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We consider integrals of cuspforms f on reductive groups G defined over numberfields k against restrictions
ι∗E of Eisenstein series E on “larger” reductive groups G̃ over k via imbeddings ι : G → G̃. We give
hypotheses sufficient to assure that such global integrals have Euler products. At good primes, the local
factors are shown to be rational functions in the corresponding parameters q−s from the Eisenstein series and
in the Satake parameters q−si coming from the spherical representations locally generated by the cuspform.
The denominators of the Euler factors at good primes are estimated in terms of “anomalous” intertwining
operators, computable via orbit filtrations on test functions. The standard intertwining operators (attached
to elements of the (spherical) Weyl group) among these unramified principal series yield symmetries
among the anomalous intertwining operators, thereby both sharpening the orbit-filtration estimate on the
denominator and implying corresponding symmetry in it. Finally, we note a very simple dimension-counting
heuristic for fulfillment of our hypotheses, thereby giving a simple test to exclude configurations ι : G→ G̃,
E, as candidates for Euler product factorization. Some simple examples illustrate the application of these
ideas.

Introduction
Application of the analytic properties of Eisenstein series to L-functions occurs in a variety of settings
wherein L-functions are expressed as integrals of cuspforms against restrictions of Eisenstein series (and
similar devices). At the very least, the analytic continuation and functional equation of an Eisenstein series
translate immediately into an analytic continuation and functional equation for whatever it is that arises as
an integral against the Eisenstein series.

The arithmetic of L-functions is subtler, and of more recent origin. The idea that special values of L-functions
could inherit their arithmetic properties from those of Eisenstein series was made clear in [Shimura 1975a]
and in the many succeeding papers of Shimura and a few others. For that matter, in lectures 1975-77 at
Princeton, Shimura gave a compelling exposition of the results of [Klingen 1962] wherein one employs Hilbert
modular Eisenstein series to prove special values results for certain zeta functions (and L-functions) of totally
real number fields.

As in [Shimura 1975a] and [Shimura 1975b] and many other of his papers, Shimura consistently made the
general arithmetic of holomorphic automorphic forms appear as a corollary of his results on canonical models
[Shimura 1970]. In fact, even the arithmetic of Eisenstein series can be made to be a consequence of canonical
models, as in [Harris 1981], [Harris 1984]. Although this viewpoint seems to be the broadest in scope (see
[Harris 1985] and [Harris 1986]), it is also possible to prove many foundational arithmetic results directly, as
done in [Garrett 1990] and [Garrett 1992], by using properties of Eisenstein series.

It is not a trivial matter to obtain an integral representation of an L-function, whether for analytic or
arithmetic ends. In the first place, it is not the case that one chooses an L-function and then hunts for
an integral representation of it. Rather, one “searches” among integrals of cuspforms against Eisenstein
series (etc.) for those integrals which admit Euler product factorizations. Traditionally, it is only after the
local integrals are computed that one discovers what L-function has been obtained. (Possible exceptions are
[Langlands 1967], [Moreno-Shahidi 1985], [Shahidi 1989], and other papers of these authors which obtain
L-functions as constant terms of suitable Eisenstein series, in a less mysterious fashion than Rankin-Selberg
integrals).

Certainly few among integrals of cuspforms against Eisenstein series have any sort of Euler product expansion
at all, and indeed may fail to be Dirichlet series entirely (with or without tolerance for trouble with the
archimedean integrals).

And even when an integral of cuspform against Eisenstein series can be shown to factor over primes in a
meaningful way, there can remain an onerous computation to determine the local integrals. If a too-classical
viewpoint is taken, it may be impossible to anticipate the ultimate success or failure of such a venture until
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the last moment. Surveys such as [Gelbart-Shahidi 1988] give an idea of the variety of phenomena which
appear.

Given the haphazard nature of hunting for integral representations, it is striking to this author that,
whenever a global integral does factor over primes, the local factors are not only rational functions in
the respective p−s’s, but, quite magically, are also automorphic, as opposed to being meaningless Dirichlet
series capriciously attached to a cuspform. In part, the present paper is this author’s attempt to explain
why integral representations should work as well as they do.

Now we give an overview of this paper using terminology explained only later.

The first third of the paper addresses Euler factorization of Rankin-Selberg type global integrals involving
Eisenstein series and cuspforms.

In section 1.1 we do the by-now-usual unwinding of the Eisenstein series occurring in the global integral.
Although it is not strictly necessary, we assume for simplicity that there is a single cuspidal representative.

In section 1.2 we rearrange the unwound integral to isolate all really global information in what we call the
inner integral, which does not involve the parameter “s” from the Eisenstein series. It is observed that with
a certain multiplicity-one hypothesis locally almost everywhere, the inner integral factors over primes, up
to a global constant which is reasonably viewed as a period of the cuspform. In this case, it then follows
that the whole integral factors over primes, with the local factors depending only upon local data, except for
the single global object, the period. Of course, an important element here is that we view all the integrals
involved as values of intertwining operators.

Section 1.3 makes a trivial but important observation that vanishing of global integrals can be due to local
features of the situation.

In section 1.4 we use orbit filtrations on the relevant induced representations (from 3.2) to give an easily
verifiable (when true) condition which suffices implies that the inner integral factors. To do so, we effectively
replace spherical representations by unramified principal series. The natural intertwining operators among
unramified principal series, together with the generic irreducibility of the unramified principal series, offer a
further refinement of this multiplicity estimate.

Section 1.5 gives a heuristic criterion for success or failure of this approach in a given situation, in terms of
a simple dimension-count.

The middle third of this paper addresses computation of a class local integrals including the so-called outer
integrals which are the Euler factors of the global integrals in 1.2.

Section 2.1 sets up the notion of parametrized family of representations, and parametrized family of
intertwining operators. For our purposes, the parameter spaces are affine algebraic varieties. Some simple
natural examples are given, mostly referring to unramified principal series and degenerate principal series,
which are all we need here.

In section 2.2 the Rationality Lemma is stated. This is the key device in proving the rationality of the local
factors. We immediately invoke the Rationality Lemma to prove two theorems asserting the rationality of
certain types of local integrals.

Section 2.3 uses the results on rationality of local integrals to give an analytic continuation result for the
natural integral expressions for the intertwining operators arising in the inner integral in the Euler factors,
under finite-orbit and generic multiplicity-one hypotheses.

Section 2.4 again invokes the rationality of local integrals to prove that, under finite-orbit and generic
multiplicity-one hypotheses, the Euler factors at almost all primes are rational functions in the corresponding
parameter q−s, and in the Satake parameters q−si of the cuspform. We also anticipate the later result which
gives a limitation on the possible hypersurfaces along which these rational functions may have poles.

The newest item here is the study of the denominators of the local factors. In preparation for this, section 2.5
states the theorem on strong meromorphy of families of intertwining operators under assumptions of generic
multiplicity one. As a corollary of this theorem on strong meromorphy, section 2.6 shows how to associate an
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anomalous intertwining operator to a hypersurface along which a parametrized intertwining operator has a
pole by taking the residue (or, generally, leading term in a Laurent expansion). These anomalous intertwining
operators can be estimated by orbit-filtration methods. Thus, as a corollary, we have a computational device
to estimate the denominators of the local factors. And the intertwining operators among unramified principal
series (attached to elements of the Weyl group) imply symmetry in this estimate.

Section 2.7 illustrates the application of these ideas to some simple situations where for other reasons we
know “the answer” for comparison: Tate’s thesis [Tate 1950], and an instance of [Godement-Jacquet 1972].

The last third of the paper completes the proofs. In section 3.1 we prove the Rationality Lemma. This is
essentially elementary, but a little complicated.

Section 3.2 settles necessary details concerning the orbit filtrations. Section 3.3 proves the exactness of
Jacquet functors (and of the functors which project to K-fixed vectors, for compact open subgroups K) in
the context of parametrized families of representations. Similarly, section 3.4 proves Frobenius Reciprocity
for parametrized families.

Finally, section 3.5 proves the orbit criterion for strong meromorphy, thus completing all the arguments.

The idea of viewing integrals as intertwining operators is well known, as is the idea of using multiplicity-
free-ness of induced representations. [Piatetskii-Shapiro 1975] and [Jacquet-Langlands 1972] are two of the
earliest examples of this.

There is the more technical theme of understanding the dependence of local integrals upon parameters. The
Rationality Lemma here is a variation and development of a natural idea evidently originating already in
[Bruhat 1961], and systematically exploited in [Bernstein-Zelevinsky 1976], [Bernstein-Zelevinsky 1977]. The
fullest treatment of the idea of parametrization of families of representations seems to be [Bernstein 1984]. In
our context, we use a Rationality Lemma both to prove that various local integrals are rational expressions
in parameters q−s (and in Satake parameters q−si), and (thereby) also to give analytic continuations of
intertwining operators. The present issues are in part different from those in [Bernstein 1984], seeking as we
do to assert an algebraic structure on intertwining operators given by integrals. But after the algebraicization
is accomplished, the present issues are an amplification of a special case of [Bernstein 1984], aimed simply
at unramified principal series, refined a bit as preparation for more delicate discussion of the hypersurfaces
along which natural intertwining operators have “poles”.

It should be noted that throughout we systematically replace (admissible) spherical representations by the
unramified principal series which map surjectively to them, invoking [Matsumoto 1977], [Borel 1976], or
[Casselman 1980]. In this optic, the Satake parameters can be read from the data for the corresponding
unramified principal series. Most importantly, modelling spherical representations as (images of) induced
representations allows application of a variety of more “physical” arguments, including not only Frobenius
Reciprocity, but also orbit filtrations on spaces of test functions, as instigated in [Bruhat 1961] and used
extensively in [Bernstein-Zelevinsky 1976], [Bernstein-Zelevinsky 1977], [Bernstein 1984]. Thus, generically,
the surjection of unramified principal series to a spherical representation is an isomorphism.

One particular sharpening of the ideas about parametrized families is necessary for detailed consideration
of the residue (or, generally, leading term in a Laurent expansion) at a pole of a meromorphic family of
intertwining operators. Such residues are demonstrably intertwining operators of a rather special sort.
Coming from the other side, attempting to define an anomalous intertwining operator as one which “does
not exist for generic parameter values”, we can estimate the poles of the family of intertwining operators by
estimating the possible anomalous intertwining operators. Orbit-filtration methods are very effective here,
as well. But, of course, the phrase “does not exist for generic parameter values” must be made precise.

There is a further complication in discussion of residues of meromorphic families of intertwining operators,
namely verification that the Laurent expansion along a hypersurface has uniformly finite order. This is a
strong meromorphy condition, which we see follows from a natural Noetherian-ness condition. In the present
context, the relevant Noetherian-ness for unramified principal series is not hard to prove. A much more
general Noetherian-ness result is proven in [Bernstein 1984].

Discussion of residues of families of intertwining operators along hypersurfaces, studied as anomalous
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intertwining operators, also requires that we tolerate representations over the fields of rational functions
on the hypersurfaces, which typically are of positive transcendence degree over the natural base field (e.g.,
C). This complication arises because in addition to the ubiquitous q−s parameter we might also want to
track the Satake parameters q−si of spherical representations, leading naturally to many-variable situations.

Incidental to the above, we prove some lemmas about filtrations of various test-function representation spaces
by orbits. These are the parametrized-family version of results going back to [Bruhat 1961]. Parametrized-
family versions of facts about Jacquet functors and related matters are also necessary. It must be noted
that these extensions of otherwise standard representation-theoretic facts are not entirely trivial, since many
properties of representations on vectorspaces certainly do not extend to representations on modules. See
[Bernstein 1984] for similar extensions of some standard results.

A small but meaningful point is the choice of category in which to do representation theory: for present
purposes, we operate almost entirely in the category of smooth representations (of totally disconnected groups,
or of Lie groups, or of adele groups). Thus, there are technical but significant differences in comparison to
the somewhat more popular category of unitary representations. See [Gross 1991] for some illustrations
of effective methods in the unitary category. For effective discussion of parametrized families, it appears
necessary to give up unitariness in order to gain the possibility of having the parameter space be an (affine)
algebraic variety. This viewpoint is corroborated by [Bernstein-Zelevinsky 1976], [Bernstein-Zelevinsky 1977],
[Bernstein 1984].

1. Factorization over primes
1.1 The usual unwinding trick
1.2 Multiplicity-one criterion for Euler factorization
1.3 Trivial local criterion for period-vanishing
1.4 Orbit-filtration estimate of multiplicity
1.5 Simple heuristic criterion

2. Computation of Euler factors
2.1 Parametrized families
2.2 Rationality of local integrals
2.3 Analytic continuation of intertwinings
2.4 Rationality of the Euler factors
2.5 Orbit criterion for strong meromorphy
2.6 Denominators and anomalous intertwinings
2.7 Illustrative examples

3. Completions of proofs
3.1 Proof of the Rationality Lemma
3.2 Orbit filtrations on test functions
3.3 Exactness of some functors
3.4 Frobenius reciprocity for parametrized families
3.5 Proof of the orbit criterion
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1. Factorization over Primes

1.1The usual unwinding trick

In this section, we set up family of a class of global integrals, in which a cuspform is integrated against a
restriction of an Eisenstein series. The only thing we accomplish is the usual unwinding of Eisenstein series,
and explain the technical hypothesis that there is a unique cuspidal orbit.

Let G ⊂ G̃ be two reductive linear groups defined over a number field k. Let P̃ be k-rational parabolic
subgroup of G̃. Let

α : P̃ → Gm

be an algebraic character on P̃ , and for a complex parameter s let

χ̃ : P̃A → C×

be defined by
χ̃(p̃) = |α(p̃)|−s

where | | is the idele norm. This character factors over primes, and we write

χ̃ = Π′v χ̃v

where χ̃v is a continuous (unramified) character of the v-adic points P̃v of P̃ . Choose a vector ε of the special
form

ε =
⊗

v

εv

in the induced representation
c-IndG̃A

P̃A
χ̃ ≈

⊗
′
vc-IndG̃v

P̃v
χ̃v

where each εv is in the induced representation c-IndG̃v

P̃v
χ̃v and form an Eisenstein series

E(g̃) = Eε(g̃) =
∑

γ∈P̃k\G̃k

ε(γg̃)

(The adelic compact-induced representation is defined to be the restricted product of all the local compact-
induced representations).

Of course, a similar construction with several algebraic characters αi and several complex parameters gives
a more general class of Eisenstein series. One can involve a cuspform on a Levi component of P̃ , as well.

Let G be a reductive group over k, with G ⊂ G̃. Let the center of G be Z, and let Z̃ be the center of G̃.
There is a minor but unavoidable technical issue here, which is sometimes overlooked: we would wish to
assume that the center Z of G is central in G̃, but this is far from true, generally, and is needlessly restrictive.
Rather, we require that

(Z̃A · Zk)\ZA is compact

This is the case if the k-ranks of Z and Z̃ are the same (see [Godement 1963]).

