Eisenstein series bibliography (2002)
Paul Garrett, garrett@math.umn.edu
... for analytical properties of Eisenstein series and related matters.
- P. Abramenko and G. Nebe, Lattice
chain models for affine buildings of classical type, Math. Ann.
322 (2002), 537-562.
- A. Andrianov, Dirichlet series with
Euler products in the theory of Siegel modular forms of genus 2,
Tr. Mat. Inst. Steklov 112 (1971), 73-94; English
trans. Math. USSR Sb. 12 no. 13 (1970), 70-93.
- A. Andrianov, On zeta-functions of Rankin
type associated with Siegel modular forms, in Lecture Notes in
Math. 627, Springer-Verlag, 1977.
- J. Arthur, A trace formula for reductive
groups I. terms associated to classes in G(Q), Duke Math. J.
45 (1978), 911-52.
- J. Arthur, Eisenstein series and the trace
formula, in Automorphic forms, representations and
L-functions,, Proc. Symp. Pure Math. 33, A.M.S., 1979,
253-74.
- J. Arthur, A trace formula for reductive
groups II. applications of a truncation operator, Comp. Math.
40 (1980), 87-121.
- J. Arthur, The trace formula in invariant
form, Ann. of Math. 114 (1981), 1-74.
- J. Arthur, On the inner product of truncated
Eisenstein series, Duke J. Math. 49 (1982), 35-70.
- W. Banks, A corollary to Bernstein's theorem
and Whittaker functionals on the metaplectic group,
Math. Res. Letters 5 (1998), 781-790
- J. N. Bernstein, All reductive p-adic
groups are tame, J. Functional Analysis and its Applications 8
(1974), 3-5.
- J. Bernstein and P. Deligne, Le
`centre' de Bernstein, in Reprèsentations des groupes
rèductifs sur un corps local, Hermann, Paris, 1985.
- J.N. Bernstein and A.V. Zelevinsky,
Induced representations of reductive p-adic groups,
Ann. Scient. Ec. Norm. Sup. 10 (1977), 441-472.
- L. Bers and M. Schechter, Elliptic
Equations, in Partial Differential Equations, Proc. Summer
Seminar Boulder, 1957, Interscience, New York, 1964.
- S. Böcherer, Über die
funktionalgleichung automorpher L-funktionen zuer Siegelschen
modulgruppe, J. für die reine und angewandte Math. 362
(1985), 146-168.
- S. Bochner, Integration von Funktionen deren
Werte die Elemente eines Vektorraumes sind, Fund. Math. 20
(1935), 262-276.
- A. Borel, Groupes lineaires algebriques,
Ann. of Math. 64 (1956), 20-80.
- A. Borel, Linear Algebraic Groups, Benjamin,
New York, 1969.
- A. Borel, Introduction aux groupes
arithmètiques, Hermann, Paris, 1972.
- A. Borel, Reprèsentations des groups
localements compactes, Lecture Notes in Math. 276,
Springer-Verlag, Berlin, 1972. Hermann, Paris, 1972.
- A. Borel, Admissible representations of a
semi-simple group over a local field with vectors fixed under an
Iwahori subgroup, Inv. Math. 35 (1976), 233-259.
- A. Borel, Automorphic L-functions, in
Proc. Symp. Pure Math. 33 part 2, A.M.S., 1979, 27-61.
- A. Borel, Automorphic forms on SL(2,R),
Cambridge Univ. Press, 1997.
- A. Borel and H. Jacquet, Automorphic
forms and automorphic representations, in Automorphic
forms, representations and L-functions,, Proc. Symp. Pure Math.
33, A.M.S., 1979, 189-202.
- A. Borel and J. Tits, Groupes reductifs,
Publ. IHES 27 (1965), 55-151; Complements, Publ. Math. IHES
41 (1972), 253-276.
- N. Bourbaki, Groupes et algébres de Lie,
Chap. 1, Paris: Hermann, 1960.
- N. Bourbaki, Intègration, Hermann, Paris,
1963.
- N. Bourbaki, Groupes et Algebres de Lie,
ch. IV-VI, Actualites Sci. Indust. no. 1337, Hermann, Paris, 1968;
Masson, Paris, 1981.
