = p · (109 + 146) + 1

By luck, with b = 2, 2N−1 = 1 mod N , while gcd(2(N−1)/p − 1, N) = 1 Therefore, N is certified prime.

Now let p be the certified prime 1032003247672452163. The first strong pseudoprime N above 1017 · p of the
form p · U + 1 is

N = p · (1017 + 24) + 1 = 103200324767245241068077944138851913

By luck, with b = 2, 2N−1 = 1 mod N , while gcd(2(N−1)/p − 1, N) = 1. Therefore, N is certified prime.

Now let p be the prime just certified. The first strong pseudoprime N above 1034 · p of the form p · U + 1 is

p · (1034 + 224) + 1

=1032003247672452410680779441388542246872747862933999249459487102828513

Again, luckily, b = 2 provides a certificate that N is N is prime.

Let p be prime just certified. The first strong pseudoprime N above 1060 ·p of the form p ·U +1 is (computing
for about 5 seconds)

p · (1060 + 1362) + 1

= 10320032476724524106807794413885422468727478629339992494608926912
51842880183347221599171194540240682589316106977763821434052434707

By luck, b = 2 works again and N is certified prime.

Let p be the prime just certified. The first strong pseudoprime N above 10120 · p of the form p · U + 1 is
(computing a few seconds)

p · (10120 + 796) + 1 =

10320032476724524106807794413885422468727478629339992494608926912518
42880183347221599171194540240682589316106977763822255527019854272118
90190043534527962851070729889546340257087058223646693262594438839294
0270854031583341095621154300001861505738026773

b = 2 works again and N is certified prime.

Listing the primes p and the values of b in the last few small paragraphs gives a certification that the
last N is prime, since anyone who cares to do so can (in easy polynomial time, of course with the help of
a machine) reproduce the (quick) computations reported above. That is, that relatively small amount of
auxiliary information reduces the proof/testing of primality of N to an easy (machine-assisted) computation.

39

Paul Garrett: Cryptographic Primitives (March 26, 2007)

It is only mildly ironic that we use a probabilistic algorithm (Miller-Rabin) to make a good first guess at
candidates for (deterministic) certification.

8 Factorization Algorithms

The claim that factorization is harder than primality testing (or certification of primality) cannot be
rigorously substantiated currently. Indeed, there are few natural algorithms which can be proven strictly more
difficult than others. And it appears to be difficult to give interesting lower bounds on the computational
complexity (in the sense of run-time per input size) of factoring, despite beliefs concerning its difficulty. [Shp]
illustrates some recent work in the direction of lower bounds.

As some sort of backward evidence that factoring is hard, we give a brief introduction to factoring methods.

In extreme contrast to trial division, these methods have various peculiar failure modes, as well as demanding
discretion in setting parameters. Thus, if there were any doubt: one should not use these factorization
methods on an integer n without having first used Fermat or Miller-Rabin to be sure that n is definitely
composite.

8.1 Euler-Fermat trick

This observation applies only to numbers of special forms. For example, for the special form N = bn − 1,
a prime p divisor of N either divides bd − 1 for some divisor d < n of n, or p = 1 mod n. This follows
immediately from the fact that if p divides N then b is an nth root of unity in the finite field Z/p. This
reduces the amount of required trial division by a significant constant factor, making feasible or palatable
certain historic hand calculations. Similarly, if the Fermat number N = 22q

+ 1 were divisible by a prime
p, then 2 would be a 2q-th root of −1 modulo p, from which it would follow that p = 1 mod 2q+1. This
observation allowed Euler to find the factorization

225
+ 1 = 641 · 6700417

with only (641− 1)/25+1 = 10 trial divisions rather than (641− 1)/2 = 320, disproving the primality of this
number as conjectured by Fermat. Indeed, this constant-factor speed-up finds a six-digit factor of 227

+ 1
in 150 trial divisions rather than 300000. (Still, the Lucas-Lehmer tests for primality of Mersenne numbers
2p − 1 and Fermat numbers 22p

+ 1 are much more efficient, though they test primality without attempting
to find a factor.)

8.2 Pollard’s rho method

This method [Po1] quickly finds relatively small factors p of composite numbers in perhaps
√

p steps, and
uses very little memory. (An algorithm [Po2] similar in spirit computes discrete logarithms.) It is very
simple to implement, and illustrates the surprising power of algorithms which are irremediably probabilistic.
Finally, though an obvious heuristic suggests the reasonableness of Pollard’s rho, it is difficult to prove that
it works as well as it does. See [B] for a rare result in this direction.

The description (hence, implementation) is indeed simple: Given an integer N , define a function f by
f(x) = x2 + 2 % N , and initialize by setting x = 2, y = f(x).

Compute g = gcd(x− y, N)
If 1 < g < N , stop: g is a proper factor of N
If g = 1, replace x by f(x) and y by f(f(y)) and repeat.

(If g = N , we have failure, and the algorithm needs to be reinitialized.)

40

Paul Garrett: Cryptographic Primitives (March 26, 2007)

Why does this work? Indeed, the additional point that it hardly matters what function f is used may be
disconcerting. The most compelling heuristic explanation is not rigorous, and attempts to be more rigorous
do not easily succeed. The probabilistic idea involved is the so-called birthday paradox, that with n draws
(with replacement) from a set of N things, if n >>

√
N then the probability is greater than 1/2 that there

will be a duplication. Perhaps less well-known is the other critical component, the Floyd cycle-detection
method, used to make exploitation of the birthday-paradox idea practical.

The Birthday Paradox computation is easy: the probability that n things drawn (with replacement) from
among N will be distinct is

P =
(

1− 1
N

) (
1− 2

N

)
. . .

(
1− n− 1

N

)
Taking logarithms and using ln(1− x) ≤ −x,

lnP ≤
∑

1≤i≤n−1

− i

N
=
−n(n− 1)

2N
∼ −n2

2N

Thus, P ≤ e−n2/2N , and e−n2/2N ≤ 1/2 for

n ≥
√

2N ln 2 ∼ 6
5

√
N ∼

√
N

The heuristic for Pollard’s rho is as follows. Suppose that N has a proper divisor p, much smaller than N .
From the birthday paradox, if we have more than

√
p integers x1, x2, . . . , xt, then the probability is greater

than 1/2 that two of these will be the same modulo p. The idea of Pollard’s rho method is that
√

p is
much smaller than

√
N , so we should expect that if we choose a ‘random sequence’ of integers x1, x2, . . .,

there will be two the same modulo p long before there are two the same modulo N . Thus, supposing that
xi = xk mod p, compute g = gcd(xi − xj , N). This gcd will be a multiple of p, and will be a divisor of N
probably strictly smaller than N itself.

It is too naive to compute the greatest common divisors gcd(xi − xj , N) as we go along, for all i < j, since
this might take about

√
p · √p ∼

√
N comparisons, as bad as trial division.

We need a clever way to exploit the birthday paradox. Let’s pretend that the function f(x) = x2 + 2% n
used in the algorithm is a ‘random map’ from Z/N to itself, and we make the random xi’s by

x0 = 2 xi = f(xi−1) (for i > 0)

Note that if ever xj = xi mod p with i < j, then equality persists: xj+` = xi+` mod p for all ` ≥ 0. Thus,

xt = xt−(j−i) = xt−2(j−i) = xt−3(j−i) = . . . = xt−`(j−i) mod p (for ` not too large)

(Here not too large means that we do not go back to a point before the cycle was entered.)