Let f be a cuspform on G. Consider global integrals

ζ(f, χ̃) = ζ(f, s) =
∫

Z̃AGk\GA

E(g) f(g) dg

The complex parameter s enters via the Eisenstein series.
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Regarding convergence of this integral: from [Godement 1966], smooth square-integrable cuspforms are of
rapid decay in Siegel sets. On the other hand, Eisenstein series are of moderate growth in Siegel sets, even
when analytically continued, by [Langlands 1964] or [Moeglin-Waldspurger 1995]. A comparison of Siegel
sets in G versus those in G̃ is necessary to be sure that the moderate growth of the Eisenstein series is
inherited by its restriction (see [Godement 1963]).

The first fundamental trick is the by-now-standard unwinding∫
Z̃AGk\GA

E(g) f(g) dg =
∑

ξ∈P̃k\G̃k/Gk

∫
Z̃AGk\GA

∑
γ∈Θξ

k
\Gk

ε(ξγg) f(g) dg

=
∑

ξ∈P̃k\G̃k/Gk

∫
Z̃AΘξ

k
\GA

ε(ξg) f(g) dg

where
Θξ = ξ−1P̃ ξ ∩G

which is valid for s in the range so that the Eisenstein series converges.

A representative ξ or orbit P̃ ξG is non-cuspidal (or negligible) if Θξ has a normal subgroup which is the
unipotent radical of some k-parabolic of G. So say that ξ is cuspidal if Θξ does not have a normal subgroup
which is a unipotent radical. If there is such a normal subgroup, then by the Gelfand definition of cuspform
the corresponding integral is 0. Thus,∫

Z̃AGk\GA

E(g) f(g) dg =
∑

ξ cuspidal

∫
Z̃AΘξ

k
\GA

ε(ξg) f(g) dg

Remark: It is traditional to hypothesize that there is just one cuspidal double-coset representative
ξ ∈ P̃k\G̃k/Gk, but this may be needlessly restrictive.

Remark: Later we will take the hypothesis that the v-adic double-coset space P̃v\G̃v/Pv is finite for a
minimal parabolic Pv of G (over the v-adic completion kv of k). In practice, it seems that this finiteness
assumption “nearly” assures the finiteness of P̃k\G̃k/Gk, but this author knows of no simple general assertion
in this direction. Certainly from a dimension-counting viewpoint the global double-coset space P̃k\G̃k/Gk is
“smaller”; however, rationality issues enter strongly in the case of P̃k\G̃k/Gk. It is often necessary to make
adjustments, such as replacing isometry groups by the corresponding similitude groups.

1.2Multiplicity-one criterion for Euler factorization

In this section we rewrite the integral in a form so that the global features are isolated in what we call the
inner integral. The (apocryphal?) theorem of this section asserts roughly that if the inner integral factors
over primes, then the whole integral factors over primes. We clarify what should be meant by “factors over
primes”.

In subsequent sections this will be refined, so as to anticipate more precisely the nature of the local factors,
proving a priori that the pth factor is a rational function in the usual q−s and in the Satake parameters
αi = q−si attached to the cuspform. Further, we will indicate how to estimate the set of parameter values
at which the denominator of this rational function vanishes. In particular, we will give a criterion to assure
that the denominator is a product of terms exclusively of the form

1− c q−m1s1 . . . q−mnsn q−s

where the mi are integers and c is a constant independent of the s, si. And we indicate computationally
effective means to verify the hypotheses.
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First we recall an integration identity (see [Weil 1965], chapter II). In temporary notation, let G be a
topological group (locally compact, Hausdorff, with a countable basis). Let H be a closed subgroup. Let dg
and dh denote right Haar measures on G and H. Let δG and δH be the modular functions on G and H. As
usual, let Co

c(G) denote the collection of continuous compactly-supported (complex-valued) functions on G.
Let Co

c(H\G, δHδ−1
G ) denote the collection of continuous functions f on G so that

f(hg) =
δH(h)
δG(h)

· f(g)

for all h ∈ H and g ∈ G, and whose support is compact left-modulo H. Then, given the Haar measures on
G and H, there is a unique functional on Co

c(H\G, δHδ−1
G ), denoted

F →
∫

H\G
F (g) dg

so that for any f ∈ Co
c(G) we have the identity∫

G

f(g) dg =
∫

H\G

(∫
H

f(hg)
δG(h)
δH(h)

dh

)
dg

It is elementary that the averaging map

avg : f →
(
g →

∫
H

f(hg)
δG(h)
δH(h)

dh

)
is a surjection to Co

c(H\G, δHδ−1
G ). Note that unless

δH = δG |H

it is not the case that the functional

F →
∫

H\G
F (g) dg

is literally an integral. As a further abuse of notation, we will omit the overbar, thus writing the identity as∫
G

f(g) dg =
∫

H\G

(∫
H

f(hg)
δG(h)
δH(h)

dh

)
dg

Of course, the Haar integral f →
∫

G
f(g) dg extends by continuity to a continuous functional on L1(G) (the

latter with right Haar measure). The proof of Fubini’s theorem (e.g., by monotone families) still works in
this case, at least with base field k̃ = R or C, proving that for f ∈ L1(G) and for almost all g ∈ G∫

H

|f(hg)| δG(h)
δH(h)

dh < +∞

This allows an extension of the “integral” on H\G, and the identity above still holds.

In particular, we can define “integrable” functions in a generalized sense on H\G as being the images of
elements of L1(G) under the extension of the averaging map. We can also talk about convergence of such
generalized integrals by similar devices.

Now return to the global integral. Continue with notation and terminology from above. Consider a cuspidal
ξ. For reductive G, the adele group GA is unimodular, so no δG will appear. Further, for any linear algebraic
group H defined over a number field k, the modular function δHA

is trivial on the group of k-rational points
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Hk of H. (See [Weil 1961]: this is essentially the product formula). Thus, using the identity above twice, we
can rewrite the global integral as∫

Z̃AGk\GA

E(g) f(g) dg =
∫

Z̃AΘξ
A
\GA

∫
Z′

A
Θξ

k
\Θξ

A

ε(ξθg) f(θg) δΘA
(θ)−1 dθ dg

where
Z ′ = Z̃ ∩Θξ

A crucial hypothesis, which is elementary to prove or disprove in any particular situation, is that

ξΘξ
Aξ

−1 ⊂ ker(χ̃ on P̃A)

Granting this, we have∫
Z̃AGk\GA

E(g) f(g) dg =
∫

Z̃AΘξ
A
\GA

ε(ξg)
∫

Z′
A

Θξ
k
\Θξ

A

f(θg) δ−1
ΘA

(θ) dθ dg

Refer to the integral ∫
Z′

A
Θξ

k
\Θξ

A

f(θg) δ−1
ΘA

(θ) dθ

as the inner integral.

The hypothesis just mentioned, namely that

ξΘξ
Aξ

−1 ⊂ ker(χ̃ on P̃A)

assures that the function ε(ξg) acting as kernel for formation of the Eisenstein series can be moved outside
the inner integral. Thus, this hypothesis is that the Eisenstein kernel escapes from the inner integral.

The intuitive point is that if the inner integral factors over primes, then the whole integral factors over primes.
Indeed, by its definition, the kernel ε(ξg) for the Eisenstein series is at worst a finite sum of products over
primes, so the only serious obstacle to such factorization is the inner integral.

And, of course, we must clarify what factorization over primes must mean. First, and most elementarily,
a function F (g) on an adele group would be said to factor over primes v if it can be rewritten as

F (g) = Πv Fv(gv)

where gv is the vth component of g in the adele group. But, when F depends additionally upon a parameter
such as a cuspform f , more must be said. Indeed, by hypothesis, (and using the strong notion of “cuspform”)
the representation πf of the adele group GA generated by f under the right regular representation is
irreducible (and unitarizable), so factors over primes as (the completion of) a restricted product

πf ≈
⊗

′
v πv

where πv is an irreducible unitarizable representation of the v-adic points Gv of the group G. The
representation πv is the local data of f at v. For almost all v πv is spherical.

We will say that the inner integral factors over primes if∫
Z′

A
Θξ

k
\Θξ

A

f(θg) δ−1
ΘA

(θ) dθ = Πv Fv(gv)

where the function Fv on Gv depends only upon the local data of f at v. This notion may be modified to
exclude a finite set S of ‘bad’ primes, saying that∫

Z′
A

Θξ
k
\Θξ

A

f(θg) δ−1
ΘA

(h) dθ = Πv 6∈S Fv(gv)× Fbad(gbad)
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where for v 6∈ S the function Fv depends only upon the local data of f at v, and gbad varies on the product

Gbad = Πv∈S Gv

In all cases known to this author, if the whole integral factors over primes, then it is an L-function or
product of L-functions. Thus, the immediate issue is to give a criterion for the inner integral to factor
over primes in the sense above. The role that representation theory plays in such factorization has been
addressed many times, going back to [Piatetski-Shapiro 1972] and [Jacquet-Langlands 1970]. By contrast,
the idea of [Godement-Jacquet 1972] (extending [Tate 1950] in a natural way) directly presents a product of
local factors, whose analytic continuation is less patent.
Theorem (Apocryphal?): We assume that there is a single cuspidal orbit, and that the Eisenstein kernel
escapes from the corresponding inner integral (in the sense above). If for all primes v outside a finite set S
we have the multiplicity-one property

dimC HomGv
(πv, IndGv

Θξ
v

δH) = 1

then the inner integral factors over primes (in the sense above). And, as a consequence, in that event the
whole integral factors over primes.

Proof: For simplicity, we suppress all the index ξ. Write

I(f, g) =
∫

Z′
A

Θk\ΘA

f(θg) δΘv (θ) dθ

And we may as well enlarge the finite set S to include all primes v so that πv is not spherical, and to contain
all archimedean primes.

Let πf =
⊗ ′

vπv be the restricted tensor product of irreducible smooth representations πv generated by f
under the right regular representation of GA, with basepoint vector ev in πv in the restricted product. (For
all but finitely-many v, the ev must be a spherical vector in πv, which must be a spherical representation).
Fix an isomorphism

ι :
⊗

′
v πv → πf

At all the primes v where πv is spherical, and where

dimC HomGv (πv, IndGv

Θv
δΘv ) = 1

normalize an intertwining
Φv : πv → IndGv

Θv
δΘv

by
Φv(ev)(1Gv ) = 1

Let T be a finite set of primes disjoint from the set S. Let

ϕ =

(⊗
v∈T

ϕv

)
⊗

⊗
v 6∈T

ev


Let gT be an element of GA with components just 1 unless v ∈ T , and g′T an element of GA with components
1 at v ∈ T . Then the function

gT → I(ιϕ, gT )

is an element of IndGT

ΘT
δΘT

, so
ϕ→ (gT → I(ιϕ, gT ))
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is an element of
HomGT

(
⊗
v∈T

πv, IndGT

ΘT
δ−1
ΘT

)

where for an algebraic subgroup H of G, HT denotes Πv∈T Hv. Since T is finite, and since we are operating
in the relatively algebraic category of smooth representations, it is elementary that there is a natural
isomorphism

HomGT
(
⊗
v∈T

πv, IndGT

ΘT
δ−1
ΘT

) ≈
⊗
v∈T

HomGv
(πv, IndGv

Θv
δ−1
ΘT

)

Therefore, by the multiplicity-one hypothesis,

I(ιϕ, gT ) = cT ·Πv∈T Φv(ϕv)

where cT is a constant (not depending upon gT ).

By definition (of restricted tensor product), the whole restricted direct product comprising πf is merely a
colimit (direct limit) of the finite products ⊗

v∈T

πv ⊗
⊗
v 6∈T

{ev}

Let
g = gbad · ggood

where gbad is the aggregate of components of g at v ∈ S, and ggood is the aggregate of the components of g
not in S. We see that for each fixed gbad the map

ϕ→ (ggood → I(ιϕ, g))

gives an intertwining operator
igbad :

⊗
′
v 6∈S πv →

⊗
′
v 6∈S IndGv

Θv
δ−1
ΘT

Therefore, by the multiplicity-one hypothesis, with a constant cbad(gbad) not depending upon ggood, and
with intertwining Φv : πv → IndGv

Θv
C normalized by Φ(ev)(1) = 1, we have

igbad = cbad ·
⊗
v 6∈S

Φv

Thus, granting the multiplicity-one hypothesis, the global integral factors as

ζ(f, s) =
∫

Z̃AGk\GA

E(g) f(g) dg

= cbad ·Πv 6∈S

∫
Z̃vΘv\Gv

εv(ξg)Φv(ev)(gv) dgv

(The elementary theory of spherical representations shows that a spherical function cannot vanish at 1G).

Thus, the whole integral is a constant multiple (depending on bad-prime data) multiple of a product of
integrals over quotients Z̃vΘv\Gv of integrands respectively depending only upon the local data πv of f at
v. Done.Thus, the issues are

• Criteria for dim HomGv (πv, IndGv

Θv
δ−1
ΘT

) ≤ 1.
• Evaluation of the good-prime outer (local) integrals∫

Z̃vΘv\Gv

εv(ξg)Φv(ev)(gv) dgv

10
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whose value is the vth Euler factor.

1.3Trivial local criterion for period-vanishing

It can happen that the inner integral above vanishes identically for “most” cuspforms, for purely local
reasons. The explanation is a simple application of the idea of viewing integrals as values of intertwining
operators. Here we give this general but essentially trivial local condition for vanishing of certain global
constants attached to cuspforms. Given the definition of these global constants (below) it is reasonable to
call them periods.

And, again, the computational aspects of this discussion are clearest when (admissible) spherical
representations are rewritten as images of unramified principal series, as in the next section.

Let f be a cuspform on a reductive group G defined over a numberfield k. Let Z̃ be a k-subgroup of the
center Z of G so that

(Z̃A · Zk)\ZA is compact

Let H be a subgroup of G defined over k. The period Πf of f over H is

Πf =
∫

Z′
A

Hk\HA

f(h) δ−1
HA

(h) dh

where Z ′ = Z̃ ∩H. Let πf be the irreducible representation of the adele group GA generated by f , and let
πv be the vth local factor of πf (when expressed as restricted tensor product of local representations). We
will not worry about convergence here.
Proposition: (Apocryphal?) If for any prime v

HomGv
(πv, IndGv

Hv
δHv

) = {0}

then the period vanishes:
Πf = 0

Proof: Let gv ∈ Gv. The function

gv →
∫

Z′
A

Hk\GA

f(hgv) δ−1
HA

(h) dh

is a function in the induced representation IndGv

Hv
δHv

. Thus, the map

ϕ→

(
gv →

∫
Z′

A
Hk\HA

ϕ(hgv) δ−1
HA

(h) dh

)

gives a Gv-intertwining from πv to IndGv

Hv
δHv

. If there is no such intertwining operator (other than 0), then
it must be that the integral is 0. Done.

Remarks: Generally, after Jacquet, we would call πf distinguished with respect to the subgroup H if the
period of ϕ over H is non-zero for some vector in the representation πf generated by f . It seems that in
many cases such distinguished representations are in correspondence with representations on another group
(and perhaps distinguished with respect to a subgroup of that other group). Such results are non-trivial.
For example, in [Jacquet-Rallis 1992] and [Jacquet-Rallis 1992b] it is shown that cuspforms on GL(2n) have
no non-zero periods for Sp(n), and in [Kumanduri 1997] U(n, n) periods inside O∗(4n) are considered. One
necessary ingredient is Jacquet’s relative trace formula, which appears in [Jacquet-Lai 1985], [Jacquet 1986],
[Jacquet 1987]. [Jacquet-Lai-Rallis 1993] gives one general formalism to address such problems.