- N. Bourbaki, Topological Vector Spaces,
ch. 1-5, Springer-Verlag, 1987.
- H. Braun, Convergenz verallgemeinerter
Eisensteinscher Reihen, Math. Z. 44 (1939), 387-397.
- F. Browder, Analyticity and partial
differential equations, Am. J. Math. 84 (1962), 666-710.
- K. Brown, Buildings, Springer-Verlag, New
York, 1989.
- F. Bruhat, Representations des groupes de Lie
semi-simples complexes, C.R. Acad. Sci. Paris 238 (1954),
437-439.
- F. Bruhat, Distributions sur un groupe
localement compact et applications a l'etude des representations des
groupes p-adiques, Bull. Math. Soc. France 89 (1961), 43-75.
- F. Bruhat, Sur les representations des
groupes classiques p-adiques, I, II, Amer. J. Math. 83 (1961),
321-338, 343-368.
- F. Bruhat, Sur une classe de sous-groupes
compacts maximaux des groupes de Chevalley sur un corps p-adique,
Publ. Math. IHES no. 23 (1964), 46-74.
- F. Bruhat, p-Adic Groups, in Proc. Symp.
Pure Math. no. 9, AMS, Providence, 1966, 63-70.
- F. Bruhat and J. Tits, BN-paires de type
affine et donnees radicielles, C.R. Acad. Sci. Paris serie A,
vol. 263 (1966), 598-601.
Note the correct name of the latter journal in
that year was "Comptes Rendues Hebdomadaires des Seances de L'Academie
des Sciences" "Series A, Sciences Mathematiques".
- F. Bruhat and J. Tits, Groupes simples residuellement
deployes sur un corps local, ibid., 766-768.
- F. Bruhat and J. Tits, Groupes
algebriques simples sur un corps local, ibid, 822-825.
- F. Bruhat and J. Tits, Groupes
algebriques simples sur un corps local: cohomologie galoisienne,
decomposition d'Iwasawa et de Cartan, ibid, 867-869.
- F. Bruhat and J. Tits, Groupes reductifs
sur un corps local, I: Donnees radicielles valuees, Publ.
Math. I.H.E.S. 41 (1972), 5-252.
- F. Bruhat and J. Tits, Groupes reductifs
sur un corps local, II: Schemas en groups, existence d'une donn\'{ee
radicielle valu\'{e}e}, ibid. 60 (1984), 5-184.
- F. Bruhat and J. Tits, Schemas en
groupes et immeubles des groupes classiques sur un corps local,
Bull. Soc. Math. Fr. 112 (1984), 259-301.
- F. Bruhat and J. Tits, Groupes Reductifs
sur un Corps Local, III: Complements et applications a la cohomologie
galoisienne, J. Fac. Sci. Univ. Tokyo 34 (1987), 671-688.
- D. Bump, The Rankin-Selberg Method: a Survey,
in Number Theory, Trace Formulas, and Discrete Groups,
conference in honor of A. Selberg, Oslo, 1987, Academic Press, 1987.
- D. Bump, Automorphic forms and representations,
Cambridge Univ. Press, 1998.
- D. Bump, S. Friedberg, and
D. Ginzburg, Whittaker-orthogonal models, functoriality, and the
Rankin-Selberg method.. Inv. Math. 109 (1992), 55-96.
- D. Bump, S. Friedberg, and
D. Ginzburg, A Rankin-Selberg integral using the automorphic
minimal representation of SO(7), J. Ramanujan Math. Soc. 15
(2000), 81-124.
- C.J. Bushnell and P.C. Kutzko, The
Admissible Dual of GL(N) via Compact-Open Subgroups, Ann. of
Math. Studies no. 129, Princeton Univ. Press, 1993.
- C.J. Bushnell and P.C. Kutzko, The
admissible dual of SL(n), I, Ann. Sci. Ec. Norm. Sup. 26 (1993),
261-280.
- C.J. Bushnell and P.C. Kutzko, The
admissible dual of SL(n), II, Proc. London. Math. Soc. 68 (1994),
317-379.