Floyd’s cycle-detection method is the following efficient way of looking for matches. Do not keep in
memory the whole list of xi’s. Rather, just remember the last one computed, and separately compute
yi = x2i. The efficient way to compute the sequence of yi’s is as

yi+1 = f(f(yi))

At each step we only remember the last xt and yt computed, and consider gcd(xt − yt, N). Let j be the
index where we repeat a value, namely, let j be the first index such that xj = xi mod p for some i < j. Then

xt = xt−`(j−i) mod p

41

Paul Garrett: Cryptographic Primitives (March 26, 2007)

whenever t− `(j − i) ≥ i. Thus, we have a cycle beginning at i and closing at j, but Floyd’s cycle-detection
trick looks for a cycle beginning at some index s and ending at 2s. We can see that this is feasible: taking
t = 2s,

ys = x2s = x2s−`(j−i) mod p

for all s with 2s− `(j − i) ≥ i. So when s = `(j − i) with `(j − i) ≥ i

ys = x2s = x2s−`(j−i) = x2s−s = xs mod p

for s = 2s− `(j − i) ≥ i. This proves that we find xi and xj which are the same mod p.

The point that once we enter a cycle the data repeats in a simple fashion explains the name rho method: we
could imagine travelling along a literal lower-case rho character, up the tail to the circle forming the body
of the character, thus entering the cycle.

Especially if one feels that Pollard’s rho method is simply too wacky to work, some small examples are useful.
Compare to the trial division examples above. In less than 10 seconds total (in C++ on a 2.4 G machine)

factor 10000103 of 100001220001957 (2661 steps)
factor 100000007 of 10000013000000861 (14073 steps)
factor 1000000103 of 1000000110000000721 (9630 steps)
factor 10000000019 of 100000001220000001957 (129665 steps)
factor 100000000103 of 10000000010600000000309 (162944 steps)

Pollard’s rho can easily factor integers which are well out of the range of trial division.

8.3 Pollard’s p� 1 method

This factorization method is specialized, finding prime factors p of given n with the property that p − 1
is divisible only by ‘small’ factors. It is easy to misunderstand this, so it bears reflection. Certainly trial
division cannot make use of such a property. Integers n divisible only by primes q below a bound B are
(B-) smooth. Primes p such that p− 1 is relatively smooth are called weak, while primes p such that p− 1
has at least one large-ish prime factor p′ are strong. Sometimes it is required that this prime factor p′ of
p − 1 itself have the property that p′ − 1 has a large-ish prime factor p”, etc. (It should be said that such
considerations seem to have been swamped by other issues.)

Fix an integer B. Given an integer n, Pollard’s p− 1 algorithm finds a prime factor p of n such that p− 1
is B-smooth, using O(B lnn/ lnB) multiplications modulo n. Keeping B small is obviously desirable. On
the other hand, a too-small value of B will cause the algorithm to fail to find factors. In practice, because
the value of B must be kept too small to find all possible factors, the algorithm is used ‘just a little’ hoping
for luck or negligence on the part of an adversary. The serious question of how large we should expect the
prime factors of a randomly chosen number to be is not trivial and does not have a simple answer.

As usual, let floor(x) be the largest integer ≤ x, and ceil (x) the smallest integer ≥ x. Given an integer
n known to be composite, but not a prime power, and given a smoothness bound B, choose a random
integer b with 2 ≤ b ≤ n−1. Compute g = gcd(b, n). If g ≥ 2, then g is a proper factor, and stop. Otherwise,
let p1, p2, . . . , pt be the primes less than or equal B. For i = 1, 2, 3, . . . , t: let q = pi, and

Compute ` = ceil (ln n/ ln q).
Replace b by bq`

.
Compute g = gcd(b− 1, n).
If 1 < g < n: stop, g is a proper factor.
Else if g = 1: continue.
Else if g = n: stop, failure.

Why does this work? Let
p = 1 + pe1

1 . . . pet
t

42

Paul Garrett: Cryptographic Primitives (March 26, 2007)

be a prime factor of n such that p− 1 is B-smooth, with some integer exponents ei. For any integer b prime
to p by Fermat’s Little Theorem bp−1 = 1 mod p, so

bp
e1
1 ...p

et
t = 1 mod p

The quantity
`i = ceil (ln n/ ln pi)

is larger than or equal ei. Let T = p`1
1 . . . p`t

t . Then pe1
1 . . . pet

t divides T , so certainly bT = 1 mod p for any
integer b prime to p. That is,

p|gcd(bT − 1, n)

The actual algorithm given above computes gcd’s more often than indicated in the last paragraph, providing
some opportunities to avoid gcd(bT − 1, n) = n.

Example: Factor 54541557732143. Initialize b = 3. The exponent for 2 is 46, the exponent for 3 is 29, and
the exponent for 5 is 20. Replace b by

b247
% 54541557732143 = 7359375584408

Since gcd(b− 1, n) = 1, continue. Replace b by

b329
% 54541557732143 = 8632659376632

Since gcd(b− 1, n) = 1, continue. Replace b by

b520
% 54541557732143 = 28295865457806

This time,
gcd(n, b− 1) = gcd(54541557732143, 2268486536233− 1) = 54001

Thus, we find the proper factor 54001 of 54541557732143. The prime 54001 is {2, 3, 5}-weak, meaning that
54001− 1 is {2, 3, 5}-smooth.

Incidentally, the format of the example shows how to use an indefinitely large bound B for the smoothness
of p− 1 for factors p of n. Then the issue becomes deciding when to quit in the case that one has found no
weak prime factors.

There is an analogous p + 1 method due to Williams [Wil]. In fact, for any cyclotomic polynomial

ϕn(x) =
xn − 1∏

d|n, d<n ϕd(x)

there is a ϕn(p)-method, with Pollard’s being the case n = 1, and Williams’ the case n = 2. However, for
larger n these seem not to have immediate utility for factoring.

8.4 Toward the quadratic sieve

We look first at a generic random squares algorithm, then the continued fractions refinement of this, and then
a different refinement, the quadratic sieve. A random squares or Fermat factoring method earns the latter
name since such factorization algorithms can be broadly viwed as a natural outgrowth of a more special
method used by Fermat in case an integer n is a product n = ab of two integers relatively close to

√
n.

Such algorithms use much more memory than Pollard’s algorithms, and, indeed, this is a chief bottleneck in
scaling upward.

43

Paul Garrett: Cryptographic Primitives (March 26, 2007)

A factor base is a chosen initial set of primes

B = {p1, . . . , pt}

(with p1 = 2, p2 = 3, etc.) Choose integers a1, a2, . . ., and let bi = a2
i % n. We hope/require that every bi be

smooth with respect to the factor basis B (that is, all the prime factors of bi are in B). Then find a subset
of the bis whose product is a perfect square in Z, as follows. Write the factorizations

bi =
t∏

j=1

p
eij

j

Suppose that we have t + 1 of these ai’s with bi = a2
i % n being B-smooth. Let vi be the vector (in Ft+1

2) of
the exponents mod 2:

vi = (ei1 % 2, ei2 % 2, ei3 % 2, . . . , eit % 2)

Since there are t + 1 of these vectors in a t-dimensional vector space, they are linearly dependent over F2.
That is, there are c1, . . . , ct+1 in F2 such that

c1v1 + · · ·+ ct+1vt+1 = (0, . . . , 0) ∈ Ft
2

Use Gaussian elimination to find such a relation. Then
t+1∏
i=1

bci
i =

t+1∏
i=1

(
t∏

j=1

p
eij

j)ci =
t∏

j=1

t+1∏
i=1

p
cieij

j =
t∏

j=1

p
Σi cieij

j

has even exponents
∑

i cieij , so is the square of an integer.