11
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1.4Orbit-filtration estimate of multiplicity

We continue with the notations and conventions from above. At good primes, we obtain computational
criteria sufficient to assure

dim HomGv
(πv, IndGv

Θv
δHv

) ≤ 1

which (from section 1.2) would assure factorization of the inner integral over primes. (The case that this
dimension is 0 is the case of trivial vanishing of the period for local reasons, treated in section 1.3).

First, we rewrite spherical representations as images of unramified principal series, thereby making available
Frobenius Reciprocity and other standard elementary devices applicable to induced representations. In
particular, we use orbit filtrations on test functions to estimate spaces of intertwining operators on filtered
spaces of test functions via the intertwining operators on the graded pieces of the filtration. (See [Bruhat
1961], [Bernstein-Zelevinsky 1976], [Bernstein-Zelevinsky 1977]). It is at this point that we require the
finiteness of a double-coset space, denoted Pv\Gv/Θv below.

This estimate on intertwining operators can be refined somewhat by noting the symmetry implicitly required
by the intertwining operators among the unramified principal series whose characters (suitably normalized)
differ only by an element of the spherical Weyl group.

Thus, we make use of the non-trivial results of [Matsumoto 1977], [Borel 1976], [Casselman 1980] concerning
the relations between unramified principal series and admissible representations with Iwahori-fixed vectors:
an irreducible admissible representation with an Iwahori-fixed vector imbeds into an unramified principal
series. Further, any subrepresentation or quotient of an unramified principal series is generated by its
Iwahori-fixed vectors. Thus, an (admissible) spherical representation imbeds into an unramified principal
series, so, by dualization, is also an image of an unramified principal series.

Thus, for a spherical representation πv of a p-adic reductive group Gv, there is at least one surjection

c-IndGv

Pv
χvδ

1/2
Pv

→ πv

where P is a minimal parabolic of G (defined over the vth completion kv of k), χv is an unramified character,
and δPv is the modular function on the (v-adic points of) P . (The latter is introduced as a convenient
normalization for discussion of Weyl-group symmetry, among other things.) That is, χv is trivial on the
unipotent radical of Pv, and is trivial on the unique maximal compact subgroup Mo of a Levi component
Mv of Pv. Here c-Ind is compactly-supported smooth induction.

Thus, to prove that
dim HomGv

(πv, IndGv

Θv
δΘv

) ≤ 1

it certainly suffices to prove

dim HomGv
(c-IndGv

Pv
χvδ

1/2
Pv
, IndGv

Θv
δΘv

) ≤ 1

for the appropriate χv. By Frobenius Reciprocity,

HomGv
(c-IndGv

Pv
χvδ

1/2
Pv
, IndGv

Θv
δΘv

) ≈ HomΘv
(ResGv

Θv
c-IndGv

Pv
χvδ

1/2
Pv
, δΘv

)

From section 3.2 below on orbit filtrations of test functions, we decompose Gv by Pv × Θv-orbits, with Pv

acting on the left and Θv on the right, thereby obtaining an orbit filtration of ResGv

Θv

(
c-IndGv

Pv
χvδ

1/2
Pv

)
, with

graded pieces
c-IndΘv

Hα
χα

where α ∈ Pv\Gv/Θv,
Hα = α−1Pvαv ∩Θv

12
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and
χα(θ) = χvδ

1/2
Pv

(αθα−1)

for θ ∈ Hα. The orbit filtration requires that Pv\Gv/Θv be finite.

Therefore, assuming the finiteness of Pv\Gv/Θv, to show that the dimension of the space of intertwining
operators is less than or equal 1 it suffices to show that∑

α

HomΘv (c-IndΘv

Hα
χα, δΘv ) ≤ 1

This condition can be simplified: dualizing and using Frobenius Reciprocity again, this is

∑
α

dim HomΘv (C, δΘv ⊗ IndΘv

Hα
χ̌α δHα)

δΘv

=
∑
α

dim HomHα
(C, δΘv

χ̌α δHα)
δΘv

)

=
∑
α

dim HomHα
(χα, δHα

)

where χ̌α is the smooth dual of χα.

That is, we have proven
Theorem: Assume that for almost all places v of k the double coset space P̃v\G̃v/Gv is finite. The dimension
of the space of intertwining operators from πv to IndGv

Θv
δΘv satisfies

dim(πv, IndGv

Θv
δΘv

) ≤
∑
α

dim HomHα
(χα, δHα

)

Thus, if this sum is ≤ 1, then the inner integral factors over primes, and the global integral has an Euler
product.

Remarks: In principle, for any particular choices of the characters, the simplified version of the condition
on intertwining operators is effectively provable or disprovable since it involves simply questions of equality
of restrictions to a common subtorus of two characters on two subgroups.

We can refine this Theorem somewhat by use of the intertwining operators among unramified principal series,
as studied in [Bruhat 1961] and [Casselman 1980]. For an element w of the spherical Weyl group W attached
to a maximal split torus A inside the minimal parabolic Pv of Gv, and for a ∈ A, define another character
χw

v on A by
χw

v (a) = χv(w aw−1)

Say that χv is regular if χv 6= χw
v for w 6= 1.

With the unramified principal series c-IndGv

Pv
χvδ

1/2
Pv

normalized by the inclusion of the square root δ1/2
Pv

of
the modular function δPv

of Pv, for regular χv and for w ∈W

dim Hom(c-IndGv

Pv
χvδ

1/2
Pv
, c-IndGv

Pv
χw

v δ
1/2
Pv

) = 1

Further, [Casselman 1980] determines finitely-many essentially elementary conditions on χv so that, except
when these conditions are met, the unramified principal series c-IndGv

Pv
χvδ

1/2
Pv

is irreducible. That is, for
“generic” unramified principal series, the essentially unique intertwining operators among the unramified
principal series with characters differing by elements of the Weyl group W are all isomorphisms.

Thus, for given regular χv so that c-IndGv

Pv
χvδ

1/2
Pv

is irreducible, suppose that the αth graded piece in the
orbit filtration had a non-zero intertwining operator. Above, we saw that this is equivalent to

δHα = χα|Hα

13
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If the intertwining operator on the graded piece were to extend to an intertwining operator for the whole
representation IndGv

Θv
δΘv , then the isomorphism of c-IndGv

Pv
χvδ

1/2
Pv

with c-IndGv

Pv
χw

v δ
1/2
Pv

would imply that also

δHα
= (χw)α|Hα

That is, we have proven
Theorem: Assume that for almost all places v of k the double coset space P̃v\G̃v/Gv is finite. Let χv be a
regular character so that the unramified principal series c-IndGv

Pv
χvδ

1/2
Pv

is irreducible. The dimension of the
space of intertwining operators from πv to IndGv

Θv
δΘv

satisfies

dim HomGv
(c-IndGv

Pv
χvδ

1/2
Pv
, IndGv

Θv
δΘv

)

≤ min w∈W

∑
α∈Pv\Gv/Θv

dim HomHα((χw)α, δHα)

Remarks: The chief difficulty in reaching clear conclusions in this manner is that one knows nearly nothing
about which unramified characters χv can occur in such manner associated to a cuspform, apart from a few
things such as square-integrability of the representation πv. Therefore, one is apparently in the position
of having to prove the above estimate on intertwinings of the graded pieces in the orbit filtration for all
unramified principal series. But it is seldom the case that the estimate on intertwining operators of the
graded pieces really holds for all χv.

Nevertheless, it does happen very often that for generic χv the estimate above holds, assuring the Euler
factorization. The sense of ‘generic’ here is neither the colloquial one, nor is it the condition ‘has a Whittaker
model’. Rather, the relevant sense is with regard to the position of the complex parameters specifying the
character, as in section 2.1 below.

In some examples, invocation of the unitariness of the representations πv occurring in association with a
square-integrable cuspform is sufficient to dispatch the non-generic cases (in the above sense) in which the
sum of the dimensions of the intertwining operators on the graded pieces is greater than 1. That is, it is
often possible to obtain the desired multiplicity-one conclusion simply by using the orbit filtration and the
unitariness. Otherwise, one can pretend to be invoking some sort of generalized Ramanujan hypothesis to
ensure that the unramified principal series are sufficiently well-behaved. On the other hand, such “pseudo-
Ramanujan” hypotheses may inadvertently imply identical vanishing of the inner integral for trivial reasons
(as in section 1.3).

1.5Simple heuristic criterion

Now we give a simple heuristic criterion, in terms of dimension-counting, for Euler factorization of a global
integral.

We do not assert that failing the dimension-count proves that there is no Euler product, nor that passing the
dimension-count test proves that there is an Euler product. Nevertheless, it appears to be rather difficult to
arrange cases in which dimension-count criterion is not met and yet there is an Euler product. And, on the
other hand, in practice it seems to be that meeting the criterion nearly guarantees that factorization into an
Euler product.

The papers [Brion 1987] and [Kasai 1996] systematically address related dimension-counting issues.

Again, let G and G̃ be two reductive groups defined over a number field, with G a subgroup of G̃. Let Z̃ be
the center of G̃, and Z the center of G, and assume that

Z̃A · Zk\ZA is compact

Let P̃ be a parabolic subgroup of G̃, and P a minimal parabolic subgroup of G. Let E be an Eisenstein
series attached to a one-dimensional representation of P̃ , and let f be a cuspform on G. As above, the global

14
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integral which we would like to have an Euler product is

Z(f) =
∫

Z̃A Gk\GA

E(g) f(g) dg

Observation: If
dim P̃ + dim P < dim G̃

then our present approach will most likely fail to demonstrate that the global integral has an Euler product
expansion.

Support for the observation: The unwinding trick (see section 1.1) expresses such a global integral as a sum
over P̃k\G̃k/Gk of global integrals. For each ξ ∈ P̃k\G̃k/Gk, let

Θ = Θξ = G ∩ ξ−1P̃ ξ

Then the associated inner integral (as in section 1.2) will factor over primes if

dim HomGv
(c-IndGv

Pv
χv, IndGv

Θv
δΘv

) ≤ 1

for almost all primes v (with suitable characters χv).

The orbit filtration method (3.2) to estimate this (co-)multiplicity requires that the double-coset space
Pv\Gv/Θv be finite. In the discussion of the orbit filtration it was shown that this implies (already at the
level of the Baire category theorem) that there is an orbit ΘvxPv which is open in Gv. For this to be the
case, it must be that

dim Θ + dim P ≥ dim G

(where dimension is that of algebraic varieties).

We may reasonably call ξ generic if

dim G̃− dim ξ−1P̃ ξ = dim G− dim (G ∩ ξ−1P̃ ξ)

Certainly
dim G̃− dim P̃ = dim G̃− dim ξ−1P̃ ξ

for all ξ. When the double coset space P̃k\G̃k/Gk is finite there must exist at least one generic ξ (assuming
that G̃ is not anisotropic over k, i.e., assuming that P̃ is a proper parabolic.)

For generic ξ, we can rewrite the dimension condition

dim Θ + dim P ≥ dim G

as
dim P ≥ dim G− dim Θ = dim G̃− dim P̃

That is, we expect that this inequality is a necessary condition for success of an orbit filtration argument
that the inner integral factors over primes. Thus, its negation (as in the Observation) would make it unlikely
that we would be able to detect Euler factorization by the methods presented here. Done.
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2. Computation of Euler factors

2.1Parametrized families

This section sets up an essentially algebraic notion of ‘family’ of smooth representations of p-adic and
other totally disconnected groups. For our present purposes, it suffices to consider only the case that the
parametrizing spaces are affine algebraic varieties. Compare the more analytical version (due to Bernstein)
sketched in [Gelbart, Piatetski-Shapiro, Rallis 1987], as well as the general purely algebraic set-up in
[Bernstein-Zelevinski 1976], [Bernstein-Zelevinski 1977], [Bernstein 1984].

We will discuss meromorphic families of intertwining operators among families of representations. The sense
of “meromorphic” here is (a weak vector-valued form of) the algebraic one, designed for application to the
families of representations above, parametrized by affine algebraic varieties in an algebraic manner. The
notion of locally strong meromorphy of vector-valued function at the end of this section is important for later
applications.

For a commutative ring k with a unit 1 = 1k, a k-algebra is a ring O with a k-module structure so that 1k

acts as the identity upon O, and so that for x ∈ k and α, β ∈ O

x(αβ) = (xα)β = α(xβ)

Let k be a field. Let O be a commutative k-algebra with unit, and suppose that O is an integral domain.
Let M be the field of fractions of O, and let

X = Spec O

be the prime spectrum of O. For a prime ideal x ∈ X let Sx be the multiplicative subset of O which is the
set complement of x in O, and define the local ring at x to be Ox = S−1

x O. The residue field at x is the
quotient

kx = Ox/xOx

The residue field kx is naturally a k-algebra, an O-algebra, and an Ox-algebra. Since O is a domain, the
zero ideal is prime, and we denote its residue field M by ko.

As usual, a height one prime in O is a prime ideal y so that if x is another prime ideal and x ⊂ y then either
x = 0 or x = y. The irreducible hypersurface η = ηy attached to a height-one prime is defined to be

η = ηy = {x ⊃ y : x ∈ X}

In the spirit of the Baire category theorem, A meager subset Y of X is a subset contained in a countable
union of irreducible hypersurfaces. A non-meager subset of X is simply one which is not meager.

Let
qx : Ox → kx

be the natural quotient or evaluation map, and also write

qx : V → V ⊗O kx

for any O-module V , and further
qx : V → V ⊗Ox

kx

for any Ox-module V .

Let G be a (locally compact, Hausdorff) totally disconnected group. Let V be an O-module, and

π : G→ HomO(V, V )

16
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a group homomorphism. Suppose that π is (uniformly) smooth in the sense that for every v ∈ V the
isotropy subgroup

{g ∈ G : gv = v}

of v is open. Say that π is a O-parametrized family of smooth representations of G.

For x ∈ X we have the pointwise representation

qxπ = πx : G→ Homkx(V ⊗O kx, V ⊗O kx)

of G on the kx-vectorspace V ⊗O kx.

When O is Noetherian and k is algebraically closed and x is maximal, by the Nullstellensatz the residue
field qxO = kx is just k itself. Thus, for k algebraically closed, the pointwise representations at maximal
ideals (geometrically closed points) x form a family {qxπ = πx : x ∈ X} of k-linear representations in a more
colloquial sense.

Remarks: Of course, such a parametrized family is really just a single O-linear representation of G.
However, we cannot reasonably expect to develop representation theory over general commutative rings
O. Fortunately, for the most part we can skirt such issues, simply viewing the O-linear representation as
glueing together the various point-wise representations as just defined. Compare [Bernstein-Zelevinski 1976],
[Bernstein-Zelevinski 1977], and [Bernstein 1984].

The generic representation in the parametrized family π is πo = π{0}, the pointwise representation
corresponding to the generic point {0} in the prime spectrum. The generic representation is most naturally
an M-linear representation, and typically ko = M has positive transcendence degree over the base field k.

The trivial O-parametrized family of smooth representations of G is the O-module O itself, with trivial
action of G upon it. The trivial representation of G on a residue field kx will also be denoted simply kx.