- W. Casselman, Introduction to the Theory of
Admissible Representations of p-adic Reductive Groups, unpublished
manuscript, (retyped and edited by Paul Sally and students).
- W. Casselman, The unramified principal
series of p-adic groups, I: the spherical function,
Comp. Math. vol. 40 (1980), 387-406.
- W. Casselman, Canonical extensions of
Harish-Chandra modules to representations of G, Can. J. Math.
41 (1989), 385-438.
- W. Casselman, Extended automorphic forms on
the upper half-plane, Math. Ann. 296, (1993), 755-762.
- W. Casselman, Review of `Spectral
Decomposition and Eisenstein Series' by C. Moeglin and
J.-L. Waldspurger, Bull. A.M.S. 35 (1998), 243-247.
- W. Casselman, On irreducibility
of standard modules for generic representations, Ann. \'Ecole
Norm. Sup. (4) 31 (1998), 561-589.
- P. Cartier, Representations of p-adic groups:
a survey, Proc. Symp. Pure Math. 33, 111-156, AMS, 1979.
- \bib [Colin~de~Verdières~1981], Y. Colin~de~Verdières, Une
nouvelles dèmonstration du prologement mèromorphe des sèries
d'Eisenstein, C.R.A.S. 293 (1981), 361-63.
- H.S.M. Coxeter, Discrete groups generated by
reflections, Annals of Math. 35 (1934), 588-621.
- J. Dixmier and P. Malliavin,
Factorixations de fonctions et de vecteurs indèfinie
diffèrentiables, Bull. Math. Soc. France (2) 102 (1978),
307-30.
- M. Duflo and J.-P. Labesse, Sur la
formule des traces de Selberg, Ann. Sci. \'Ecole Norm. Sup. (4)
4 (1971), 193-284.
- L. Faddeev, Expansion in eigenfunctions of
the Laplace operator on the fundamental domain of a discrete group on
the Lobacevski plane, A.M.S. Transl. Trudy (1967), 356-386.
- P. Feit, Poles and Residues of Eisenstein series
for Symplectic and Unitary Groups, Mem. Amer. Math. Soc. 61,
A.M.S., 1986.
- D. Flath, Decomposition of representations into
tensor products, in Automorphic Forms, Representations, and
L-functions, Proc. Symp. Pure Math. vol. 33 part I, 179-184.
- S.V. Fomin and I.M. Gelfand, Geodesic
flows on manifolds with constant negative curvature,
A.M.S. Translations (2), vol. 1 (1955), 49-65.
- S.A. Gaal, Linear Analysis and Representation
Theory, Springer-Verlag, 1973.
- P.B. Garrett, Pullbacks of Eisenstein series;
applications, in Automorphic Forms of Several Variables, ed. I
Satake and Y. Morita, Birkhauser, Boston, 1984.
- P. Garrett, Decomposition of Eisenstein
series: Rankin triple products, Ann. of Math. 125
(1987), 209-237.
- P.B. Garrett, Integral representations of
Eisenstein series and L-functions, in Number Theory, Trace Formulas,
and Discrete Groups, Academic Press, 1988.
- P. Garrett, Euler factorization of global
integrals, in Euler Products and Eisenstein Series,
Proc. Symp. Pure Math. vol. 66, 1999.
- S. Gelbart, Automorphic Forms on Adele
Groups, Ann. of Math. Studies 83, Princeton Univ. Press, 1975.
- S. Gelbart and
I.I. Piatetski-Shapiro L-functions for G x GL(n), in
Explicit Constructions of Automorphic L-functions, Lecture Notes in
Math. 1254, Springer-Verlag, 1987.
- S. Gelbart and F. Shahidi, Analytic
Properties of Automorphic L-functions, Academic Press, 1988.
- I. M. Gelfand, Sur un lemme de la theorie des
espaces lineaires, Comm. Inst. Sci. Math. de Kharkoff, no. 4,
13 (1936), 35-40.
- I.M. Gelfand,
M.I. Graev, and I.I. Piatetski-Shapiro,
Representation theory and automorphic functions, Saunders,
Philadelphia, 1969 (translated from 1964 Russian
edition).
- D. Ginzburg, A Rankin-Selberg integral for
the adjoint representation of GL(3), Inv. Math. 105 (1991),
571-588.