Take

x =
t+1∏
i=1

aci
i % n y =

t∏
j=1

p
(Σi cieij)/2
j % n

Then
x2 = y2 mod n

and a chance that
1 < gcd(x− y, n) < n

thereby possibly obtaining a proper factor of n. If by mischance x = ±y mod n, then we won’t get a proper
factor. In that case, compute one or more new values bi = a2

i % n and repeat the Gaussian elimination step
just above.

The merits of such a random squares algorithm hinge upon two things: adroit determination of the factor
base B = {p1, . . . , pt}, and choice of the ai’s so that bi = a2

i % n factors into primes lying in the factor
base. One approach, the basic random squares approach, also called Dixon’s algorithm, chooses the ai

‘randomly’, and uses trial division by primes in B to see whether or not bi = a2
i % n is B-smooth. This

requires O(t) trial divisions for each bi. If bi is not B-smooth, reject ai and choose another. In practice,
‘random’ selection often means testing of successive ai’s in a specified interval.

Example: very small for the sake of human accessibility to details. Let n = 10019. We will try to select
ai’s just above the square root of n, which has integer part m = 101. With any factor base smaller than
B = {2, 3, 5, 7, 11, 13} we do not find enough smooth bi = a2

i % n below 2m. This gives some idea of suitable
choice of factor base, since needing to test more than a small fraction of the candidate ai’s between m and 2m
amounts to a failure. We do find 6 B-smooth bi’s, whose vector of exponents for the primes 2, 3, 5, 7, 11, 13
we display

1012 % 10019 = 182 with exponents 1 0 0 1 0 1
1022 % 10019 = 385 with exponents 0 0 1 1 1 0
1072 % 10019 = 1430 with exponents 1 0 1 0 1 1
1132 % 10019 = 2750 with exponents 1 0 3 0 1 0
1372 % 10019 = 8750 with exponents 1 0 4 1 0 0
1422 % 10019 = 126 with exponents 1 2 0 1 0 0

44

Paul Garrett: Cryptographic Primitives (March 26, 2007)

The first 3 rows sum to 0 mod 2, so we take

x = a1 · a2 · a3 = 101 · 102 · 107 = 1102314

and

y = 2(1+1+0)/2 · 3(0+0+0)/2 · 5(0+1+1)/2 · 7(1+1+0)/2 · 11(0+1+1)/2 · 13(1+0+1)/2

= 10010

Then we find a proper factor of 10019 via Euclid

gcd(10019, x− y) = 233

Improvement: If instead of reducing bi = a2
i modulo n into the range 0 ≤ bi < n we reduce into the range

−n
2 < bi < n

2 (and add −1 to the factor base), then we obviously improve the chances that bi is B-smooth.
We will not use this for the moment, but will have an additional motivation to incorporate this improvement
in the continued fractions algorithm (below).

Improvement: If we only choose the ai’s in the range m < ai <
√

2m then

bi = a2
i % n = a2

i − n

Then for a prime p dividing bi, we have n = a2
i mod p, so n is a square modulo p. The point is that then we

can drop primes p with quadratic symbol (n/p)2 = −1 from our factor base. By quadratic reciprocity (and
Dirichlet’s theorem on primes in an arithmetic progression), this holds for roughly half the primes. That
is, given n, after doing an easy preliminary computation of quadratic symbols, for the same computational
load we have twice as large a factor basis. Of course, one would repeatedly discover that primes p for which
(n/p)2 = −1 do not appear at all in factorizations of bi = a2

i − n.

Example: The integer n = 1000001 is a non-square modulo primes 3, 11, 13, 17, 19, 23. Thus, not
surprisingly, only 2 ai’s in the range m < ai <

√
2m give bi = a2

i − n which are smooth with respect to the
large-ish factor base {2, 3, 5, 7, 11, 13, 17, 19, 23}. That is, the most naive random square factorization seems
to malfunction. But, in the improved form, taking into account the quadratic symbol condition, we realize
that the first 4 primes we should include in a factor base are {2, 5, 7, 29}. And then, with this factor base
rather than the full list of primes up to that point,

10012 % 1000001 = 2000 with exponents 4 3 0 0
10822 % 1000001 = 170723 with exponents 0 0 1 3
11512 % 1000001 = 324800 with exponents 6 2 1 1
12492 % 1000001 = 560000 with exponents 7 4 1 0

The second and third vectors sum to 0 modulo 2, so we take

x = a2 · a3 = 1082 · 1151 = 1245382

and
y = 2(0+6)/2 · 5(0+2)/2 · 7(1+1)/2 · 29(3+1)/2 = 235480

and via Euclid we find the proper factor

gcd(1000001, x− y) = 9901

The quadratic sieve of Pomerance [Pom] is the best current method to choose the ai’s in a classical random
squares factoring algorithm, and for a while was the best factoring algorithm of any sort. It is apparently
subexponential. (The number field sieve uses a more sophisticated mechanism than the random squares

45

Paul Garrett: Cryptographic Primitives (March 26, 2007)

factoring discussed here, and is faster for sufficiently large inputs.) The quadratic sieve is the most clever
known method to choose the ai’s in a random squares algorithm, and effectively entirely avoids factoring,
but is still memory-intensive. This makes the operation of the algorithm even less human-accessible than
the continued fraction algorithm.

Much as in our version of the basic random squares algorithm, given n to be factored, we will choose the ai’s
in a particular range so that we have a fixed polynomial expression for the absolute reduction of a2

i modulo
n. For example, let m = ceil (

√
n), and choose ai’s only in the range

m < ai < m + `

with L << (
√

2− 1)m, so that
bi = a2

i % n = a2
i − n

Thus, for a prime p dividing bi, n is a square modulo p. As already exploited in the random squares case,
this allows us to drop any prime p from the factor base if (n/p)2 = −1, effectively doubling the size of the
factor base for the same computational load.

Before the sieving step, for given n one precomputes some square roots modulo prime powers pe for the
primes p in the factor base B, as follows. Using the square root algorithm modulo primes (4.17), together
with Hensel’s lemma (4.18), one computes the two square roots ±rp of n modulo pe(p) for the largest exponent
e(p) (depending upon p) such that at least one of a = ±rp falls in the range m < a < m + `.

Now the sieving: first observe the elementary fact that if a = rp mod pf for some integer f ≤ e(p) then

a2 − n = 0 mod pf

For a in the chosen range m < a < m + `, initialize a list {L(a) : a} of values by

L(a) = ln(a2 − n) (for m < a < m + `)

Here and in the following all logarithms should be computed in double or triple precision floating-point. The
sieving is the following.

For each p in the factor base B:
For i = e(p), e(p)− 1, . . . , 1:

For m < a < m + ` with a = ±rp mod pi,
subtract ln p from L(a)

After this take as candidates ai’s the elements m < a < m + ` with the (modified) value L(a) suitably close
to 0 or negative as the most likely to give B-smooth bi = a2

i − n. Only now do we factor these bi’s and set
up a matrix of exponents for the primes in B as before.

Remark: The point of this approach is to reduce the amount of factorization done, since for larger integers
factorization is onerous, far more so than the algorithms to compute square roots, and to sieve, in that
range. This sieving, much as Eratosthenes’ sieve, is even more memory-intensive than the continued fractions
algorithm, and manipulation of the large matrix of exponents is a bottleneck in scaling upward. On the other
hand, in a certain range it appears that the trade-off of not needing to factor while keeping track of more
partial results is advantageous.