Let k̃ be an extension field of k so that O⊗k k̃ is still an integral domain, with M⊗k k̃ the field of fractions
of O⊗k k̃. Given an O-parametrized family π of smooth representations of G with underlying O-module V ,
the O ⊗k k̃-parametrized family π ⊗k k̃ of representations obtained by extending scalars from k to k̃ has
underlying O ⊗k k̃-module

V ⊗k k̃ ≈ V ⊗O (O ⊗k k̃)

and is given by the natural formula

(π ⊗k k̃)(g)(v ⊗ α) = π(g)(v)⊗ α

On the other hand, an O⊗k k̃-parametrized family π̃ is defined over k or k-rational if there is an O-para-
metrized family π so that

π̃ ≈ π ⊗k k̃

A trivial example of a parametrized family is that of a constant (along O) family, by which we mean the
following. Let ρ be a k-linear representation of G, and put

π = ρ⊗k O

Then π is an O-parametrized family which is constant along O, in the sense that for every x ∈ X

qxπ = ρ⊗k kx

The simplest meaningful example of a parametrized family of smooth representations arises from the C-linear
representations

α→ |α|s

on the multiplicative group F× of an ultrametric local field F , where the norm | | is normalized (e.g.) so
that

|$| = 1
q
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where $ is a local parameter and q is the cardinality of the residue field. These are parametrized in a
colloquial sense by s ∈ C, or by s ∈ C/2πi log q. Then write

π(α) = zord α

where z is an indeterminate (thought of as being q−s) and ord is the usual ord-function. In this example,
we take k = C, let O = C[z, z−1], and let V be a copy of O with O acting by multiplication. Then we have
the family

π : F× → HomC[z,z−1](C[z, z−1],C[z, z−1])

by
π(α)v = zord α · v

In this example, for a maximal ideal x of O = C[z, z−1] generated by z − q−s for a complex number s, the
pointwise representation qxπ = πx is the one-dimensional representation

α→ |α|s

On the other hand, the generic representation πo is C(z)-linear, on the one-dimensional C(z)-vectorspace
C(z) itself, by

πo(α)v = zord α · v

A little more generally, let M be a product of n copies of F× for a local field F , and define

π(m1, . . . ,mn) = zord m1
1 zord m2

2 . . . zord mn
n

where z1, z2, . . . , zn are indeterminates. Here we can take

O = C[z1, z−1
1 , z2, z

−1
2 , . . . , zn, z

−1
n ]

and take V to be a copy of O with module structure just given by left multiplication. Then for choice of n
non-zero complex numbers s1, s2, . . . , sn, with z1o = q−s1 , z2o = q−s2 , . . . , zno = q−sn , letting x be the ideal

x = O · (z1 − z1o) +O · (z2 − z2o) + . . .+O · (zn − zno)

the pointwise representation πx is

πx(m1,m2, . . . ,mn) = |m1|s1 |m2|s2 . . . |mn|sn

Here the generic representation is simply the C(z1, z2, . . . , zn)-linear representation

πo : (m1,m2, . . . ,mn) → (multiplication by) zord m1
1 zord m2

2 . . . zord mn
n

on a one-dimensional C(z1, z2, . . . , zn)-vectorspace. Here there are non-maximal non-zero prime ideals in the
parameter space for n > 1.

More generally, let M be a Levi component of a minimal F -parabolic in a reductive linear group G of F -rank
n, defined over the local field F . Because of the minimality, there is a unique maximal compact subgroup
Mo of M , and Mo is normal, and M/Mo is abelian. In fact, M/Mo ≈ Zn for some n. A one-dimensional
representation of M is unramified if Mo lies inside its kernel. Let $1, $2, . . . , $n be elements in M so that
their images in M/Mo ≈ Zn are a Z-basis for the latter. Let z1, z2, . . . , zn be indeterminates over C. Then
put

π($m1
1 $m2

2 . . . $mn
n ) = zm1

1 zm2
2 . . . zmn

n

Here again we take
O = C[z1, z−1

1 , z2, z
−1
2 , . . . , zn, z

−1
n ]
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and take V to be a copy of O with module structure just given by left multiplication. With maximal primes
x, we recover all the unramified representations of M . At the other extreme, the generic representation πo

in this family is the C(z1, z2, . . . , zn)-linear representation

πo($m1
1 $m2

2 . . . $mn
n ) = zm1

1 zm2
2 . . . zmn

n

on any one-dimensional C(z1, z2, . . . , zn)-vectorspace. And there are non-maximal non-zero primes, as well.

Generally, let P be a parabolic subgroup of a reductive p-adic group G over an ultrametric local field F ,
with unipotent radical N , and let M ≈ P/N be a copy of a Levi component. Let σ be a supercuspidal
representation of M , and let π be a parametrized family of one-dimensional representations of M , as above.
Then σ⊗π is certainly a parametrized family of smooth representations. We do not need such families here,
but see [Bernstein-Zelevinsky 1976], [Bernstein-Zelevinsky 1977], [Bernstein 1984] for applications.

As expected, for an O-parametrized family σ of smooth representations of a closed subgroup H of G,
the compactly-induced representation c-IndG

H σ is the collection of σ-valued functions f on G which are
compactly supported left modulo H, are locally constant, and so that

f(hg) = σ(h) f(g)

for h ∈ H and g ∈ G. Likewise, the (not-necessarily compactly-) induced representation IndG
H σ is the

collection of σ-valued functions f on G which are uniformly locally constant, and so that

f(hg) = σ(h) f(g)

It is elementary but important to note that for x ∈ X and for any O-algebra A we have

(c-IndG
H σ)⊗O A ≈ c-IndG

H (σ ⊗O A)

(This is because compactly-supported induction itself is a tensor product, and tensor products are
associative). That is, the usual construction does yield an O-parametrized family whose pointwise
representations are the compactly-induced representations from the pointwise representations σx.

By contrast,
(IndG

H σ)⊗O A ⊂⊂ IndG
H (σ ⊗O A)

with strict inclusion in general unless G/H is actually compact. Thus, in general, the usual construction of
not-necessarily-compact induction does not yield a parametrized family whose pointwise representations are
the induced representations of the pointwise representations.

The notion of smooth dual of an O-parametrized family σ has similar difficulties. First, for any O-module
V upon which G acts, the collection of smooth vectors V∞ in V is

V∞ = {v ∈ V : v has open isotropy group }

For any x ∈ X let πx be the pointwise representation at x. Naively, one would want an O-parametrized
family π̌ of smooth representations of G so that for every x ∈ X

Homkx(πx, kx)∞ = (π̌)x

But
Homkx(πx, kx) ≈ Homkx(π ⊗O kx, kx) ≈ HomO(π, kx)

There is the obvious natural map
HomO(π,O) → HomO(π, kx)

but this is not guaranteed to be a surjection unless (for example) π is projective as an O-module.
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The simplest scenario in which this projectivity holds is the trivial constant family case. Less trivially, the
commutative ring O itself (with left multiplication) is a free module over itself, hence is projective (since it
has an identity). Thus, any O-parametrized family χ of representations of G on O itself is projective, so has
a smooth dual O-parametrized family of representations

χ̌ = HomO(χ,O)∞

where G acts on the dual by the usual contragredient action

χ̌(g)(λ)(v) = λ(χ(g−1)v)

However, the assertion

(c-IndG
Hσ)̌ ≈ IndG

H σ̌
δH
δG

(which is true for representations on vectorspaces) is false for O-parametrized families in general, since the
not-necessarily-compact induction does not commute with tensor products, as already noted above.

Let σ, τ be two O-parametrized families of smooth representations of G. An M-linear map

Φ : σ ⊗OM→ τ ⊗OM

is an O-parametrized (meromorphic) family of intertwining operators from σ to τ if for all s ∈ σ
we have

Φ(σ(g)s) = τ(g)Φ(s)

for all g ∈ G. That is, Φ is an M-vectorspace homomorphism, and is a G-module homomorphism. The
family Φ is holomorphic at x ∈ X if

Φ(σ) ⊂ τ ⊗O Ox

The following is immediate:

Lemma: Let σ, τ be two O-parametrized families of smooth representations of G. If σ is a countably-
generated O-module, then a meromorphic family of intertwining operators

Φ : σ → τ

fails to be holomorphic on at worst a meager set, i.e., fails to be holomorphic on a subset of some countable
union of hypersurfaces. Done.For x ∈ X at which π is holomorphic, there is a natural pointwise
intertwining operator

Φx : σ ⊗O kx → τ ⊗O kx

Taking the generic point x = 0 in X, we have the generic intertwining operator in the family, simply
the M-linear map

Φ : σ ⊗OM→ τ ⊗OM

Let k̃ be an extension field of k so that O ⊗k k̃ is still an integral domain. Let M̃ be the fraction field of
O ⊗k k̃. Then a meromorphic family of intertwining operators

Φ̃ : σ ⊗O M̃ → τ ⊗O M̃

is rational over k if there is a meromorphic family of intertwining operators

Φ : σ ⊗OM→ τ ⊗OM

so that Φ̃ is the natural k̃-linear extension of Φ.
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2.2Rationality of local integrals

In the Rationality Lemma just below, the last of the conclusions is seemingly the most banal. However, this
conclusion has corollaries which are considerably less obvious, such as that various local integrals are rational
functions of q−s or of several quantities q−s, q−s1 , . . . , q−sn . As a very special case, in the section 2.4 we
obtain the rationality of the Euler factors of global integrals (under an additional convergence hypothesis
for integrals involved.)

Postponing the proof of the Rationality Lemma to 3.1, we use it to prove that certain integrals on totally
disconnected groups are rational functions in naturally-occurring parameters. In practice, these parameters
will be the familiar q−s, or several such parameters q−s, q−s1 , . . . , q−sn . Further, we have a corresponding
rationality result concerning the ‘scalars’ involved. We give two versions of the result.

We view the latter results as a qualitative computation of various classes of local integrals, under hypotheses
which are very frequently met in practice. The obvious follow-up is closer determination of the local integrals,
without ad hoc computation. The latter goal is pursued in the succeeding sections.

We recall the context for discussion of parametrized families, from the last section. Fix a field k of
characteristic zero. Let G be a (locally-compact Haudorff) totally disconnected group with a countable
dense subset. Let O be a commutative k-algebra with unit, without zero divisors, with prime spectrum X.
Let k̃ be a field extension of k, so that O⊗k k̃ is still an integral domain. Let X ⊗k k̃ be the prime spectrum
of O ⊗k k̃.

Let π be an O-parametrized family of smooth representations of G on an O-module V , so that the underlying
O-module V is countably-generated. Let π̃ = π⊗k k̃ be the parametrized family obtained by extending scalars
from k to k̃.

Recall that a meager set is one contained in a countable union of hypersurfaces, while a non-meager set is
simply not meager. And recall the notation that kx is the trivial one-dimensional kx-linear representation.
Rationality Lemma:

• Suppose that for x on a non-meager subset Y of X ⊗k k̃ (on which π ⊗k k̃ is holomorphic)

dimk̃x
HomG×k̃x

(π̃x, k̃x) ≤ 1

• Suppose that there is µo ∈ V ⊗OM so that for each x in Y there is an intertwining operator ψ(x) : π̃x → k̃x

with the normalization
ψ(x)(µo) = 1 ∈ k̃x

Then
• There is an O ⊗k k̃-parametrized meromorphic family Φ of intertwining operators from π̃ to the trivial
representation O, rational over k, so that for x in a non-meager set Y ′ ⊂ Y (on which Φ is holomorphic) the
pointwise intertwining operators Φx arising from Φ are equal to the respective intertwining operators ψ(x):

Φx = ψ(x) for x ∈ Y ′

• Off a meager subset of X ⊗k k̃,
dimk̃x

HomG×k̃x
(π̃x, k̃x) = 1

• For any v ∈ V ⊗OM,
Φ(v) ∈M
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(Proof given below in section 3.1, after examples of applications).

Remarks: The hypothesis
dimk̃x

HomG×k̃x
(πx, k̃x) ≤ 1

for x in a non-meager set is the generic multiplicity one condition, and the element µo ∈ V ⊗OM is the
good test vector. And note that the very last conclusion contains two kinds of rationality assertions:
first there is the assertion that the ‘function’ v → Φ(v) lies in the field of rational functions M⊗k k̃, but
there is also the rationality of scalars assertion, that Φ(v) actually lies in the smaller field M itself, without
the need to extend scalars from k to k̃.

And, last, it is important to realize that for k countable (e.g., Q), it may well be that the whole of X is
meager. Thus, it may well be necessary to consider the larger X⊗k k̃, by extending scalars to an uncountable
field k̃ (e.g., C or Qp) in order to apply this result.

Now we will consider integrals (and somewhat more general functionals) whose integrands are k̃x-valued for
varying maximal ideals x in O⊗k k̃, so we want to assume that k̃ and finite extensions k̃x of it are complete.
Thus, taking k̃ to be R or C or finite extensions of Qp suffices. (By the Nullstellensatz, the residue fields
k̃x of O ⊗k k̃ for maximal ideals x are finite extensions of k̃).

Let A,B be closed subgroups of a totally disconnected, locally compact, Hausdorff, countably-based
topological group G. For our applications, we can suppose that G is unimodular. We assume that there is
some ξ ∈ G so that the set

Aξ B ⊂ G

is an open subset of G. That is, considering the group action of A×B upon G by

(a× b)(g) = a · g · b−1

there is an open orbit. As catch-phrase, this is the open-orbit condition.

Let σ, τ be O-parametrized families of one-dimensional smooth representations of A, B, respectively. Thus,
we may suppose that these are simply group homomorphisms

σ : A→ O× τ : B → O×

For x a maximal ideal in the prime spectrum of O ⊗k k̃ consider the (k̃x-valued) local integral

I(f, ϕ)(x) =
∫

(A∩ξ−1Bξ)\G
qxf(g) qxϕ(ξg) dg

where f is in c-IndG
Aσ, ϕ is in c-IndG

Bτ , qx denotes the pointwise evaluation.

Remarks: Without loss of generality ξ can be taken to be just 1, by conjugating B. However, if that
simplification is made at the outset it becomes too easy to overlook the fact that the hypothesis is as general
as it really is.

According to the notational convention of 1.2, an “integral” on a quotient H\G of G by a closed subgroup
H is only a literal integral when for h ∈ H

δG(h) = δH(h)

In that case, since the groups in question are totally disconnected, we can suppose that there is a right
G-invariant Q-valued measure (denoted by dg) on the quotient H\G. In general, we can always assume that
there is a Q-valued right G-invariant measure on G, and on H. We have the identity∫

H\G

∫
H

f(hg)
δG(h)
δH(h)

dh dg
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and the surjectivity of the averaging map

C∞c (G) → C∞c (H\G, δH
δG

)

given by

f →
(
g →

∫
H

f(hg)
δG(h)
δH(h)

dh

)
(See 3.2). Because of the total-disconnected-ness of H, we also know that the modular functions δG, δH are
Q×-valued. Therefore, we may assume quite generally that the “integral”∫

H\G
F (g) dg

is Q-valued, in the sense that for Q-valued f ∈ C∞c (G) and for

F (g) =
∫

H

f(hg)
δG(h)
δH(h)

dh

we have ∫
H\G

F (g) dg ∈ Q

(And, further, this function F is Q-valued.)