- D. Ginzburg, S. Rallis, and D. Soudry,
On explicit lifts of cusp forms from GL(m) to classical
groups, Ann. of Math. (2) 150 (1999), 807-866.
- D. Ginzburg, S. Rallis, and
D. Soudry, On explicit lifts of cusp forms from GL(m) to
classical groups, Ann. of Math. (2) 150 (1999), 807-866.
- R. Godement, A theory of spherical functions
I, Trans. Amer. Math. Soc. 73 (1952), 496-556.
- R. Godement, Introduction aux Travaux de
A. Selberg, Sèminaire Bourbaki 144 (1957-58).
- R. Godement, Domaines fondamentaux des
groupes arithmètiques, Sèminaire Bourbaki 257 (1962-63).
- R. Godement, Analyse spectral des fonctions
modulaires, Sèminaire Bourbaki 278 (1964-65).
- R. Godement, The decomposition of
L^2(\Gamma\\G) for \Gamma=SL(2,Z), in Proc. Symp. Pure
Math. 9, A.M.S., 1966, 211-24.
- R. Godement, The spectral decomposition of
cuspforms, in Proc. Symp. Pure Math. 9, A.M.S., 1966,
225-234.
- R. Godement, Introduction \'a la thèorie
de Langlands, Sèminaire Bourbaki 321, 1966-67.
- R. Godement, Formes Automorphes et Produits
Euleriens, daprès R.P. Langlands, Sèminaire Bourbaki 349,
1968-69.
- R. Godement and H. Jacquet, Zeta
functions of Simple Algebras, Lecture Notes in Math. 260,
Springer-Verlag, 1972.
- O. Goldman and N. Iwahori, The space
of p-adic norms, Acta Math. 109 (1963), 137-177.
- B. Gross, Some applications of Gelfand pairs to
number theory, Bull. A.M.S. 24 2 (1991), 277-301.
- R. Gustafson, The degenerate principal
series of Sp(2n), Mem. AMS 248, 1981.
- G. Harder, Eisenstein cohomology of
arithmetic groups and its applications to number theory,
Proc. I.C.M. Kyoto (1990), Math. Soc. Japan, 779-790.
- G. Harder, R. Langlands, and
M. Rapoport, Algebraische Zyklen auf
Hilbert-Blumenthal-Fl\"achen, J. reine angew. Math. 366 (1986),
53-120.
- Harish-Chandra, Representations of a
semisimple Lie group on a Banach space, I,
Trans. Amer. Math. Soc. 75 (1953), 185-243.
- Harish-Chandra, Automorphic forms on
semi-simple Lie groups, Lecture Notes in Mathematics, vol. 62,
Springer-Verlag, Berlin and New York, 1968.
- Harish-Chandra and G. van Dijk,
Harmonic Analysis on Reductive p-adic Groups, Lecture Notes in
Math. 162, Springer, 1970.
- Harish-Chandra, Harmonic analysis on
real reductive groups I: the theory of the constant term,
J. Funct. Anal. 19 (1975), 104-204.
- Harish-Chandra, Harmonic analysis on
real reductive groups I: the Maass-Selberg relations and the
Plancherel formula, Annals of Math. 104 (1976), 117-201.
- Harish-Chandra, Admissible
distributions on reductive p-adic groups, Lie Theories and Their
Applications, Queen's Papers in Pure and Applied Mathematics, Queen's
University, Kingston, Ontario (1978), 281-347.
- E. Hecke, Theorie der Eisensteinschen Reihen
höherer Stufe und ihre Anwendung auf Funktionene theorie und
Arithmetik, Math. Werke, third ed., Vandenhoeck and Ruprecht,
Göttingen (1983), 461-486.
- D.A. Hejhal, The Selberg trace formula for
PSL(2,R), I, Lecture Notes in Math. 548, Springer-Verlag,
Berlin, 1976.
- D.A. Hejhal, The Selberg trace formula for
PSL(2,R), II, Lecture Notes in Math. 1001, Springer-Verlag,
Berlin, 1983.
- G. Henniart, Representations des groupes
reductifs p-adiques, Sem. Bourb. exp. 736 (1990-91).