Remark: In factoring genuinely large numbers n, it appears that the largest prime in a factor base should
be on the order of

e
√

ln n ln ln n

and the length ` of the interval of candidates above m should be in the range

e
√

ln n ln ln n < ` < e2
√

ln n ln ln n

46

Paul Garrett: Cryptographic Primitives (March 26, 2007)

We use an example to illustrate further details. Hoping to achieve a degree of human accessibility, not
surprisingly we are forced to use an unnaturally small n.

Example: To attempt to factor n = 21311, initially take a factor base {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}.
Dropping odd primes p with (n/p)2 = −1 leaves us with B = {2, 5, 11, 13, 23, 29}. Compute

m = floor(
√

n) = 145

To be sure to have a2 % = a2 − n, we only consider candidates a below
√

2m ∼ 205, for example, a in the
range

145 < a < 201

Now we generate the data used to sieve. Since n = 3 mod 4, the only power of 2 that can ever divide a2 − n
is 21, for odd a. Powers of 5 are more interesting. Suppressing the computation of square roots, we find that
a = 169 is the only integer in the indicated range satisfying

a2 − n = 0 mod 53

Going up 52 from this, we see that 194 is a square root mod 52. The only other two square roots of n mod
only 52 fitting into the range are 156 and 181, differing by multiples of 25 from the square root 81 of n
modulo 52. The remaining square roots mod only 51 fall into two families mod 5

149 154 159 164 174 179 184 189 199 204
146 151 161 166 171 176 186 191 196 201

The square roots of n modulo 113 are 933 and 398, neither of which can be moved into the indicated
range modulo 113. Modulo 112 the only square root is 156 in that range. Modulo only 11 we have two
batches (distinguished mod 11), 167, 178, 189, 200, and 152, 163, 174, 185, 196. The only square roots modulo
132 are 37 and 132, neither of which can be adjusted by multiples of 169 to be in the indicated range,
so we only have candidates which are square roots of n modulo 13 and no higher power of 13, namely
154, 158, 167, 171, 180, 184, 193, 197. Modulo 232 there are again no square roots of n in the indicated range,
but 155, 167, 178, 190, 201 are the square roots modulo 23 in that range. Modulo 29 there are 150, 169, 179, 198
and none modulo 292.

Since there are 6 primes in the factor base, we want at least 7 linear relations mod 2 among the exponents
in factorizations. If any primes arise that are not already in the factor base, we’ll need still more relations.

Of the candidates in the range 146 ≤ a ≤ 200, we sieve out (to keep) those a such that

(a2 − n)/(powers of 2, 5, 11, 13, 23, 29) < 50

setting the thresh-hold of 50 somewhat at random. (For readability, we don’t take logarithms.) The following
table lists the candidates a = 146, . . . , 200 with prime powers from our factor base dividing a2 − n, boxing
the leftover if that leftover is under 50.

47

Paul Garrett: Cryptographic Primitives (March 26, 2007)

146 147 148 149 150 151 152 153 154 155 156
− 2 − 2 − 2 − 2 − 2 −
5 − − 5 − 5 − − 5 − 52

− − − − − − 11 − − − 112

− − − − − − − − 13 − −
− − − − − − − − − 23 −
− − − − 29 − − − − − −
1 149 593 89 41 149 163 1049 37 59 1

157 158 159 160 161 162 163 164 165 166 167
2 − 2 − 2 − 2 − 2 − 2
− − 5 − 5 − − 5 − 5 −
− − − − − − 11 − − − 11
− 13 − − − − − − − − 13
− − − − − − − − − − 23
− − − − − − − − − − −

1669 281 397 4289 461 4933 239 1117 2957 1249 1

168 169 170 171 172 173 174 175 176 177 178
− 2 − 2 − 2 − 2 − 2 −
− 53 − 5 − − 5 − 5 − −
− − − − − − 11 − − − 11
− − − 13 − − − − − − −
− − − − − − − − − − 23
− 29 − − − − − − − − −

6913 1 7589 61 8273 4309 163 4657 1933 5009 41

179 180 181 182 183 184 185 186 187 188 189
2 − 2 − 2 − 2 − 2 − 2
5 − 52 − − 5 − 5 − − 5
− − − − − − 11 − − − 11
− 13 − − − 13 − − − − −
− − − − − − − − − − −
29 − − − − − − − − − −
37 853 229 11813 6089 193 587 2657 6829 14033 131

190 191 192 193 194 195 196 197 198 199 200
− 2 − 2 − 2 − 2 − 2 −
− 5 − − 52 − 5 − − 5 −
− − − − − − 11 − − − 11
− − − 13 − − − 13 − − −
23 − − − − − − − − − −
− − − − − − − − 29 − −

643 1517 15553 613 653 8357 311 673 617 1829 1699

We have 8 outcomes below 50, but new primes 37 and 41 have appeared. Of some interest is the fact that
the prime 31 did not appear at all. We can enlarge the factor base to include 37 and then discover that the
candidate a = 191 gives a further relation 1912 − n = 2 · 5 · 37 · 41. Thus, with 8 primes appearing, we have

48

Paul Garrett: Cryptographic Primitives (March 26, 2007)

the requisite 9 relations
1462 − n = 5
1502 − n = 29 · 41
1542 − n = 5 · 13 · 37
1562 − n = 52 · 112

1672 − n = 2 · 11 · 13 · 23
1692 − n = 2 · 53 · 29
1782 − n = 11 · 23 · 41
1792 − n = 2 · 5 · 29 · 37
1912 − n = 2 · 5 · 37 · 41

Actually, by luck 1562 − n is a square, and

gcd(156− 5 · 11, n) = 101

so we have a proper factor without carrying out the Gaussian elimination. From this point, the algorithm
proceeds exactly as the generic random squares and the continued fractions algorithms.

Elliptic curve algorithms and the number field sieve are more sophisticated, although implementation
is possible without discussion of the underlying ideas. The elliptic curve algorithm is roughly a competitor for
the quadratic sieve, while the number field sieve is faster at the top end of the range of integers factorable by
any (generic) factoring method. The number field sieve has its origins in a deterministic (superpolynomial)
algorithm of Adleman, Pomerance, and Rumely [APR] from 1983.

9 Randomness, Information, Entropy

While it is possible to formalize various statistical notions of ‘randomness’ of a string of 0’s and 1’s, the
cryptographic sense is much stronger, specifically demanding unpredictability of the next bit given all the
previous bits, by an adversary with substantial computing power. Statistical randomness merely means that
the aggregate has properties within statistically plausible bounds of what one would obtain if the 0’s and
1’s had come from a genuinely random source. In effect, an allegedly random sequence might be rejected on
statistical grounds due to presence of a simple pattern, but absence of a simple pattern does not usefully
address predictability. Instead, the usual proof of unpredictability asserts something akin to ‘if the adversary
can consistently predict the next bit, then the adversary can factor large integers’. The Blum-Blum-Shub
[BBS] and Naor-Reingold [NR] pseudo-random number generators both are of this sort.

Keys to both symmetric and asymmetric ciphers must be random, otherwise (in effect) the keyspace is greatly
reduced in size, making brute force searches for the key feasible. Trying common words and variations as
sources of keys is a dictionary attack. Reasonably good password checking programs carry out such attacks
to test the quality of users’ proposed passwords before accepting them. Several cautionary tales exist wherein
the inadequacy of using process id’s (PIDs) and current time as seeds for pseudo-random number generators
(pRNGs). The SSL (Secure Sockets Layer) implementation in the Netscape browser at one point suffered
from a fatally inadequate random number generator.