Remark: It is important to realize that even though we can assume without loss of generality that the
“measure” is Q-valued, there is no assurance that the integrands relevant to global integrals are compactly
supported modulo A ∩ B for general f and ϕ. Thus, such an integral is a genuinely analytic object rather
than a purely algebraic one, although there seems no obstacle to its being p-adic rather than real or complex.

We assume that for maximal ideals x in some non-meager subset ofX⊗kk̃ the “integral” converges absolutely
for all fx ∈ c-IndG

Aqx(σ ⊗k k̃) and for all ϕx ∈ c-IndG
B qx(τ ⊗k k̃).

We also assume the generic multiplicity-one condition: for x in a non-meager subset of X ⊗k k̃ we have
the multiplicity-one condition

dimk̃x
HomG×k̃x

(c-IndG
Aqx(σ ⊗k k̃)⊗ c-IndG

Bqx(τ ⊗k k̃), k̃x) ≤ 1

Then we have the following corollary of the Rationality Lemma, which includes rationality assertions
concerning both rationality as a function of the parameter x ∈ X ⊗k k̃, and also rationality of scalars:
Theorem: With the assumptions that there is an open orbit H ξG, that the “integral”

I(f, ϕ)(x) =
∫

(A∩ξ−1Bξ)\G
qxf(g) qxφ(ξg) dg

converges on a non-meager set in X ⊗k k̃, and that

dimk̃x
HomG×k̃x

(c-IndG
Aqx(σ ⊗k k̃)⊗ c-IndG

Bqx(τ ⊗k k̃), k̃x) ≤ 1

for x in a non-meager set in X ⊗k k̃, we conclude that the map

f ⊗ ϕ→
∫

(A∩ξ−1Bξ)\G
qxf(g) qxφ(g) dg

extends to an O ⊗k k̃-parametrized meromorphic family of intertwining operators

Φ : c-IndG
A(σ ⊗k k̃)⊗ c-IndG

B(τ ⊗k k̃) → O⊗k k̃

which is rational over k. In particular, for each fixed f ∈ c-IndG
Aσ and ϕ ∈ c-IndG

Bτ , the function Φ(f ⊗ ϕ)
is in the field M.
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Remarks: Thus, in a more mundane sense, as a ‘function’ of the parameter x, the integral I(f, ϕ)(x) is a
rational function. Further, again in a more mundane sense, the ‘coefficients’ of that rational ‘function’ lie in
k, not merely in the extension k̃, for f, ϕ in the k-rational points c-IndG

Aσ and c-IndG
Bτ of the representations.

Proof: The hypotheses above include two of the three hypotheses needed to invoke the Rationality Lemma.
The crux of the present argument is proof that there is a good test vector, thus verifying the third of the
necessary hypotheses.

For most of the proof, we may as well suppose that k = k̃ to simplify notation. And, throughout, there is
no loss of generality in assuming that ξ = 1. This simplifies the notation considerably.

For maximal x so that the integral converges, the map

qxf ⊗ qxϕ→ I(f, ϕ)(x)

is an intertwining operator
c-IndG

Aqxσ ⊗ c-IndG
Bqxτ → kx

Thus, we have a pointwise intertwining on a non-meager subset of the parameter space, extending scalars
from k to k̃ if necessary, which is one hypothesis of the Rationality Lemma.

The third hypothesis of the Rationality Lemma, which we have not simply assumed away, is the presence of
a good test vector, which here must be of the form

fo ⊗ ϕo ∈ c-IndG
Aσ ⊗ c-IndG

Bτ

which should have the property
I(fo, ϕo)(x) = 1

for all x in a non-meager subset of X ⊗k k̃. Before addressing this, we need:

Lemma: Let A,B be closed subgroups of a separable locally compact Hausdorff totally disconnected
topological group G. Suppose that A ·B is open in G. Then, for arbitrarily small compact open subgroups
Ao, Bo of A,B, respectively, the product Ao ·Bo is open in G.

Proof (of Lemma): We have
A ·B =

⋃
α,β

α ·AoBo · β

where α ∈ A/Ao and β ∈ Bo\B. The latter collections are countable. Thus, by the Baire category theorem,
one (hence, all) of the (mutually homeomorphic) sets α · AoBo · β has non-empty interior. Let ao · bo ∈ U
with U an open set inside Ao ·Bo, with ao ∈ Ao and bo ∈ Bo. Then for any a1 ∈ A and b1 ∈ B, as usual we
have

a1b1 = (a1a
−1
o )ao bo(b−1

o b1) ∈ (a1a
−1
o )U(b−1

o b1) ⊂ AoUBo

⊂ AoAoBoBo = AoBo

That is, every point is in the interior, so the set is open. Done.Returning to construction of the good test
vector and proof of the theorem: Take a small-enough compact-open subgroup Ko of G so that σ is trivial
on A ∩Ko and τ is trivial on B ∩Ko. Shrink Ko if necessary so that

Ko ⊂ A ·B

where we now make use of the fact that A · B is open in G. Put Ao = A ∩Ko and Bo = B ∩Ko. Finally,
take a small-enough compact open subgroup K inside Ko and so that

K ⊂ AoBo ∩BoAo

Consider fo, ϕo in c-IndG
Aσ, c-IndG

Bτ , respectively, defined by

fo(aθ) =
{

= σ(a) for a ∈ A, θ ∈ K
= 0 off A ·K
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ϕo(bθ) =
{

= τ(b) for b ∈ B, θ ∈ K
= 0 off B ·K

Let S be the support of foϕo.

We estimate the image of
(A ·K) ∩ (B ·K)

in (A ∩B)\G. We have

A ·K ∩B ·K = (A ∩B ·K) ·K ⊂ (A ∩B ·BoAo) ·K

= (A ∩B ·Ao) ·K = (A ∩B) ·AoK = (A ∩B) ·Ko

since K ⊂ Ao ⊂ A, Bo ⊂ B, and Ao and Bo lie inside Ko. Thus, the image is contained in the image of Ko,
which is compact.

Therefore, adjusting fo⊗ϕo by a positive rational constant if necessary (depending upon choice of Q-valued
right Haar measure), by elementary integration theory (e.g., surjectivity of the averaging maps) we have∫

(A∩B)\G
qxf(g) qxφ(g) dg =

∫
Ko

qxf(θ) qxφ(θ) dθ = meas(Ko)

since Ko was chosen to be small enough so that both σ and τ are trivial on it. This holds for all x (not only
for x for which the original integral was guaranteed to converge). That is, adjusting fo ⊗ ϕo by a non-zero
rational number if necessary, we have∫

(A∩B)\G
qxf(g) qxφ(g) dg = 1 =

∫
Ko

qxf(θ) qxφ(θ) dθ

Thus, we are guaranteed that good test vectors exist.

Thus, we can invoke the Rationality Lemma, concluding that there is an extension of the integral to a
meromorphic O-parametrized intertwining Φ.

At this point, we return to the distinction between k and k̃. First, σ and τ were actually O-parametrized,
rather than merely O ⊗k k̃-parametrized. Also, the construction of the good test vector really yields a test
vector in

c-IndG
Aσ ⊗ c-IndG

Bτ

not merely in the corresponding families of representations with scalars extended from k to k̃. Thus, by the
Rationality Lemma the meromorphic family Φ of intertwinings just proven to exist is actually k-rational,
rather than merely k̃-rational.

In particular, this entails that for every f ∈ c-IndG
Aσ and ϕ ∈ c-IndG

Bτ , the value Φ(f ⊗ϕ) is in the field M,
rather than merely in the larger field M⊗k k̃. Done.Now we give a different-looking
rationality result for local integrals with parameters. Still, the parameters are potentially the familiar q−s,
or several such parameters q−s, q−s1 , . . . , q−sn , and there is a corresponding rationality result concerning the
‘scalars’ involved. Again, the obvious follow-up is closer determination of the local integrals without ad hoc
computation. (This result includes the previous one as a special case).

Let H̃ be a locally compact totally disconnected topological group of which H and G are closed subgroups.
Let Y be a closed subset of H̃ stable under left multiplication by H and right multiplication by G. Let Z be
a locally compact totally disconnected space on which H acts trivially and upon which G acts continuously
on the right. Take

Ω = Y × Z

Let σ be an O-parametrized family of finite-dimensional smooth representations of H. Recall the notation
that, for a prime ideal x in the parameter space, σx is the pointwise representation at x obtained from the
family σ.
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Let C∞c (H\Ω, σ) be the collection of σ-valued locally constant functions f on Ω the image of whose support
is compact in the quotient space H\Ω, and which have the left equivariance

f(hx) = σ(h) f(x)

for all h ∈ H and x ∈ Ω. These functions are (generalized) test functions in the sense of Bruhat. The
action of G on the right on Ω makes this space of functions a smooth representation space for G.

The open orbit hypothesis we impose is the assumption that there is some ξ ∈ Ω so that

H ξG ⊂ Ω

is an open subset of Ω. We want a Q-valued right-G-invariant “integral”

f →
∫

H\Ω
f(ω) dω

supported on H\HξG. By properties of test functions on totally disconnected spaces (as in 3.2), we have a
natural G-isomorphism

C∞c (H\HξG, σ) ≈ C∞c (ξ−1Hξ ∩G\G, σξ)

where σξ(x) = σ(ξxξ−1). Thus, assuming (as in 1.2) that

σξ =
δH
δG

assures the existence of such an integral in extended sense.

For x a maximal ideal in the prime spectrum of O ⊗k k̃ consider the (k̃x-valued) local “integral” (in the
extended sense)

If (x) =
∫

H\Ω
f(ω) dω

where f is in C∞c (H\Ω, σ), and qx denotes pointwise evaluation as above. Again, this integral is an analytic
object rather than an algebraic one, although it may be p-adic rather than real or complex. We assume
that for maximal ideals x in some non-meager subset of X ⊗k k̃ the integral converges absolutely for all
f ∈ C∞c (H\Ω, σx).

Let us assume also the generic multiplicity-one condition: that for x in a non-meager subset of X ⊗k k̃
we have the multiplicity-one condition

dimk̃x
HomG×k̃x

(C∞c (H\Ω, σx), k̃x) ≤ 1

Then we have the following corollary of the Rationality Lemma, including two rationality assertions:
rationality as a function of the parameter x ∈ X ⊗k k̃, and rationality of scalars.
Theorem: With the open-orbit hypothesis, with convergence on a non-meager set in X ⊗k k̃, and with

dimk̃x
HomG×k̃x

(C∞c (H\Ω, σx), k̃x) ≤ 1

for x in a non-meager set in X ⊗k k̃, the map

f →
∫

H\Ω
f(ω) dω

extends to an O ⊗k k̃-parametrized meromorphic family of intertwining operators

Φ : C∞c (H\Ω, σ)⊗k k̃ →M⊗k k̃

which is rational over k. In particular, for each fixed f ∈ C∞c (H\Ω, σ) the “function” Φ(f) is in the field M.
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Remarks: Thus, as a ‘function’ of the parameter x, the integral x → If (x) is a rational function, and the
‘coefficients’ of that rational ‘function’ lie in k, not merely in k̃, for f in the k-rational points C∞c (H\Ω, σ)
of the representation.

Proof: We can assume without loss of generality for the proof that k̃ = k.

The explicit hypotheses give us two of the three hypotheses for the Rationality Lemma. All that remains is
to find a good test vector fo ∈ C∞c (H\Ω, σ), meaning that∫

H\Ω
fo(ω) dω = 1

(independent of x in the parameter space).

We will choose fo in the subspace
C∞c (H\HξG, σ)

of the whole test space C∞c (H\Ω, σ). Let

Θξ = {g ∈ G : there is hg ∈ H so that h−1
g ξg = ξ}

For g ∈ Θξ, define
σξ(g) = σ(hg)

From the discussion of orbit filtrations of test functions (section 3.2), we have

C∞c (H\HξG, σ) ≈ c-IndG
Θξ
σξ

Let K be a compact-open subgroup of G small-enough so that σξ is identically 1 on K ∩Θξ. Then put

fo(θ`) =
{

= σξ(θ) for θ ∈ Θξ, ` ∈ K
= 0 off Θ ·K

The hypothesis on K, necessitating that σ be finite-dimensional, assures that this is well-defined. Then (at
first only for x at which the integral is known to converge)

I(fo)(x) =
∫

H\Ω
fo(ω) dω =

∫
Θξ\ΘξK

fo(ω) dω

=
∫

K

fo(`) d` = meas(K)

where d` is a suitably-normalized Haar measure on K. Thus, correcting fo by dividing by meas(K), we have
the desired test function. ///

2.3Analytic continuation of intertwinings

Now we return to consideration of the global integrals. So far, we have factored the inner integral as∫
Z′A Θk\ΘA

f(θ g) dθ

= ( bad-primes factor and period )×
∏

v good
Φv(ev)(gv)
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where ev is the normalized spherical vector in the unramified principal series c-IndGv

Pv
χv, and Φv is a non-zero

intertwining operator from the unramified principal series to IndGv

Θv
δΘv

.

The goal of this section is to express the intertwining operator Φv as an integral. Ironically, the natural
integral expressing the intertwining operator seldom converges for χv in the range of characters appearing in
the unramified principal series mapping surjectively to the local representations πv generated by a (square-
integrable) cuspform.

To deal with this we enlarge the class of χv’s to include values for which the natural integral does converge,
and then prove that the intertwining operator has an analytic continuation. In fact, in the cases at hand we
present the family of characters χv as a parametrized family (in the sense of (2.1)), and invoke the Rationality
Lemma and its corollaries (2.2) to prove that the natural integral is identifiable as a meromorphic family of
intertwining operators. Thus, the analytic continuation issue will be resolved trivially, by proving that the
object in question is in fact rational.

As noted in (1.3), in general the hypothesis that the period does not vanish is not trivially fulfilled, but may
require at least some local condition on the characters χv. We will make a parametrized family of characters
meeting at least this local condition.

Remark: Unfortunately, still due to the fact that we have limited information on the character χv occuring
for a cuspform, it seems difficult to give a universal answer to the question of whether or not the intertwining
operator Φv lies in the family of intertwining operators we construct. In any particular case somewhat more
can be said, of course, and in the most fortuitous circumstances (in which there is at most a single intertwining
operator for each parameter value) it certainly follows that Φv is given by an integral as constructed below.