- H. Hida, Elementary theory of L-functions and
Eisenstein series, Cambridge Univ. Press, 1993.
- H. Hijikata, Maximal compact subgroups of
p-adic classical groups (in Japanese), Sugaku no Ayumi, 10-2 (1963),
12-23.
- H. Hijikata, Maximal compact subgroups of
some p-adic classical groups, mimeographed notes, Yale
University, 1964.
- H. Hijikata, On arithmetic of p-adic
Steinberg groups, mimeographed notes, Yale University,
1964.
- H. Hijikata, On the structure of semi-simple
algebraic groups over valuation fields, I, Japan J. Math. (1975),
vol. 1, no. 1, 225-300.
- L. Hörmander, Linear partial
differential operators, Grundlehren Math. Wiss. 116,
Springer-Verlag, 1963.
- R. Howe, Tamely ramified supercuspidal
representations of GL(n), Pac. J. Math. 73 (1977), 437-460.
- R. Howe, Some qualitative results on the
representation theory of GL(n) over a p-adic field, Pac. J. Math. 73
(1977), 479-538.
- R. Howe, Kirillov theory for compact p-adic
groups, Pac. J. Math. 73 (1977), 365-381.
- R. Howe and A. Moy, Minimal K-types for
GL(n) over a p-adic field, Asterisque 171-2 (1989), 257-273.
- R. Howe and A. Moy, Hecke algebra
isomorphisms for GL(n) over a p-adic field, J. Alg. 131 (1990),
388-424.
- J. Humphreys, Reflection Groups and Coxeter
Groups, Cambridge Univ. Press, 1990.
- N. Iwahori, On the structure of a Hecke ring
of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo 10
(1964), 215-236.
- N. Iwahori, Generalized Tits system (Bruhat
decomposition) on p-adic semi-simple groups, in Proc. Symp. Pure
Math. no. 9, AMS, Providence, 1966, 71-83.
- N. Iwahori and H. Matsumoto, On
some Bruhat decomposition and the structure of the Hecke rings of
p-adic Chevalley groups, Publ. Math. IHES 25 (1965), 5-48.
- N. Jacobson, Lie Algebras, Dover, 1962.
- H. Jacquet, Representations des groupes
lineaires p-adiques, Theory of Group Representations and Harmonic
Analysis, CIME, II Ciclo, Mentcatini Terme 1970, 119-220, Edizioni
Cremonese, Roma 1971.
- H. Jacquet, Automorphic Forms on GL(2),
II, Lecture Notes in Math. 278, Springer-Verlag, 1972.
- H. Jacquet, Sur les representations des
groupes reductifs p-adiques, C.R. Acad. Sci. Paris 280 (1975),
1271-1272.
- H. Jacquet, Generic representations,
Non-commutative Harmonic Analysis, Lecture Notes in Math. 587,
91-101, Springer, 1977.
- H. Jacquet, On the residual spectrum of
GL(n), in Lie Group Representations, II, Lecture Notes in
Math. 1041, Springer-Verlag, 1983.
- H. Jacquet and R. Langlands,
Automorphic Forms on GL(2), I, Lecture Notes in Math. 114,
Springer-Verlag, 1970.
- H. Jacquet,
I. Piatetski-Shapiro, and J. Shalika, Rankin-Selberg
Convolutions, Amer. J. Math. 105 (1983), 367-464.
- H. Jacquet, E. Lapid, and
J. Rogawski, Periods of automorphic forms, J. of A.M.S.
12 (1999), 173-240.
- H. Jacquet and J. Shalika, On Euler
products and the classification of automorphic representations,
Amer. J. Math. 103 (1981), 499-558.
- C. Jantzen, Degenerate principal series for
symplectic and odd-orthogonal groups, Mem. A.M.S., 1996.
- D. Jiang, G_2-periods and residual
representations, J. reine angew. Math. 497 (1998), 17-46.
- D. Jiang, The first-term identities for
Eisenstein series, J. No. Th. 70 (1998), 67-98.
- D. Jiang, On Jacquet's conjecture: the split
period case, Internat. Math. Res. Notices 2001, no. 3, 145-163.