A naive notion of randomness, e.g, of a 1024-bit integer is that it be the result of choosing from among the
first 21024 integers with equal probabilities attached. However, this attempted answer begs the question,
in practical terms, since it does not indicate how the ‘choice’ is to be made. Further, there is an intuitive
inadequacy in this naive conception, since (as illustrated already in the discussion of Kolmogorov complexity)
bit-strings

10101010101010101010

11100100011011111001

49

Paul Garrett: Cryptographic Primitives (March 26, 2007)

which are equally likely if we are choosing random 0’s and 1’s are not equally random to our eyes: the first
is highly patterned, and the second seems not so. Again, see [LV] for an engaging dialectic developing the
notion of random.

9.1 Entropy

The notion of entropy in this context was introduced decisively in Shannon’s fundamental papers [Sh1],
[Sh2] on information theory. These papers showed that, in analogy with the thermodynamical use of the
term, the term makes sense in application to communication channels and abstractions thereof. (Hartley had
used a similar idea earlier, but had been less persuasive in demonstrating its innate relevance to questions
of communications.) Shannon’s theorems bear upon data compression, information rate of channels and
devices, and secrecy issues. The entropy H(Ω) of a finite probability space Ω is

H(Ω) =
∑
ω∈Ω

−P (ω) · ln2 P (ω)

where P () is probability. Similarly, the entropy H(X) of a random variable X with finitely-many values is

H(X) =
∑

values x of X

−P (X = x) · ln2 P (X = x)

The base-2 normalization of logarithms means that the entropy of a fair coin is 1, justifying taking bits
as the unit of entropy. We are to think of entropy as a synonym for uncertainty. One may readily verify
properties such as that H(p1, . . . , pn) is maximum when p1 = . . . = pn = 1

n : the most uncertainty is when
all possibilities are equally likely. Also readily verifiable is

H(
1
n

, . . . ,
1
n︸ ︷︷ ︸

n

) ≤ H(
1

n + 1
, . . . ,

1
n + 1︸ ︷︷ ︸

n+1

)

That is, a larger ensemble of equally likely possibilities is more uncertain than a smaller ensemble.

In this context, a source is a probability space whose elements are the (source) alphabet. The entropy
of a source is the entropy of that probability space. For example, English may be naively modeled as the
probability space

Ω = {e, t, o, a, n, i, r, s, . . .}

where P (e) ≈ 0.11. P (t) ≈ .9, etc., where the supposed probabilities are the approximate frequencies with
which characters appear.

A naive but useful model of English makes the (naive) assumption that the next letter in a sequence is
independent of the previous letter (and the probabilities do not change). This sort of hypothesis on the
output of a source is the i.i.d. (independent, identically distributed) hypothesis. By contrast, a Markov
source is one in which the next output of the source depends (in a uniform manner) on the previous output.
A hidden Markov source is one in which the next output of the source depends (in a uniform manner) on
not only the previous output, but on a state which may not be visible to an observer.

9.2 Shannon’s Noiseless Coding

This is the basic result about compression. In a simple form, if the possible single outputs of an i.i.d. source
are the elements of a finite probability space Ω, to be encoded as strings of 0’s and 1’s so as to minimize the
expected length of the binary codewords,

H(Ω) ≤ (expected word length with optimal encoding) ≤ H(Ω) + 1

50

Paul Garrett: Cryptographic Primitives (March 26, 2007)

where H(Ω) is entropy, as above. (Analogues of this result hold for certain more complicated sources, as
well.) This illustrates the aptness of the notion of entropy, since it is the answer to a fundamental question.
Further, given a fixed source alphabet, construction of an optimal encoding is straightforward (Huffman
encoding). Compression is also called source coding. See [G2] or [Ro], for example.

A far subtler aspect of serious compression schemes is, in effect, exactly the choice of an advantageous source
alphabet, given a real source. E.g., see [Sn].

In this vein, we have a reasonable heuristic test of ‘randomness’ of a string of characters: if any one of the
standard compression utilities (gzip, zip, bzip2, etc.) can compress the string, then the string is assuredly
not random. Indeed, in successfully choosing a source alphabet with skewed probabilities, the algorithm has
detected a pattern. Of course, the repertoire of patterns found in such a manner is limited.

Another basic communications notion is that of a channel, meant to mirror aspects of real-world
communications channels, and also to abstract critical notions. The simplest interesting channel model
is the binary symmetric channel, which accepts as inputs sequences of 0’s and 1’s, flipping each one
to the other with a fixed (bit error) probability p, independent of previous flips-or-not. To successfully
transmit information through such a channel the information must incorporate some sort of redundancy.
The simplest version of redundancy is a repetition code: for example, to communicate a bit, one might send
that bit through the channel 3 times, and have recipient take a vote of the 3 received bits: if a majority of
the received bits are 1’s, that is how the message is interpreted, while if a majority are 0’s, it is inferred
that the message was 0. It is a straightforward and elementary exercise to compute that the probability of
incorrectly decoding a single bit is

3-fold repetition code probability of incorrectible error = 3p2(1− p) + p3

For small p, the probability of incorrectible error with the threefold repetition code is about 3p2, which is
much smaller than the probability p of a single bit being transmitted correctly. Thus, to have probability of
no error at least 1− ε without any redundancy scheme allows transmission of not more than

ln(1− ε)
ln 1− p

∼ ε

p
bits

while with three-fold repetition we can transmit as many as

ln(1− ε)
ln 1− (3p2(1− p) + p3)

∼ ε

3p2
bits

Thus, for example, for p small, use of three-fold redundancy increases transmission length before failure by
a factor of about 1/3p.

But this three-fold repetition code uses 3 times the space and time of the original message itself. That is,
the information rate of the three-fold repetition code is 1/3. It is not hard to imagine that repetition
codes are not the most efficient choices available. Encodings with the intent to be robust against channel-
induced errors are error-correcting codes, or forward error-correction schemes (as opposed to error detection
schemes which must ask for retransmission upon detection of an error). See [Rn], [G2], for example, or the
updated encyclopedic classic [MS]. Construction of error-correcting codes is much harder than construction
of compression algorithms.

9.3 Shannon’s Noisy Coding Theorem

This provides our second illustration of the aptness of the notion of entropy. This result is a surprisingly
optimistic assertion about the creation of good error-correcting codes. (Roughly) define the channel
capacity C of a binary symmetric channel (as above) with bit error rate p to be the upper bound information
rates achievable by clever error correction encoding while simultaneously demanding that the probability of
uncorrectible errors can be made as nearly 0 as one wishes. Surprisingly, Shannon’s Noisy Coding theorem
proves that

51

Paul Garrett: Cryptographic Primitives (March 26, 2007)

capacity of channel with bit error rate p = 1−H({p, 1− p})

= 1−
(

p ln2
1
p

+ (1− p) ln2
1

(1− p)

)
where H({p, 1− p}) is the entropy of the two-element probability space with probabilities p and 1− p. (The
orthodox treatment of this would be to define the channel capacity to be the entropy, and then prove that
this definition is ‘correct’.) Shannon’s proof in effect showed that the average code achieves that level of
performance. Thus, one would tend to say that random codes are good. Paradoxically, it appears to be
difficult to systematically choose these good random codes.

The fact that channel capacity is not zero while assuring nearly error-free transmission of information is
striking. At the same time, the well-definedness of channel capacity as a definite limit on the transmission
of correct information is almost equally striking. And, again, more than merely being a heuristic imitation
of thermodynamical ideas, Shannon’s two theorems show that entropy has a provable significance.