We inherit several assumptions from 1.1, 1.2, 1.3, and 1.4: we are assuming that Θv\Gv/Pv is finite, that
ξΘvξ

−1 is contained in the kernel of χ̃v (so that ε escapes from the inner integral as in 1.2), and that (in
the notation of 1.4) ∑

α∈Pv\Gv/Θv

dim HomHα(χα, δΘvδHα) = 1

The latter implies that
dim HomGv

(c-IndGv

Pv
χvδ

1/2
Pv
, IndGv

Θv
δΘv

) ≤ 1

To avoid trivial vanishing of the inner integral (1.3), we must assume at least that

dim HomGv
(c-IndGv

Pv
χvδ

1/2
Pv
, IndGv

Θv
δΘv

) = 1

Let Nv be (the v-adic points of) the unipotent radical of P , and Mv (the v-adic points of) a Levi component
of P . Let Mo be the maximal compact subgroup of Mv (unique because Pv is minimal). Let $1, . . . , $n be
generators for the abelian group Mv/Mo. Let z1, . . . , zn be transcendental over the groundfield k, and put

O′ = k[z1, z−1
1 , . . . , zn, z

−1
n ]

Define
χ′ : Mv →Mv/Mo → (O′)×

by
χ′($i) = zi

extending by multiplicativity, and where the first map is the quotient map. Then extend χ′ to Pv by taking
χ′ identically 1 on Nv. This χ′ is the (universal) O′-parametrized family of unramified characters on Pv. To
avoid trivial vanishing, in general we must use a smaller family, as follows.

As in 3.2, partially order the orbits PvαΘv (or representatives α) by

PvαΘv ≤ PvβΘv
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if PvβΘv lies in the closure of PvαΘv. We have the orbit filtration on c-IndGv

Pv
χ′ described by

(c-IndGv

Pv
χ′)≤β = {f ∈ c-IndGv

Pv
χ′ : support f is in

⋃
α≤β

PvαΘv}

Also put
(c-IndGv

Pv
χ′)<β = {f ∈ c-IndGv

Pv
χ′ : support f is in

⋃
α<β

PvαΘv}

From 3.2, the βth graded piece of this filtration is naturally isomorphic as a Θv-representation to

c-IndΘv

Hβ
(χ′)β

where
Hβ = β−1Pvβ ∩Θv

and for θ ∈ Hβ

(χ′)β(θ) = χ′(β θ β−1)

(These are none other than the sort of graded pieces considered in using such a filtration to estimate

dimkx
HomGv

(c-IndGv

Pv
χv, IndGv

Θv
δΘv

)

as we did in 1.4.)

As in 1.4, it is an elementary computation that

dimkx
HomΘv

(c-IndΘv

Hβ
(χ′)β , δΘv

) ≤ 1

and that we get equality if and only if
(χ′)β |Hβ

= δHβ

For representative β, for each h ∈ Hβ the condition

(χ′)β(h) = δHβ
(h)

is something of the form
z

a1(h)
1 . . . zan(h)

n = c(h)

where the ai(h) are integers and c(h) ∈ Q× (since the group is totally disconnected). Let Iβ be the radical
of the ideal in O′ generated by all such relations for h ∈ Hβ .

Let PvβΘv be minimal (in the partial order above) so that Iβ 6= O′. (That the condition can ever be met
is a consequence of the existence of a non-trivial intertwining operator for some pointwise representation
obtained from χ′). Then let

O = O′/Iβ

for such β. Thus, O parametrizes a family of characters so that the βth graded piece of the orbit filtration
admits an intertwining operator to δHβ

.

Remark: In practice, it seems that usually if PvβΘv < PvαΘv and Iβ 6= O′ then

Iβ ⊂⊂ Iα ⊂ O′

with the first containment strict. Further, it often happens that there is a unique minimal β whose associated
graded piece admits an intertwining operator. In such circumstances there is of course no ambiguity in choice
of O.
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Then the natural integral associated to this choice of β and O is

Φ(f)(g) =
∫

β−1Pvβ∩Θv\Θv

f(β θ g) δΘv (θ) dθ

It is immediate that, if this converges, then it is an intertwining operator from c-IndGv

Pv
qxχ

′ to IndGv

Θv
δΘv

.
Yet, while this integral is actually a finite sum for f in (c-IndGv

Pv
χ′)≤β , convergence for general f in c-IndGv

Pv
χ′

is an issue. Let X = specO, and let qx be the evaluation map(s) at x.
Theorem: Assume that for a non-meager collection of x ∈ X ⊗k k̃ and for all f in c-IndGv

Pv
χ′ the integral

for Φ(qx f) is absolutely convergent, and that

dimk̃x
HomGv

(c-IndGv

Pv
qxχ

′, IndGv

Θv
δΘv

) ≤ 1

Then this integral extends to give a meromorphic family Φ of intertwining operators from c-IndGv

Pv
χ′ to

IndGv

Θv
δΘv , in the sense of 2.1.

Proof: Fix g ∈ Gv and denote the map given by the integral whenever it converges absolutely by ϕg. This
ϕg is an intertwining operator

ResGv

Θv
c-IndGv

Pv
qxχ

′ → δΘv

(observing that the representation δΘv is a constant family.) The assumption on the dimension of the space
of intertwining operators immediately translates by Frobenius Reciprocity to

dimkx
HomΘv

(ResGv

Θv
c-IndGv

Pv
qxχ

′, δΘv
) ≤ 1

This and the assumptions of convergence allow us to invoke the theorem(s) of 2.2, concluding that ϕg is a
meromorphic family of intertwining operators from ResGv

Θv
c-IndGv

Pv
qxχ

′ to δΘv .

Since
Φ(f)(g) = ϕg(f)

by the definition of meromorphy of a family of intertwining operators (from 2.1) we have the conclusion of
the theorem. Done.

Remark: The meromorphy asserted here might be construed as a weak meromorphy, since there is not
necessarily any uniform estimate on poles as g ∈ Gv varies. This flaw will be corrected in 2.5, when strong
meromorphy is discussed.

2.4Rationality of the Euler factors

By this point, we have managed to rewrite the global integral as a product of the period and an Euler product
with vth factor ∫

Z̃vΘv\Gv

εv(ξg) Φv(ev)(g) dg

(using the notation of 1.2). In the last section we found an integral expression giving (when analytically
continued) a meromorphic family of intertwining operators which we assume contains Φv. Namely, we put

Φ(f) =
∫

β−1Pvβ∩Θv\Θv

f(β θ g) δΘv
(θ) dθ

We inherit several assumptions: we are assuming that Θv\Gv/Pv is finite, and that ξΘvξ
−1 is contained in

the kernel of χ̃v (so that ε escapes from the inner integral). To use the integral representation of the last
section, we must assume that the character χv lies among the pointwise representations from the family χ′

described in the last section (as well as that the intertwining operator Φv lies in the family Φ).
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Now we replace Φv in the outer integral by its integral expression from the last expression: the vth Euler
factor is the outer integral, which is of the form∫

Z̃vΘv\Gv

εv(ξg)
∫

β−1Pvβ∩Θv

f(β θ g) δΘv (θ) dθ dg

where instead of simply the spherical vector ev we now use an arbitrary f in some pointwise representation
arising from the family c-IndGv

Pv
χ′ constructed in the last section. By integration theory (see 1.2), we can

immediately rewrite this as a single integral∫
Z̃vHβ\Gv

εv(ξg) f(β θ g) dg

where
Hβ = β−1Pvβ ∩Θv

Now we assume further that
P̃v\G̃v/Pv is finite

for almost all primes v. We may as well note the following:
Proposition: If P̃v\G̃v/Pv is finite then Θv\Gv/Pv is finite.

Proof: Θ = ξ−1P̃ ξ ∩G. Done.

In addition to postulating that the local character χv arising from the cuspform is also a pointwise
representation from the O-parametrized family χ′ constructed in the last section, we must also present
the character χ̃v (from the Eisenstein series) in the same fashion. Just as in general we must restrict the
parameter space for χ′ to avoid trivial vanishing of the inner integral (see 1.3), we must restrict the family
in which χ̃v lies in order to assure that the integrand is Z̃v-invariant.

The corresponding construction is even simpler than that done in the last section, so without repeating it we
assume now that we have the commutative Noetherian ring Õ = k[z, z−1] whose spectrum X̃ parametrizes
a family χ̃′ of characters on P̃v, so that the integrand above is Z̃v-invariant.

Recall also from 2.3 that the ring O parametrizing the family of characters χ′ is a quotient of
k[z1, z−1

1 , . . . , zn, z
−1
n ]. We abusively use the symbols zi to refer to their images in O.

Theorem: Let v be a prime so that πv is spherical. Suppose that the double-coset space

P̃v\G̃v/Pv

is finite. Suppose that for x in a non-meager subset of spec Õ ⊗ O ⊗k k̃ for all f ∈ c-IndGv

Pv
qxχ

′ the integral∫
Z̃vHβ\Gv

εv(ξg) f(β θ g) dg

is absolutely convergent, and also

dimkx HomGv (ResG̃v

Gv

(
c-IndG̃v

P̃v
χ̃v

)
⊗ c-IndGv

Pv
χv, k̃x) ≤ 1

Then this integral extends to give a meromorphic family of intertwining operators

ResG̃v

Gv
c-IndG̃v

P̃v
χ̃′ ⊗ c-IndGv

Pv
χ′ → (Õ ⊗ O ⊗k k̃)×

Corollary Under the hypotheses of the previous theorem, the vth Euler factor is a rational function of
z, z1, z2, . . . , zn.
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Remark: We think of z as q−s where this s is the “live” variable occurring in the Eisenstein series, while
zi = q−si map homomorphically to give the Satake parameters of the cuspform.

Proofs: The hypotheses are those necessary to apply the rationality theorems of 2.2, so we obtain this
theorem at once. By integration theory, the present convergence hypothesis implices convergence of the
integral of 2.3 used to rewrite the inner integral. The Corollary is obtained by replacing the general f in
the parametrized family of unramified principal series by the spherical vector e′ in that parametrized family,
uniformly normalized (as is done pointwise) by the condition

e′(1) = 1

Done.

Remark: Pursuing the quantitative issue of the computation or estimation of the rational expressions which
occur in this result, we will prove later that if the double-coset space P̃v\G̃v/Pv is finite then the poles of
the rational expressions so occurring have leading terms in their Laurent expansions which are interpretable
as anomalous intertwining operators (in a sense made precise later (section 2.6)). This will put very strong
limitations on the possible denominators of the rational expressions possibly occurring in the local integrals.

Further, much as was done in 1.4 for the inner integral, we can obtain an estimate on the dimension of the
indicated space of intertwining operators using the orbit filtration method from 3.2, as follows. By dualizing
and applying Frobenius Reciprocity, the space of intertwining operators becomes (pointwise, for x in the
parameter space)

dimkx
HomPv

(ResG̃v

Pv
c-IndG̃v

P̃v
qxχ̃

′, (qxχ′)−1δPv
) = 1

Using the P̃v × Pv-orbit filtration on the test functions

ResG̃v

Pv

(
c-IndG̃v

P̃v
qxχ̃

′
)

we obtain graded pieces
c-IndGv

Hβ
qxχ̃

′β

where β ∈ P̃v\G̃v/Pv,
Hβ = β−1P̃vβ ∩ Pv

and
qxχ̃

′β(p) = qxχ̃
′(βpβ−1)

for p ∈ Hβ ⊂ Pv.

Thus, we obtain an inequality

dimkx
HomGv

(ResG̃v

Gv

(
c-IndG̃v

P̃v
qxχ̃

′
)
⊗ c-IndGv

Pv
qxχ

′, kx)

≤
∑

β

dimkx HomPv (c-IndPv

Hβ
qxχ̃

′β , (qxχ′)−1δPv )

Dualizing and applying Frobenius Reciprocity once more, the latter sum is

∑
β

dimkx
HomHβ

(qxχ′δ−1
Pv
, qxχ̃

′β δHβ

δPv

) = 1

Simplifying and dualizing again, we get

dimkx
HomGv

(ResG̃v

Gv

(
c-IndG̃v

P̃v
qxχ̃

′
)
⊗ c-IndGv

Pv
qxχ

′, kx)
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≤
∑

β

dimkx
HomHβ

(qxχ′, qxχ̃′βδHβ
)

The latter sum is easy to compute, since all the representations are one-dimensional.

Further, one may notice that the the orbit-filtration estimate on multiplicity for the inner integral in 1.4 is
simply a subsum of the present sum ∑

β∈P̃vξG̃Pv

dimkx
HomHβ

(qxχ′, qxχ̃′βδHβ
)

because ξ−1Θvξ was assumed to lie in the kernel of the character qxχ̃′. Thus, we have

Observation: If the graded-piece estimate generically fails to show multiplicity one for the inner integral,
it will also fail for the outer integral.

Remarks: Since the multiplicity-one condition need not be satisfied for every parameter value, but only for a
sufficiently large set of such, fewer additional devices are needed to get to the desired generic multiplicity-one
condition than a strict multiplicity-one condition.

If the program were successful up to this point, the discussion would begin another phase, in which the
outer local integrals should be (literally) computed. By this point, one would already know that the integrals
were rational functions of parameters such as q−s, and also of less-obvious parameters such as the Satake
parameters q−si , which become visible when spherical representations are treated as quotients of unramified
principal series.

Yet, rather than engage in ad hoc computations, in the sequel we will interpret the ‘poles’ of the integrals
as being special kinds of intertwining operators, referred to below as anomalous intertwining operators.

2.5Orbit criterion for strong meromorphy

To study local integrals further, we must attach meaning to the zeros and poles in the rational expressions
proven above to occur. Not surprisingly, the study of poles is the easier, since (as in other scenarios as well)
the residue (or more generally leading term) in a Laurent expansion of an intertwining operator at a pole
has demonstrably special properties. Thus, to estimate the possible poles, one instead classifies the possible
anomalous intertwining operators, in a sense described precisely below in 2.6.

One minor complication is that in general, and in many situations of interest (e.g., intertwinings involving
unramified principal series) the parameter space X = SpecO is of dimension greater than 1, so poles, being
codimension 1, are of positive dimension.

Generally, for a G×O-module V and for a height-one prime x in O, say that a (meromorphic O-parametrized
family of) intertwining(s)

Φ ∈ HomG×O(V,M)

is locally strongly meromorphic at x if there is some integer power $N of a local parameter $ = $x at
x so that

$NΦ ∈ HomG×O(V,Ox)

where Ox is the local ring at x. If Φ is locally strongly meromorphic at every height-one prime x in O, then
Φ is locally strongly meromorphic.

Remarks: The locally strong meromorphy condition at x precludes there being a sequence of vectors vi ∈ V
so that the rational functions Φ(vi) ∈ M have deeper and deeper poles along the hypersurface given by x.
On the other hand, even though our parameter space SpecO is an affine variety, the present definition of
(local) strong meromorphy makes no assertion about finiteness of the collection of hypersurfaces along which
there might be a pole. Such claims will be made later, depending upon interpretation of Laurent expansions
at poles as giving anomalous intertwinings.
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Now we can describe a fairly general scenario in which locally strong meromorphy is provably assured. (The
general construction of the set Ω is the same as earlier).

Let H̃ be a locally compact totally disconnected topological group of which H and G are closed subgroups.
Let Y be a closed subset of H̃ stable under left multiplication by H and right multiplication by G. Let Z be
a locally compact totally disconnected space on which H acts trivially and upon which G acts continuously
on the right. Take

Ω = Y × Z

Let σ be an O-parametrized family of finite-dimensional smooth representations of H.

Let C∞c (H\Ω, σ) be the collection of σ-valued locally constant functions f on Ω the image of whose support
is compact in the quotient space H\Ω, and which have the left equivariance

f(hx) = σ(h) f(x)

for all h ∈ H and x ∈ Ω. These functions we view as (generalized) test functions.