- D. Jiang and S. Rallis, Fourier
coefficients of Eisenstein series of the exceptional group of type
G_2, Pac. J. Math 181 (1997), 281-314.
- S.I. Kato, Irreducibility of principal series
representations for Hecke algebras of affine type, J. Fac. Sci
Univ. Tokyo 28 (1982), 929-943.
- D. Keys, On the decomposition of reducible
principal series representations of p-adic Chevalley groups,
Pac. J. Math. 101 (1982), 351-388.
- H. Kim, The residual spectrum of Sp(4),
Comp. Math. 99 (1995), 129-151.
- H.D. Kloosterman, Theorie der
Eisensteinschen Reihen von mehreren Ver\"anderlichen,
Abh. Math. Sem. Univ. Hamburg 6 (1928), 163-188.
- A. Knapp, Representation theory of semisimple
groups, Princeton Math. Ser. 36, Princeton Univ. Press, 1986.
- T. Kubota, Elementary theory of Eisenstein
series, John Wiley and Sons, New York, 1973.
- S.S. Kudla and S. Rallis, Degenerate
principal series and invariant distributions, Israel J. Math. 69
(1990), 25-45.
- S.S. Kudla and S. Rallis, Poles of
Eisenstein series and L-functions, in Festschrift in honor of
I.I. Piatetski-Shapiro, Israel Math. Conf. Proc. 3 (1990),
81-110.
- S.S. Kudla and S. Rallis, Ramified
degenerate principal series representations for Sp(n), Israel
J. Math. 78 (1992), 209-256.
- S.S. Kudla and S. Rallis, A regularized
Siegel-Weil formula: the first term identity, Ann. of Math. 140
(1994), 1-80.
- S.S. Kudla and S. Rallis, Poles of
Eisenstein series and L-functions, Festrschrift in honor of
I. I. Piatetski-Shapiro, Israel Math. Conf. Proc. 3 (1990),
81-110.
- S. Lang, SL(2,R), Addison-Wesley, Reading,
Mass., 1975.
- R.P.Langlands, The dimension of spaces of
automorphic forms, Amer. J. Math. 85 (1963), 99-125.
- R.P.Langlands, Eisenstein series, in
Proc. Symp. Pure Math. 9, A.M.S., 1966, 235-252.
- R.P.Langlands, The volume of the
fundamental domain for some arithmetical subgroups of Chevalley
groups, in Proc. Symp. Pure Math. 9, A.M.S., 1966,
143-148.
- R.P.Langlands, Euler Products, Yale
University Press, James K. Whittemore Lectures, 1967.
- R.P.Langlands, Problems in the theory of
automorphic forms, Lectures in modern analysis and applications, III,
Lecture Notes in Math. 170, Springer, Berlin, 1970, 18-61.
- R.P.Langlands, On the functional equations
satisfied by Eisenstein series, Lecture Notes in Mathematics,
vol. 544, Springer-Verlag, Berlin and New York, 1976.
- R.P.Langlands, On the notion of an
automorphic representation, in Proc. Symp. Pure Math. 33,
part 1, A.M.S., 1979, 203-208.
- R.P.Langlands, Review of `The Theory of
Eisenstein Systems' by M. Osborne and G. Warner, Bull. A.M.S. 9
(1983), 351-361.
- P. Lax, On Cauchy's problem for hyperbolic
equations and the differentiability of solutions of elliptic
equations, Commo. Pure AMath. 8 (1955), 615-633.
- P. Lax and R. Phillips, Scattering
Theory for Automorphic Functions, Ann. of Math. Studies 87,
Princeton Univ. Press, 1976.
- H. \Maass, {Über eine neue Art von
nichtanalytischen automorphen Funktionen}, Math. Ann. 121
(1949), 141-183.
- I.G. MacDonald, Spherical functions on a
group of p-adic type, Ramanujan Inst. Publ. 2, Univ. of Madras, 1971.
- H. Matsumoto, Generateurs et relations des
groupes de Weyl generalises, C.R. Acad. Sci. Paris 259 (1964),
3419-3422.
- H. Matsumoto, Analyse Harmonique dans les
systems de Tits bornologiques de type affine, Lecture Notes in
Math. no. 590, Springer-Verlag, 1977.