Information theory consists of issues surrounding compression and error correction. The Shannon theorems
and successive developments are often implicitly understood as justification for thinking about cryptography
in information-theoretic terms, at least as a heuristic, even though it appears to be difficult to give substance
to the intuitively appealing notion that a cipher increases entropy. More plausible is the notion that limits
on hiding information can be objectively measured.

9.4 Statistical randomness

This is quantifiable, although seems sharply insufficient to assure adequate cryptographic randomness. A
statistically random sequence of 0’s and 1’s will pass various low-level tests. We will briefly survey empirical
tests, meaning that one ignores the means of producing the pseudo-random bits, but simply measures various
features of samples from the sequence.

First, Pearson’s χ2 test (e.g., see [Kn] section 3.3) gives potential quantitative sense to the intuitively plausible
fact that sampling of the outcome of a genuinely random variable is skewed to various degrees. That is, in
100 flips of a fair coin one ought not rely upon an outcome of 50 heads and 50 tails, but, rather, an outcome
merely close to that. The sense of close is quantified by the χ2 test, though setting of thresh-holds still is a
matter of subjective judgement. Again, see [Kn] for discussion of proper use of the χ2 test in this context.
Roughly, the χ2 test reports the probability that a random variable with alleged probabilities would produce
a given sample. Thus, apart from setting thresh-holds, all the following tests can be made quantitative via
the χ2 test, that is, the use of the term roughly below can be converted to something numerical, though we
will not do so.

Samples of necessary but not sufficient statistical requirements on sequences of bits are: Equidistribution:
The number of 0’s should be roughly the number of 1’s in a sample (but of course not exactly). Serial test:
The four possible pairs of successive bits, 00, 01, 10, and 11, should be roughly equidistributed. Poker test:
The various possibilities of (e.g.) 5 consecutive bits, namely, all the same, one 0 and four 1’s, etc., with their
respective probabilities, should appear roughly as expected. Coupon collector’s test: This test chooses
one or more unusual patterns (such as 11111) and looks at the length of subsequences necessary to see such
a pattern. Failure of any of these tests is a fairly sharp denial of randomness.

In the same vein, there are heuristic methods to eliminate statistical biases from a given sequence of bits.
Such procedures, or at least their intended effects, are known as distillation or purification of entropy or
randomness. There is an obvious hazard in the very notion. For example, given a sequence of bits, to ‘distill’
a subsequence with roughly the same number of 0’s and 1’s, one might explicitly drop any 11’s or 00’s. But,
of course, this produces the not-random . . . 101010 As this trivial example illustrates, generally there
is a tendency for too-naive distillation attempts to repair one bias at the expense of another. It seems fair
to say that the problem of distillation of randomness or entropy is not simple, especially if the goal is the

52

Paul Garrett: Cryptographic Primitives (March 26, 2007)

cryptographic one of unpredictability, since the distillation algorithm itself must be deterministic.

Again, statistical randomness is not cryptographic randomness, so the above samples of conditions are
necessary, not sufficient conditions on a pRNG.

9.5 Deterministic pRNGs

As noted earlier, the existence of the Massey-Berlekamp decisively shows that LFSRs and LCGs are not
useful as cryptographic pRNGs, even though such a pRNG can be arranged so it their state does not repeat
for a very long time. A long period is a necessary, but not sufficient, condition for a good pRNG.

The Blum-Blum-Shub pRNG has provable properties, and is easy to describe, but is a bit inefficient, and
still needs high quality random numbers to generate the data to construct the generator in the first place.
The set-up is choice of large random primes p and q, and random seed so. Successive secret internal states
are computed by

sn+1 = s2
n % pq

and public output bits are produced by
bn = sn % 2

One can prove (e.g., see also [St]) that being able to predict successive output bits consistently better than
half the time allows one to factor pq. But note that perhaps 1000 genuinely random bits are needed to
set up a secure BBS pRNG, so it would be silly to imagine using BBS to generate any smaller number of
bits. Again, with insufficiently random set-up data, an attacker does not try to break the pRNG itself, but,
instead, tries to guess the initial data (a dictionary attack). For example, with p = 103, q = 211, s0 = 13,
the first 120 bits generated are

1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0
0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0
0 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 1
1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1
1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1
1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0

As dubious as our powers of assessment of randomness may be, there seems to be no obvious elementary
pattern. And, again, one should note the fact that the data p, q, and s0 needed to be chosen.

The Naor-Reingold generator [NR] is of a similar nature, refining these ideas. As with the Blum–Blum–Shub
algorithm, it is provably secure assuming the infeasibility of factoring integers N = p · q, where p and q are
large primes. Its set-up is a little more complicated. Fix a size n, and choose two random n-bit primes p
and q, both equal to 3 mod 4, and put N = pq. Choose a random integer g which is a square mod N . Let

a = (a1,0, a1,1, a2,0, a2,1, . . . , an,0, an,1)

be a random sequence of 2n values in {1, 2, . . . , N}. Let r = (r1, . . . , rn) be a random sequence of 0’s and
1’s. For an integer t of at most 2n bits, let b2n(t) be the vector of binary expansion coefficient of t, padded
as necessary on the left to have length 2n. For two such binary vectors

v = (v1, . . . , vn), w = (w1, . . . , wn)

with vi’s and wi’s all 0’s or 1’s, define

v · w = (v1, . . . , vn) · (w1, . . . , wn) = (
∑

1≤i≤n

viwi) % 2

53

Paul Garrett: Cryptographic Primitives (March 26, 2007)

Then for any n-tuple x = (x1, . . . , xn) of 0’s and 1’s, define a {0, 1}-valued function

f(x) = fN,g,a,r(x) = r · b(ga1,x1+a2,x2+a3,x3+···+an,xn % N)

Then, assuming that it is infeasible to factor N , the output of the function f = fN,g,a,r is indistinguishable
from random bits.

9.6 Genuine randomness

Repeatedly flipping a (fair) coin to generate successive 0’s and 1’s yields (so far as we know) ‘genuinely
random’ bits. The problem is that the process is slow. The decay of radioactive isotopes is genuinely
random, so far as we know, but perhaps inconvenient, though see [Fo]. Atmospheric noise [RNG] and lava
lamps are plausible generators.

Several commercial and open-source products exist which in conjunction with a desktop or laptop computer
produce ‘random’ numbers by timing keyboard or mouse or other activities presumably influenced by
irregular external events. For example, on most recent unix/linux systems the devices ‘/dev/random’ and
‘/dev/urandom’ (created by T. Ts’o) collect events, the former producing output whenever sufficient ‘entropy’
has been collected, while the latter produces output with whatever is available. The manpage for urandom
contains platform-specific information about these parts of the kernel. For example, in Perl on a typical
Linux platform,

#!/usr/bin/perl
open R, ”/dev/random”;
read R, $random, 1;
close R;
print unpack(”H*”, $random);

prints a plausibly random byte in hexadecimal. Typically, commercial products try to remove as many
statistical biases as possible from bit streams produced by the environment, intending to leave us with
‘genuinely random’ bits.