Let P be a closed subgroup of G, with closed normal subgroup N , and closed subgroup M so that P is a
semi-direct product of M and N . We suppose that N is an ascending union of compact open subgroups.
And suppose that there is a compact open subgroup Mo of M so that with idempotent

e =
characteristic function of Mo

measure of Mo

in the Hecke algebra GM of M the subalgebra eGMe is Noetherian.

Let χ be an O-parametrized family of finite-dimensional smooth representations of M ≈ P/N , so as to give
an O-parametrized family of representations of P , trivial on N . We denote this by the same letter χ. We
suppose that the image e · χ of the O-module χ is a Noetherian eGMe-module, where the idempotent e is as
just above.

The previous hypotheses are met very often in practice. In particular, the hypotheses on P,M,N and e are
met for unramified principal series, where P is a parabolic subgroup of a p-adic reductive group G, N is the
unipotent radical of P , and so on.

The critical hypothesis here is that the double coset space

H\Ω/P

be finite. In that case, we have
Theorem: Assuming finiteness of the double coset space H\Ω/P , any meromorphic O-parametrized family
of intertwining operators

Φ ∈ HomG×O(C∞c (H\Ω, σ)⊗O c-IndG
P χ,M)

is locally strongly meromorphic. (Proof given in 3.5).

2.6Denominators and anomalous intertwinings

Granting that a meromorphic O-parametrized family of intertwining operators is local strongly meromorphic
allows meaning to be attached to the poles. In particular, the residues (or more general leading terms), in a
sense described below, are anomalous intertwining operators. Thus, the representation theory of the situation
gives a priori restrictions on the possible locations of poles of (parametrized) intertwining operators.

Thus, viewing a local integral as a certain kind of (parametrized) intertwining operator, we can give a priori
restrictions on poles of the integral.

Now we add the hypothesis that O is integrally closed, in addition to being Noetherian (and commutative),
and let x be a height one prime in O. Then the local ring Ox is an integrally closed Noetherian integral

34



Paul Garrett: Euler factorization of global integrals (February 19, 2005)

domain in which every non-zero prime (here only xOx in fact) is maximal. Thus, Ox is a Dedekind domain
with one non-zero prime, so is a valuation ring. Thus, there exists a local parameter $ = $x, a generator
for the unique maximal ideal in Ox.

Suppose that a meromorphic family Φ : σ → τ of intertwinings between O-parametrized families of
representations σ and τ is (locally) strongly meromorphic. Let $ = $x be a local parameter for a
height-one prime x. Then for some power $N of the local parameter at x the family $NΦ of intertwinings
is holomorphic at x. The least integer N so that $NΦ is holomorphic at x is the order of the pole of Φ
at x.

Assuming that a meromorphic family Φ of intertwining operators σ → τ is locally strongly meromorphic
and has a pole of order at least 1 at a height-one prime x, we can consider a new intertwining operator, the
leading term of Φ at x. Let N be the least integer so that $NΦ is holomorphic at x. Then the pointwise
intertwining operator

qx($NΦ) : σx → τx

is the leading term of Φ at x. In the extreme case that the order of the pole is 1, this leading term is the
residue of Φ at x.

Remarks: Unless maximal primes x in O are height one, the corresponding residue fields kx are of positive
transcendence degree over the base field k. Thus, except in the special case that maximal primes are height
one, residues or other leading term intertwining operators are intertwining operators between vectorspace
representations over fields of positive transcendence degree over k.

We will look at local integrals of the sort considered in the second version of the rationality of local integrals
results in 2.2 above. Fix a field extension k̃ of k, and suppose that O ⊗k k̃ is still an integral domain, with
M⊗k k̃ the field of fractions of O ⊗k k̃. Assume that k̃ and finite extensions k̃x of it are complete. (As
earlier, taking k̃ to be R or C or finite extensions of Qp suffices).

As before, let H̃ be a locally compact totally disconnected topological group of which H and G are closed
subgroups. Let Y be a closed subset of H̃ stable under left multiplication by H and right multiplication by
G. Let Z be a locally compact totally disconnected space on which H acts trivially and upon which G acts
continuously on the right. Take

Ω = Y × Z

Let σ be an O-parametrized family of finite-dimensional smooth representations of H.

Again, let C∞c (H\Ω, σ) be the collection of σ-valued locally constant functions f on Ω the image of whose
support is compact in the quotient space H\Ω, and which have the left equivariance

f(hx) = σ(h) f(x)

for all h ∈ H and x ∈ Ω.

The open orbit hypothesis we impose is the assumption that there is some ξ ∈ Ω so that

H ξG ⊂ Ω

is an open subset of Ω.

And we require that there is a right G-invariant Q-valued measure dω on Ω, supported (for simplicity) on
the open orbit HξG. For x a maximal ideal in the prime spectrum of O⊗k k̃ consider the (k̃x-valued) local
integral

If (x) =
∫

H\Ω
f(ω) dω

where f is in C∞c (H\Ω, σ), and qx denotes pointwise evaluation as above.

As earlier, we assume that for maximal ideals x in some non-meager subset of X ⊗k k̃ the integral converges
absolutely for all f ∈ C∞c (H\Ω, σx), and that we have the generic multiplicity one condition

dimk̃x
HomG×k̃x

(C∞c (H\Ω, σx), k̃x) ≤ 1
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We have shown that
f →

∫
H\Ω

f(ω) dω

extends to an O ⊗k k̃-parametrized meromorphic family of intertwining operators

Φ : C∞c (H\Ω, σ)⊗k k̃ →M⊗k k̃

rational over k.
Theorem (on Anomalous Intertwinings): Now we assume that the ring O is integrally closed, Noetherian,
commutative. Let Φ be the extension just described of the local integral∫

H\Ω
f(ω) dω

Let x be a height-one prime at which the meromorphic O-parametrized family of intertwining operators Φ
given in HomG×O(C∞c (H\Ω, σ),O) has a pole of order N > 0. Let

ρx = qx($NΦ)

be the leading term of Φ at x, where $ is a local parameter at x. Then ρx is a non-zero intertwining operator

ρx ∈ HomG×kx(C∞c (H\Ω, σ)⊗O kx, kx)

and
ρx(C∞c (H\HξG, σ)⊗O kx) = {0}

In particular, there is no pole at a hypersurface x unless

dimkx HomG×kx(C∞c (H\(Ω−HξG), σ), kx) > 0

Remarks: By definition, a kx-linear intertwining operator from the space of test functions

C∞c (H\(Ω−HξG), σx)

on the complement of the open orbit HξG to kx is an anomalous intertwining operator. When composed
with the surjective (see 3.2) map

C∞c (H\Ω, σx) → C∞c (H\(Ω−HξG), σx)

we obtain (equivalently) intertwining operators which are zero on the subspace Co
c(H\HξG, σx).

Remarks: From a slightly different viewpoint: while the associated Mackey-Bruhat distribution of the
intertwining operators at holomorphic points of Φ have support with non-trivial interior, the leading-term
intertwining operators such as ρx have support contained in much smaller sets (e.g., with empty interior).

Proof of Theorem: The fact that the leading term ρx is an intertwining operator is straightforward. And the
idea of the rest of the proof is clear: the family Φ when restricted to the smaller space of test functions does
not have a pole at x, so when Φ is multiplied by the local parameter $ it vanishes at x.

Functions fo in the subspace Co
c(H\HξG, σ) of Co

c(H\Ω, σ) have compact support left-modulo H, so the
integral (defining Φ pointwise)

I(fo) =
∫

H\Ω
fo(ω) dω

has a compactly-supported (locally constant) integrand. Thus, for such fo, we can integrate over O itself,
since such integrals are really just algebraic objects.
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In particular, for any N > 0, for such fo,

$N

∫
H\Ω

fo(ω) dω ∈ $Ox

Thus, the evaluation map qx at q sends this to 0, as claimed. Done.
Corollary: Suppose that we are in the situation of 2.4, with the vth Euler factor of our global integral
expressed as a value of a parametrized family of intertwining operators. Let 0 denote the zero ideal in the
parameter space, and ko the associated residue field. Suppose that

dimko HomGv (ResG̃v

Gv
c-IndG̃v

P̃v
χ̃′ ⊗ c-IndGv

Pv
χ′, ko) = 1

Then (up to units in the parametrizing ring Õ ⊗ O) the denominator of the vth Euler factor is a product of
factors of the form

1− c zm1
1 . . . zmn

n zm

for integers m,m1, . . . ,mn, and c a non-zero element of the basefield k.

Remark: The fact that c lies in the basefield means that it is “independent” of the parameters z, z1, . . . , zn.
And we imagine that z = q−s and zi = q−si , so this is to assert that the denominator has factors only of the
form

1− c q−m1s1 . . . q−mnsnq−ms

with c independent of the s, s1, . . . , sn.

Proof: Let Ψ denote the meromorphic family of intertwining operators given by the integral∫
Z̃vHβ\Gv

εv(ξg) f(β θ g) dg

of 2.4. Any denominator gives rise to a pole (at least over an algebraic closure of the base field), which can
only occur at a hypersurface along which there is an anomalous intertwining operator. As before, using the
P̃v × Pv-orbit filtration on the test functions

ResG̃v

Pv

(
c-IndG̃v

P̃v
qxχ̃

′
)

we obtain graded pieces
c-IndGv

Hα
qxχ̃

′α

where α ∈ P̃v\G̃v/Gv,
Hα = α−1P̃vα ∩ Pv

and
qxχ̃

′α(p) = qxχ̃
′(αpα−1)

for p ∈ Hα ⊂ Pv. The intertwining operator Ψ is an extension from an intertwining operator on one of these
graded pieces.

The anomalous intertwining operators can only occur at points x at which a second graded piece in the orbit
filtration has a non-zero intertwining operator to kx. The condition for this to occur is of the general form

(χ̃′ ⊗ χ′)α|Hα
= δHα

as computed in both 1.4 and 2.4. As noted in 2.4, in terms of the coordinates z, z1, . . . , zn, this condition is
of the indicated form. Done.

Remarks: Further, the isomorphisms among irreducible unramified principal series whose characters differ
by an element of the Weyl group implies a corresponding symmetry in the poles of the intertwining operator,
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thus implying corresponding symmetry of the denominator. Further, the degenerate principal series (locally
generated by the Eisenstein series on G̃) also have natural intertwining operators which give additional
symmetry in the “variable” s. Thus, these intertwining operators cause symmetries which tend to assure
that the denominators of such local integrals look “automorphic”.

2.7Illustrative examples

Here we apply the previous machinery to some simple examples, where one already knows that there is an
Euler product, and also knows what the local integrals should be. First we look at the local zeta integrals of
Tate’s thesis [Tate 1950] and [Godement-Jacquet 1972]. Although such integrals certainly can be understood
in a direct computational manner, it is interesting that we can reach conclusions without computation.
Tate’s thesis revisited:

Let q be the cardinality of the residue field of a non-archimedean local field k. Let S = C∞c (k) be the space
of C-valued test functions on k. Following Tate’s thesis, we consider the local zeta integrals

ζ(φ, s) =
∫

k×
φ(x)χ(x)|x|s d×x

where d×x refers to a multiplicative Haar measure, φ ∈ S, χ is a fixed character on k×, and | | is a
normalization of the norm so that |$| = q−1 for a local parameter $. Write

χs(x) = χ(x)|x|s

We observe that this zeta integral is an intertwining operator in

Homk×(S ⊗ χs,C)

The family of representation spaces χs is parametrized in the following manner: Let

O = C[z, z−1]

Let V be a one-dimensional complex vectorspace, and for g ∈ k× define

π(g)(v) = χ(g)zordg · v

where the ord function is as usual defined by

go = $ordgo

where o is the valuation ring in k. Then the pointwise representations are recovered by mapping

z → q−s

From the orbit filtration on test functions, we have an exact sequence

0 → C∞c (k×) → C∞c (k) → C∞c ({0}) → 0

And
Homk×(C∞c (k×)⊗ χs,C) ≈ Homk×(C∞c (k×), χ−s) =

Homk×(c-Indk×

{1}C, χ
−1
s ) ≈ Homk×(χs, Indk×

{1}C)
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By Frobenius Reciprocity this is
Hom{1}(χs|{1},C) ≈ C

Thus, this space is one-dimensional. The Tate local zeta integral is convergent for all s ∈ C for φ ∈ C∞c (k×),
so gives such a k×-homomorphism.

The smaller orbit {0} gives
C∞c ({0}) ≈ trivial k×-representation

so unless χs = 1 this smaller orbit cannot ‘support’ any intertwining operator, and so when χs = 1 we have
an anomalous intertwining operator.

For Re (s) sufficiently large the integral defining the zeta integral on the whole space C∞c (k) is absolutely
convergent, yielding non-zero intertwining operators on the non-meager set of complex s with large real part.
Thus, so far, we conclude that off at most countably many points the dimension of the space of intertwining
operators is at most one-dimensional. That is, we have the generic multiplicity-one condition.

And taking φo ∈ C∞c (k) to be a suitable scalar multiple of the characteristic function of a sufficiently small
compact open subgroup, we have ∫

k×
φo(x)χs(x) d×x = 1

for all s. This fulfills the good test vector condition. Note that matters are simplified here in that the
representation S = C∞c (k) is ‘constant’ (i.e., did not depend upon the parameters).

Thus, without any further work, we have the qualitative conclusion, from the results on rationality of local
integrals (section 2.2), that for any φ ∈ S the local zeta integral is a rational function of z = q−s.

Quantitatively: Let H be the Hecke algebra of the totally disconnected group k×. Let Θ be a sufficiently
small compact open subgroup of k× so that χs is identically 1 on Θ, and let e ∈ H be the corresponding
idempotent

e = characteristic function of Θ/ measure Θ

Then eHe is a commutative Noetherian ring. We suppose that χ is unramified, so that Θ is the whole unit
group o×, and then

eHe ≈ C[x, x−1]

In that case, we may as well take χ = 1, so that the character is completely specified by the parameter s.
With these observations, by the orbit criterion for strong meromorphy (section 2.5), as intertwining operator
on parametrized families of representations the local zeta integral is strongly meromorphic.

Therefore, the only possible pole of the local zeta integral can be at the point where there is an anomalous
intertwining operator, that is, at parameter values where there is an intertwining operator which is 0 on the
subrepresentation C∞c (k×) of C∞c (k). Thus, with z = q−s, the only possible pole is at z = 1.

In other words, the only possible linear factor of the denominator of the local zeta integral is

1− z = 1− q−s

(Of course, here z, z−1 are units).

And we can easily verify that the collection of all possible values of the local zeta integral is a fractional ideal
of O = C[z, z−1] containing 1.

Thus, in summary, without computing anything directly we can see that in the unramified case there is some
test function so that the local zeta integral applied to it yields

1
(1− q−s)m

for a non-negative integer m. To prove that the ‘pole’ actually occurs, and with order 1, would require a
little further investigation.
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In the case of ramified character we directly conclude that there is no ‘denominator’, and that the greatest
common divisor of all ‘numerators’ is just 1. Further, if we choose any test function, we are assured that the
result will be a polynomial in q−s, in any case.