- C. Moeglin and J.-L. Waldspurger,
Le spectre rèsiduel de GL(n), Ann. Sci. \'Ec. Norm. Sup.
22 (1989), 605-674.
- C. Moeglin and J.-L. Waldspurger,
Spectral Decompositions and Eisenstein series, Cambridge
University Press, 1995.
- C. Moeglin, Normalisation des opèrateurs
d'entrelacement et rèductibilitè des induites de cuspidales; le
cas des groupes classique p-adiques, Ann. of Math. 151
(2000), 817-847.
- C. Moeglin, Conjectures sur le spectre
rèsiduel, J. Math. Soc. Japan 53 (2001), 395-427.
- C. Moreno and F. Shahidi, The
L-functions L(s,{\rm Sym^m(r),\pi)}, Can. Math. Bull. 28
(1985), 405-410.
- G.D. Mostow and T. Tamagawa, On the
compactness of arithmetically defined homogeneous spaces, Ann. of
Math. 76 (1962), 446-463.
- G. Mui\'c, F. Shahidi, Irreducibility
of standard representations for Iwahori-spherical representations,
Math. Ann. 312 (1998), no. 1, 151-165.
- F. Murnaghan and J. Repka,
Reducibility of induced representations of split classical p-adic
groups, Compositio Math. 114 (1998), no. 3,
263-313.
- F. Murnaghan and J. Repka,
Reducibility of some induced representations of p-adic unitary
groups, Trans. Amer. Math. Soc. 351 (1999), no. 1,
193-210.
- W. Müller, The trace class conjecture in
the theory of automorphic forms, Ann. of Math. 130 (1989),
473-529.
- L. Nirenberg, On elliptic partial
differential equations, CIME Conference, Il principio di minimo
e sue applicazioni alle equazioni funzionali, Rome (1959), 1-58.
- M.S. Osborne and G. Warner, The
theory of Eisenstein systems, Academic Press, 1981.
- B. J. Pettis, On integration in vector
spaces, Trans. AMS 44, 1938, 277-304.
- R. S. Phillips, Integration in a convex
linear topological space, Trans. AMS 47 (1940), 114-145.
- I. I. Piatetski-Shapiro, Euler
product, in Lie Groups and their Representations, Halsted, New
York, 1975.
- I. I. Piatetski-Shapiro and
S. Rallis, L-functions of automorphic forms on simple classical
groups, Modular Forms, ed. R.A. Rankin, Ellis Horwood (John Wiley),
Chichester, 1984.
- I. I. Piatetski-Shapiro and
S. Rallis, L-functions for the classical groups, in Lecture
Notes in Math. 1254, Springer-Verlag, 1987.
- I. I. Piatetski-Shapiro and
S. Rallis, Rankin triple L-functions, Comp. Math. 64
(1987), 31-115.
- S. Rallis, Poles of standard L-functions, in
Proc. I.C.M. Kyoto (1990), Math. Soc. Japan, 833-845.
- D. Ramakrishnan, Modularity of the
Rankin-Selberg L-series, and multiplicity one for SL(2), Ann. of
Math. 152 (2000), 45-111.
- A. Robert, Introduction to the Representation
Theory of Compact and Locally Compact Groups, Cambridge Univ. Press,
1983.
- W. Roelcke, Analytische Fortsetzung der
Eisensteinreihen zu den parabolischen Spitzen von Grenzkreisgruppen
erster Art, Math. Ann 132 (1956), 121-129.
- M. Ronan, Lectures on Buildings, Academic
Press, 1989.
- W. Rudin, Functional Analysis, second edition,
McGraw-Hill, 1991.
- I. Satake, Theory of spherical functions on
reductive algebraic groups over p-adic fields, Publ. Math. IHES 18
(1963), 5-69.
- A. Selberg, Bemerkungen über eine
Dirichletsche Reihe, die mit der Theorie der Modulformen nahe
verbunden ist, Arch. Math. Natruvid. 43 (1940), 47-50.
- A. Selberg, Harmonic analysis and
discontinuous groups in weakly symmetric spaces with application to
Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87.