Notes

Kahn [Ka] and Singh [Si] are historical discussions of cryptography. Grittier practical aspects with an
exhaustive bibliography are in Schneier [Sch1]. To understand practical realities, one must also read
Schneier’s [Sch2]. A high-level engineering-oriented formal text paying attention to specifics of NIST
standards is Stinson [St]. More mathematical is the Handbook [MOV] by Menezes, van Oorschot, and
Vanstone, giving many algorithms in readable pseudo-code, with bibliographic commentaries, but not
including more sophisticated items such as elliptic curve techniques. The Handbook provides no proofs,
neither of underlying mathematical facts (some nonstandard), nor of correctness of algorithms, nor of runtime
estimates. [Ga] is a representative of an older time. The discussion [DR] of the Advanced Encryption
Standard, Rijndael, by its authors, Daemen and Rijmen, is informative about design issues. Despite being
somewhat faster and more flexible than the other AES candidates, it was a surprise to this author that
Rijndael, the most mathematically structured of the candidates, should have won. In this context, one
should not overlook the new attack [FM] on Rijndael and similar ciphers. Koblitz’ [Ko2] goes beyond elliptic
curve methods to show how to use jacobians of certain hyperelliptic curves.

54

Paul Garrett: Cryptographic Primitives (March 26, 2007)

Bibliography

[A] L.M. Adleman, The function field sieve, Algorithmic Number Theory, Lecture Notes in Computer Science
877 (1994), 108–121.

[APR] L.M. Adleman, C. Pomerance, R. Rumely, On distinguishing prime numbers from composite numbers,
Annals of Mathematics 117 (1983), 173-206.

[AES] NIST AES homepage, http://csrc.nist.gov/CryptoToolkit/aes/

[AGP] W. Alford, A. Granville, C. Pomerance, There are infinitely-many Carmichael numbers, Annals of
Mathematics 140 (1994), 703–722.

[AKS] M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P, (preprint 2002)
http://www.cse.iitk.ac.in/new/primality.html

[AAG] I. Anshel, M. Anshel, D. Goldfeld, An algebraic method for public-key cryptography, Mathematics
Research Letters 6 (1999), 1–5.

[B] E. Bach, Toward a theory of Pollard’s rho method, Information and Computation 90 (1991), 139–155.

[BS] E. Bach, J. Shallit, Algorithmic Number Theory, MIT Press (1996),

[Ba] W.D. Banks, Towards faster cryptosystems, II, (this volume)

[Ba] F.L. Bauer, Decrypted Secrets: Methods and Max-ims of Cryptology, Springer-Verlag (2000),

[Be] J. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge Univ. Press (1993),

[Ber] D. Bernstein, http://www.cse.iitk.ac.in/new/primality.html,

[BS1] E. Biham, A. Shamir, Differential cryptanalysis of DES-like cryptosystems, Journal of Cryptology 4
(1991), 3–72.

[BS2] E. Biham, A. Shamir, Differential cryptanalysis of the Data Encryption Standard, Springer-Verlag
(1993),

[BS3] E. Biham, A. Shamir, Differential cryptanalysis of the full 16-round DES, Lecture Notes in Computer
Science 740 (1993), 494–502.

[BKL] J. Birman, K. Ko, S. Lee, A new approach to the word and conjugacy problems in the braid groups,
Advances in Mathematics 139 (1998), 322–353.

[BSS] I.F. Blake, G. Seroussi, N.P. Smart , Elliptic curves in cryptography, London Math. Soc. Lecture Note
Series 265 (2000),

[BBS] L. Blum, M. Blum, M. Shub, A simple unpredictable random number generator, SIAM Journal on
Computing 15 (1986), 364–383.

[Bo] D. Boneh, Twenty years of attacks on the RSA cryptosystem, Notices of the AMS 46 (1999), 203–213.

[BDF] D. Boneh, G. Durfee, Y. Frankel, An attack on RSA given a fraction of the private key bits, Advances
in Cryptology, AsiaCrypt ‘98, Lecture Notes in Computer Science 1514 (1998), 25–34.

[Bor] F. Bornemann, PRIMES is in P: a breakthrough for ‘Everyman’, Notices of the A.M.S. 50 (2003),
545–552.

[Br] S. Brands, Untraceable off-line cash in wallets with observers., Advances in Cryptology, Crypto ‘93,
Lecture Notes in Computer Science 773 (1994), 302–318.

55

Paul Garrett: Cryptographic Primitives (March 26, 2007)

[BLP] J. Buhler, H.W. Lenstra, C. Pomerance, Factoring integers with the number fields sieve, Development
of the Number Field Sieve (ed. A.K. Lenstra and H.W. Lenstra), Lecture Notes in Mathematics 1554 (1993),

[CS] A.R. Calderbank, P. Shor, Good quantum error-correcting codes exist, Phys. Rev. A 54 (1996), 1098–
1105.

[Ch] D. Chaum, Security without identification: transactions systems to make Big Brother obsolete,
Communications of the ACM 28 (1985), 1030–1044.

[CFN] D. Chaum, A. Fiat, M. Naor, Untraceable electronic cash, Advances in Cryptology, Crypto ‘88,
Springer-Verlag (1990), 319–327.

[C] H. Cohen, A Course in Computational Number Theory, Springer-Verlag (1993),

[Co1] D. Coppersmith, Modifications to the number field sieve, Journal of Cryptology 6 (1993), 169–180.

[Co2] D. Coppersmith, Small solutions to polynomial equations, and low exponent RSA, vulnerabilities J.
Cryptology 10 (1997), 233–594.

[CLR] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press (1990),

[CP] R. Crandall, C. Pomerance, Prime Numbers, a Computational Perspective, Springer-Verlag (2001),

[DR] J. Daemen, V. Rijmen, The design of Rijndael,. AES - The Advanced Encryption Standard, Springer-
Verlag (2002),

[DH] W. Diffie, M.E. Hellman, New directions in cryptography, IEEE Transactions on Information Theory
22 (1976), 644–654.

[EPR] A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be,
considred complete? Phys. Rev. 47 (1935), 469-473.

[EFF] Electronic Frontier Foundation, Cracking DES, O’Reilly and Associates (1998),

[E] T. ElGamal, A public key cryptosystem and signature scheme based on discrete logarithms, IEEE
Transactions on Information Theory IT-31 (1985), 469–473.

[Fo] J. Walker, http://www.fourmilab.ch/hotbits/,

[FM] J. Fuller, William Millan, On Linear Redundancy in the AES S-Box, (preprint, 2002)

[Ga] H.F. Gaines, Cryptanalysis, A Study of Ciphers and Their Solution, Dover (1939, 1956),

[G] P.B. Garrett, Making and Breaking Codes: An Introduction to Cryptography, Prentice-Hall (2001),

[G2] P.B. Garrett, The Mathematics of Coding Theory: Information, Compression, Error-Correction, and
Finite Fields Prentice-Hall (2004),

[GL] P.B. Garrett, D. Lieman (editors), Public-Key Cryptography (Baltimore 2003), Proc. Symp. Applied
Math. vol. 62, AMS, 2005.

[Gr1] O. Goldreich, Modern Cryptography, Probabilistic Proofs, and Pseudorandomness, Springer-Verlag
(1999),

[Gr2] O. Goldreich, Foundations of Cryptography: Basic Tools, Cambridge University Press (2001),

[Go] S.W. Golomb, Shift Register Sequences, Holden-Day, San Francisco (1967),

[HPS] J. Hoffstein, J. Pipher, J. Silverman, NTRU: A new high-speed public-key cryptosystem, Crypto ’96
rump session

56

Paul Garrett: Cryptographic Primitives (March 26, 2007)

[HG] Nick Howgrave-Graham, Public-key cryptology and proofs of security, (this volume)

[HT] J. Hughes, A. Tannenbaum, Length-based attacks for certain group-based encryption, rewriting systems
(preprint) (2000),

[Ka] D. Kahn, The Codebreakers, Scribner (1996),

[KLMT] E. Knill, R. Laflamme, R. Martinez, C.-H. Tseng, An algorithmic benchmark for quantum
information processing, Nature 404 (2000), 368–370.