- A. Selberg, Discontinuous groups and harmonic
analysis, in Proc. Int. Cong. Math. Stockholm (1962), 177-189.
- F. Shahidi, Functional equations satisfied by
certain L-functions, Comp. Math. 37 (1978), 171-208.
- F. Shahidi, On certain L-functions,
Am. J. Math. 103 (1981), 297-356.
- G. Shimura, On some arithmetic properties of
modular forms in one and several variables, Ann. of Math. 102
(1975), 491-515.
- G. Shimura, On Fourier coefficients of
modular forms of several variables, Nachr. Wiss. Gott. 17
(1975), 261-268.
- G. Shimura, Confluent Hypergeometric
functions on tube domains, Math. Ann. 260 (1982), 269-302.
- G. Shimura, On Eisenstein series, Duke
J. Math. 50, (1983), 417-476.
- G. Shimura, Euler products and Eisenstein
series, CBMS Regional Conference Series in Mathematics, 93,
A.M.S., 1997.
- G. Shimura, Differential operators and the
singular values of Eisenstein series, Duke J. Math. 51 (1984),
261-329.
- C.L. Siegel, Einfuhrung in die theorie
modulfunktionen n-ten Grades, Math. Ann. 116 (1939), 617-657.
- A.J. Silberger, Introduction to Harmonic
Analysis on Reductive p-adic Groups, Math. Notes, Princeton
Univ. Press, 1979.
- D. Soudry, On the Archimedean theory of
Rankin-Selberg convolutions for SO(2l+1) x GL(n),
Ann. Sci. \'Ecole Norm. Sup. (4) 28 (1995), 161-224.
- M. Tadic, On Jacquet modules of induced
representations of p-adic symplectic groups, Harmonic Analysis on
Reductive Groups, Bowdoin College 1989, Progr. in Math. vol. 101,
305-314, Birkhauser, Boston, 1991.
- M. Tadic, Representations of p-adic symplectic
groups, Comp. Math. 90 (1994), 123-181.
- M. Tadic, Structure arising from induction and
Jacquet modules of representations of classical p-adic groups, J. of
Algebra 177 (1995), 1-33.
- J. Tits, Reductive groups over local fields, in
Proc. Symp. Pure Math. 33, vol. 1, AMS, Providence, 1979, 29-69.
- V.S. Varadarajan, Lie Groups, Lie
Algebras, and their Representations, Springer-Verlag, 1974, 1984.
- J.-L. Waldspurger, Algebres de Hecke et
induites de representations cuspidales, pour GL(n), J. reine und
angew. Math. 370 (1986), 127-191.
- \bib [Wallach~1982], N. Wallach, Asymptotic expansions of
generalized matrix entries of representations of real reductive
groups, in Lie Group Rpepresentations I, Proceedings, Maryland,
1982-3, Lecture Notes in Math. 1024, Springer-Verlag,
287-369.
- N. Wallach, Real Reductive Groups I,
Academic Press, Boston, 1988.
- N. Wallach, Real Reductive Groups II,
Academic Press, Boston, 1992.
- A. Weil, L'Integration dans les Groupes
Topologiques, Hermann, Paris, 1967.
- A. Weil, Elliptic functions according to
Eisenstein and Kronecker, Springer-Verlag, 1972.
- S.-T. Wong, The meromorphic continuation and
functional equations of cuspidal Eisenstein series for maximal
cuspidal subgroups, Mem. A.M.S. vol 83, 423, 1990.
- D. Zagier, The Rankin-Selberg method for
automorphic functions which are not of rapid decay,
J. Fac. Sci. Univ. Tokyo 28, 1982, 415-437.
- A.V. Zelevinsky, Induced representations
of reductive p-adic groups II: On irreducible
representations of GL(n), Ann. Scient. Ec. Norm. Sup. 13 (1980),
165-210.
Unless explicitly noted otherwise, everything here, work
by Paul Garrett, is licensed
under a Creative
Commons Attribution 3.0
Unported License.
...
[ garrett@umn.edu ]
The University of Minnesota explicitly requires that I
state that "The views and opinions expressed in this page are
strictly those of the page author. The contents of this page have not
been reviewed or approved by the University of Minnesota."