[Kn] D. Knuth, The Art of Computer Programming, Addison-Wesley 2 (1989),

[Ko1] N. Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag (1994),

[Ko2] N. Koblitz, Algebraic Aspects of Cryptography, Springer-Verlag (1998),

[Ko3] N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation 48 (1987), 203–209.

[KMV] N. Koblitz, A. Menezes, S. Vanstone, The state of elliptic curve cryptography, Designs, Codes, and
Cryptography 19 (2000), 173–193.

[Ko] P.C. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems
Advances in Cryptology, Crytpo ‘96, Lecture Notes in Computer Science 1109 (1996), 104–113.

[L1] S. Landau, Standing the test of time: the data encryption standard, Notices of the AMS 47 (2000),
341–349.

[L2] S. Landau, Communication security for the twenty-first century: the advanced encryption standard,
Notices of the AMS 47 (2000), 450–459.

[L3] S. Landau, [review of ten books on crypto], Bulletin of the AMS 41 (2004), 357–367.

[LL] A.K. Lenstra, H.W. Lenstra, Jr. (eds.), The Development of the Number Field Sieve, Lecture Notes in
Mathematics 1554 (1993),

[LLL] A.K. Lenstra, H.W. Lenstra, L. Lovasz , Factoring polynomials with polynomial coefficients, Math.
Annalen 261 (1982), 515–534.

[Lie] D. Lieman, Cryptography in the Real World Today, (this volume)

[LV] M. Li, P. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, Springer-Verlag
(1997),

[MS] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland (1998),

[Ma] J.L. Massey, Shift-Register Synthesis and BCH Decoding, IEEE Trans. on Information Theory IT-155
(1969), 122–127.

[Mat1] M. Matsui, Linear cryptanalysis method for DES cipher, Lecture Notes in Computer Science 765
(1994), 386–397.

[Mat2] M. Matsui, The first experimental cryptanalysis of the data encryption standard, Lecture Notes in
Computer Science 839 (1994), 1–11.

[MOV] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, CRC Press
(1997),

[MH] R. Merkle, M. Hellman, Hiding information and signatures in trapdoor knapsacks, IEEE Trans. on
Information Theory IT-24 (1978), 525–530.

[M] G.L. Miller, Riemann’s hypothesis and tests for primality, Journal of Computer and Systems Science 13

57

Paul Garrett: Cryptographic Primitives (March 26, 2007)

(1976), 300–317.

[MB] M.A. Morrison , J. Brillhart, A method of factoring and the factorization of F7, Math. Comp. 29
(1975), 183-205.

[NR] M. Naor, O. Reingold, Synthesizers and their application to the parallel construction of pseudo-random
functions, Proceedings 36th IEEE Symposium on Foundations of COmputer Science (1995), 170–181.

[O] A.M. Odlyzko, Discrete logarithms: the past and the future, Designs, Codes, and Cryptography 19 (2000),
129–145.

[OO] T. Okamoto, K. Ohta, Universal electronic cash, Springer Lecture Notes in Computer Science 435
(1992), 324–337.

[PB] A. Pati, S. Braunstein, Impossibility of deleting and unknown quantum state, Nature 404 (2000), 164–
165.

[P1] J.M. Pollard, A Monte Carlo method for factorization, BIT 15 (1975), 331–334.

[P2] J.M. Pollard, Monte Carlo methods for index computation (mod p), Mathematics of Computation 32
(1978), 918–924.

[Pom] C. Pomerance, Analysis and comparison of some integer factoring algorithms, Computational Methods
in Number Theory, ed. H.W. Lenstra, Jr., R. Tijdeman, Math. Centrum, Amsterdam (1982), 89–139.

[Ra] M.O. Rabin, Probabilistic algorithms for testing primality, Journal of Number Theory 12 (1980), 128–
138.

[RNG] http://www.random.org/,

[RSA] R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public key
cryptosystems, Communications of the ACM 21 (1978), 120–126.

[Ro] S. Roman, Coding and information theory, Springer-Verlag GTM 134 (1992),

[Sa] A. Salomaa, Public-Key Cryptography, Springer-Verlag (1996),

[Sn] D. Salomon, Data Compression: the Complete Reference, Springer-Verlag (1997),

[Sch1] B. Schneier, Applied Cryptography, Protocols, Algorithms, and Source Code in C, John Wiley and
Sons (1995),

[Sch2] B. Schneier, Secrets and Lies, John Wiley and Sons (2000),

[ST] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson, The Twofish Encryption Algorithm,
John Wiley and Sons (1999),

[SE] C. Schnorr, M. Euchner, Lattic basis reduction: improved practical algorithms and solving subset sum
problems, Mathematical Programming 66 (1994), 181–194.

[Sh] A. Shamir, A polynomial-time algorithm for breaking the Merkle-Hellman cryptosystem, Proc. 23d
FOCS Symposium (1982), 145–152.

[Sh1] C.E. Shannon, A mathematical theory of communication, Bell Systems Technical Journal 27 (1948),
379–423, 623–656.

[Sh2] C.E. Shannon, Communication theory of secrecy systems, Bell Systems Technical Journal 28 (1949),
656–715.

[Sho1] P. Shor, Algorithms for quantum computation: discrete logarithms and factoring, Proceedings of the
Thirty-Fifth Annual Symposium on the Foundations of Computer Science (1994), 124–134.

58

Paul Garrett: Cryptographic Primitives (March 26, 2007)

[Sho2] P. Shor, Polynomial-time algorithms for prime factorization and discrete, logarithms on a quantum
computer SIAM Review 41 (1999), 303–332.

[Shou] V. Shoup, Lower bounds for discrete logarithms and related problems, Lecture Notes in Computer
Science 1233 (1997), 256–266.

[Shp] I. Shparlinski, Number Theoretic Methods in Cryptography, Complexity Lower Bounds, Birkhauser-
Verlag (1999),

[Shp2] I. Shparlinski, Playing ‘Hide-and-seek’ with numbers: the hidden number, problems, lattices, and
exponential sums Birkhauser-Verlag (1999),

[Sil1] J.H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Math., Springer-Verlag 106 (1986),

[Sil2] J.H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Math., Springer-
Verlag 151 (1994),

[Sil3] J.H. Silverman, Elliptic curves and cryptography, (this volume)

[Si] S. Singh, The Code Book, Doubleday (1999),

[So] R. Solovay, V. Strassen, A fast Monte Carlo test for primality, SIAM Journal on Computing 6 (1977),
84–85.

[St] D. Stinson, Cryptography: Theory and Practice, CRC Press (2002),

[TW] W. Trappe, L. Washington, Introduction to Cryptography with Coding Theory, Prentice-Hall (2002),

[WM] N. Wagner, M. Magyarik, A public key cryptosystem based on the word problem, Lecture Notes in
Computer Science 196 (1985), 19–36.

[Wag] S.S. Wagstaff, Cryptanalysis of Number Theoretic Ciphers, Chapman-Hall/CRC (2003),

[Wash] L. Washington, Elliptic Curves: Number Theory and Cryptography, Chapman-Hall/CRC (2003),

[Wh] W. Whyte, Towards faster cryptosystems, I, (this volume)

[Wie] M.J. Wiener, Cryptanalysis of short RSA exponenets, IEEE Trans. on Information Theory 36 (1990),
553–558.

[Wil] H.C. Williams, A p + 1 method of factoring, Math. Comp. 39 (1982), 225-234.

59