Godement-Jacquet revisited:

Now we recall some of the local results of [Godement-Jacquet 1972] in the case of GL(2), and then recover
several of the (non-archimedean) local results at good primes in a substantially non-computational manner.
We restrict our attention to GL(2) for simplicity, although the case of GL(n) (and other simple algebras) is
entirely analogous. (The general Godement-Jacquet result subsumes Tate’s thesis as a special case.)

Let k be a non-archimedean local field of characteristic zero, and let G = GL(2, k). Given an irreducible
smooth representation π of G, given v ∈ π and λ in the smooth dual π̌ of π, given a test function φ on the
space of 2× 2 matrices over k, and given s ∈ C with Re (s) sufficiently positive, define a local integral

Z(v, λ, φ, s) =
∫

G

|det(g)|s cv,λ(g)φ(g) dg

Here cv,λ is the (‘matrix’-) coefficient-function

cv,λ(g) = 〈π(g)v, λ〉

and 〈, 〉 is the canonical bilinear map
〈, 〉 : π × π̌ → C

This integral converges for real part of s sufficiently positive.

We assume for simplicity that the central character of π is unramified, since otherwise this particular form of
zeta integral vanishes identically. The more general version with arbitrary central character is treated quite
analogously.

For any list of data π, v, λ, φ, s, it is true that the local integral is a rational expression in qs with complex
coefficients (the latter depending upon π, v, λ, φ), where q is the cardinality of the residue field. This is not
obvious.

Fixing π, the collection of all local integrals with v ∈ π and λ ∈ π̌ is a fractional ideal of C[qs, q−s] in its
fraction field C(qs). This is not obvious. Further, this fractional ideal contains 1, so contains C[qs, q−s].

Then the L-factor attached to π is defined to be the greatest common divisor in C[qs, q−s] of all the local
integrals attached to π. Since C[qs, q−s] is a principal ideal domain, this fractional ideal does have a single
generator. Further, since this fractional ideal contains 1, the ambiguity (by units) of choice of generator is
eliminated by taking the unique greatest common divisor of the form

1
(monic polynomial in q−s)

Now we reconsider these results within the present framework. Let G × G act on the space C∞c (E) of test
functions on the space E of 2× 2 matrices over k, by

(g1, g2)f(x) = Lg1Rg2f(x) = f(g−1
1 xg2)

Then
Z(π(g2)v, π̌(g1)λ, Lg1Rg2φ, s) = |det g1|s |det g2|−s Z(v, λ, φ, s)

That is, the map
v ⊗ λ⊗ φ→ Z(v, λ, φ, s)

is a G×G-homomorphism
(π ⊗ π̌)⊗ C∞c (E) → |det ∗ |s |det ∗ |−s
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Or, writing
πs = π ⊗ |det ∗ |s

we can rearrange this all to view the map as

(π−s ⊗ π̌s)⊗ C∞c (E) → C

Or, we can rearrange this to
C∞c (E) → π̌s ⊗ πs

where the admissibility of π entails that π is reflexive, that is, that the natural inclusion π → ˇ̌π is an
isomorphism.

We filter C∞c (E) by G×G-orbits: there are 3 orbits Er of G×G on E, indexed by rank r of the matrices.
Then C∞c (E2) naturally imbeds in C∞c (E). Let ∆ be the diagonal copy of G in G×G. This is the isotropy
group of the point 1 ∈ E. Then

C∞c (E2)
G×G

≈
c-IndG×G

∆ C

Thus, we compute

HomG×G(C∞c (E2), π̌s ⊗ πs) ≈ HomG×G(π−s ⊗ π̌s, IndG×G
∆ C) ≈

≈ HomG(π−s ⊗ π̌s,C) (by Frobenius Reciprocity)

≈ HomG(π−s, ˇ̌πs) ≈ HomG(π−s, π−s)

which is one-dimensional for all irreducibles π−s, by Schur’s Lemma for smooth representations of countable
dimension (for separable groups).

We will see that, for given π, for all but finitely-many s ∈ C each intertwining operator just above has at
most one extension to C∞c (E). This will provide the requisite generic multiplicity-one hypothesis toward
application of our results.

Let

P = {
(
∗ ∗
0 ∗

)
}

N = {
(

1 ∗
0 1

)
}

and let χ be a one-dimensional smooth representation of P factoring through P/N . Let δ be the modular
function of P . Let

Iχ = IndG
P χδ

1/2

denote that associated principal series representation of G. Its smooth dual π̌ is

Ǐχ ≈ IndG
P χ

−1δ1/2 = Iχ−1

Again, all spherical representations occur as quotients and subrepresentations of unramified principal series.
Indeed, ‘generically’ Iχ is irreducible, so Iχ is spherical (e.g., see [Casselman 1980]). However, as usual,
the objects which best lend themselves to examination here are not the spherical representations but the
unramified principal series.

Take π = Iχ. Let
ωs(g) = |det(g)|s

and (as before) write
πs = π ⊗ ωs
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We wish to show that for fixed χ and for all but finitely-many s

HomG×G(C∞c (E1 ∪ E0), π̌s ⊗ π−s) = 0

This would imply that each intertwining operator in

HomG×G(C∞c (E2), π̌s ⊗ π−s)

has at most one extension to an element of

HomG×G(C∞c (E), π̌s ⊗ π−s)

Since we showed that for any π and for any s

dimC HomG×G(C∞c (E2), π̌s ⊗ π−s) = 1

we will obtain the desired generic multiplicity-one result.

For p ∈ P write
χs(p) = χ(p)ωs(p)

By Frobenius Reciprocity,
HomG×G(C∞c (E1 ∪ E0), π̌s ⊗ π−s) ≈

HomP×P (C∞c (E1 ∪ E0), χ−1
s δ1/2 ⊗ χ−s)

Now we filter the 2× 2-matrices of less than full rank by P × P -orbits. Fix G×G-representatives

ε1 =
(

0 1
0 0

)

ε0 =
(

0 0
0 0

)
Clearly Pε0P = {ε0} is one P × P -orbit. Let

Q = {
(
a b
0 d

)
×
(
a′ b′

0 a

)
}

denote the isotropy group Q in (P × P )\(G×G) of (P × P ) · ε1. This group Q is just slightly smaller than
the full product P × P . To first break the G×G-orbit E1 into P × P -orbits amounts to computing

(P × P )\(G×G)/Q

Via a Bruhat decomposition, we find four irredundant representatives

1× 1, 1× w, w × 1, w × w

Indeed, Q ⊃ N ×N , and already

(P × P )\(G×G)/N ×N ≈ {1× 1, 1× w,w × 1, w × w}

On the other hand, Q ⊂ P × P , and we have the same representatives for

(P × P )\(G×G)/(P × P )
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Projected to Q, the isotropy groups of these representatives are, respectively,

Q = {
(
a b
0 d

)
×
(
a′ b′

0 a

)
} (for 1× 1)

Q1 = {
(
a b
0 d

)
×
(
a′ 0
0 a

)
} (for 1× w)

Q2 = {
(
a 0
0 d

)
×
(
a′ b′

0 a

)
} (for w × 1)

Q∗ = {
(
a 0
0 d

)
×
(
a′ 0
0 a

)
} (for w × w)

Let Θ be any one of these isotropy groups. The graded pieces associated to this filtering are

HomP×P (c-IndP×P
Θ C, χ−1

s δ1/2 ⊗ χ−sδ
1/2)

By dualizing and by Frobenius Reciprocity, we have

HomP×P (c-IndP×P
Θ C, χ−1

s δ1/2 ⊗ χ−sδ
1/2) ≈

HomP×P (χ−sδ
−1/2 ⊗ χ−1

s δ−11/2, IndP×P
Θ δΘδ

−1
P×P ) ≈

HomΘ(χ−sδ
−1/2 ⊗ χ−1

s δ−1/2, δΘδ
−1
P×P )

This is {0} unless (
χ−sδ

−1/2 ⊗ χ−1
s δ−1/2

)
|Θ =

(
δΘδ

−1
P×P

)
|Θ

in which case it is one-dimensional. The latter condition simplifies a little, to(
χ−sδ

1/2 ⊗ χ−1
s δ1/2

)
|Θ = δΘ

We will examine this condition for each of the four orbits inside the less-than-full-rank matrices.

Write

χ(
(
a ∗
0 d

)
) = χ1(a)χ2(d)

Then the respective conditions for the four orbits are as follows. For the first, we have

χ1(a)χ2(d)|ad|−s|a/d|1/2χ−1
1 (a′)χ−1

2 (a)|a′a|s|a′/a|1/2 = |a/d||a′/a|

This is equivalent to the system of equations

χ1 = χ2 (from the a-component)
χ2 = | ∗ |s−1/2 (from the d-component)
χ1 = | ∗ |s−1/2 (from the a′-component)

Unless χ1 = χ2 this system of equations is not satisfied for any value of s. And, even when χ1 = χ2, there
is only one s which satisfies it. So generically s does not satisfy this system.

For the orbit with isotropy group Q1:

χ1(a)χ2(d)|ad|−s|ad|1/2χ−1
1 (a)χ−1

2 (d′)|ad′−1|s|a/d′|1/2 = |a/d|

which is equivalent to
χ2 = | ∗ |s−1/2 from d and/or from d′
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since the ‘scalar equation’ arising from a is 0 = 0, and since the scalar equation from d is identical to that
from d′. Unless χ2 is of the form | ∗ |s′ , i.e., is unramified, this system of equations cannot be satisfied by
any s. Even when the conditions is met, there is only one s which satisfies the system. So generically s does
not satisfy this system.

Similar (symmetrical) remarks apply to the orbit with isotropy group Q2: the conditions simplify to

χ1 = | ∗ |s−1/2

Unless χ1 is of the form | ∗ |s′ , i.e., is unramified, this system of equations cannot be satisfied by any s. Even
when the conditions is met, there is only one s which satisfies the system. So generically s does not satisfy
this system.

For the orbit with isotropy group Q∗:

χ1(a)χ2(d)|ad|−s|a/d|1/2χ−1
1 (d)χ−1

2 (d′)|dd′|s|d/d′|1/2 = 1

which is equivalent to
χ1 = | ∗ |s−1/2 from a
χ1 = χ2 from d
χ2 = | ∗ |s−1/2 from d′

Unless χ1 = χ2 this system has no solutions s. Even when this condition is satisfied, there is only one s
which satisfies it. So generically s does not satisfy this system.

(The rank-zero orbit is even simpler to treat than these four orbits, since there the representation of G×G
which arises is just C⊗C.)

We conclude that for χ1 6= χ2 generically there is at most a one-dimensional space of intertwining operators

HomG×G(C∞c (E)⊗
(
(Iχ)−s ⊗ (Iχ−1)s

)
,C)

(And all such intertwining operators are uniquely determined by their restrictions to the space C∞c (E2) of
test functions supported on the open orbit E2.)

The family of representations
C∞c (E)⊗

(
(Iχ)−s ⊗ (Iχ−1)s

)
considered above is a parametrized family of representations, over the ring

O = C[z, z−1]

where the pointwise representations are recovered by z → q−s. Taking the test function φo to be a suitable
scalar multiple of the characteristic function of a sufficiently small neighborhood of 1 ∈ E, the local zeta
integral is just

Z(v, λ, φo, s) = 1

Thus, we have the generic multiplicity-one and good-test-vector properties required to conclude that all zeta
integrals are rational functions of q−s.

Now we will estimate the possible denominators of these local zeta integrals (at good primes) in terms of
anomalous intertwining operators. To this end we will re-use the computations just above. Specifically, we
saw that for χ1 6= χ2 the only possible anomalous intertwining operators occur for

χ1 = | ∗ |s−1/2 or χ2 = | ∗ |s−1/2

Indeed, at any other points the intertwining operators from C∞c (E2) have unique extensions to C∞c (E). Let

χ1 = | ∗ |α χ2 = | ∗ |β

Then the general result on denominators and anomalous intertwining operators asserts that the only possible
linear factors of the denominator in the unramified principal series case are

(1− qα+1/2q−s) (1− qβ+1/2q−s)

This matches the direct computation in [Godement-Jacquet 1972] of these local integrals.

Note that the Weyl group symmetry in this case would simply interchange α and β. Indeed, the expression
we obtain is symmetrical in this regard.
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3. Completions of Proofs

3.1Proof of the Rationality Lemma

Proof of Theorem: This argument requires some preparation. Several parts of this discussion have their
origins in the work of J. Bernstein mentioned without proof in [Gelbart, Piatetski-Shapiro, Rallis 1987].
This is related to, but also a bit different from, the more algebraic results from [Bernstein-Zelevinsky 1976],
[Bernstein-Zelevinsky 1977], and [Bernstein 1984]

Let k be a field of characteristic zero, and V a k-vectorspace. A linear system (over k, with coefficients in
V ) is a set Ξ of ordered pairs (vi, ci) where vi ∈ V and ci ∈ k and i ∈ I for some index set I. A solution to
the linear system is λ ∈ V ∗ so that, for all indices i,

λ(vi) = ci

where V ∗ = Homk(V, k) is the k-linear dual space of V . Obviously the set of all solutions is an affine subspace
of V ∗, so has a sense of dimension. A system Ξ is homogeneous if all the constants ci are 0. In that
case, the collection of solutions is a vector subspace of V ∗. Two systems are equivalent if they have the
same set of solutions. It is immediate that any system is equivalent to a system with at most one constant
ci non-zero.

Let k̃ be an extension field of k. Let W be a k-vectorspace. There is a natural inclusion W →W ⊗k k̃. For
any k-subspace W ′ of W there is naturally associated the k̃-subspace W ′ ⊗k k̃ of W ⊗k k̃. Any k̃-subspace
of W ⊗k k̃ occurring as W ′ ⊗k k̃ for a k-subspace W ′ of W is a k-rational subspace of W ⊗k k̃.

Let Ξ = {(vi, ci)} be a linear system over k with coefficients in a kvectorspace V . For an extension field k̃
of k we can extend scalars by looking for solutions λ not only in Homk(V, k) but also in the larger space

Homk(V, k̃) ≈ Homk̃(V ⊗k k̃, k̃)

A solution λ ∈ Homk̃(V ⊗k k̃, k̃) is k-rational if it is in the image of the natural inclusion

Homk(V, k) ⊂ Homk(V, k̃) ≈ Homk̃(V ⊗k k̃, k̃)

We may write Ξ⊗k k̃ for the linear system obtained by extending scalars.

Proposition: (Existence, Uniqueness, and Rationality) Let Ξ = {(vi, ci) : i ∈ I} be a k-linear system with
coefficients vi in a k-vectorspace V . Suppose that there is at most one index io ∈ I so that cio

6= 0.
• If vio

does not lie in the k-span of {vi : i 6= io} then there is at least one solution to the linear system.
• If the coefficient vectors {vi : i ∈ I} span V , then there is at most one solution.
• If Ξ is homogeneous then and if the solution space N in Homk(V, k) is finite-dimensional then, for any
extension field k̃ of k, the solution space of Ξ ⊗k k̃ is the k-rational subspace N ⊗k k̃ of Homk(V, k̃) ≈
Homk(V, k)⊗k k̃.
• If for some field extension k̃ of k Ξ ⊗k k̃ has a unique solution λ, then that solution is in fact k-rational,
and the original system Ξ therefore has a unique solution.

Proof: If vio does not lie in the span of the other coefficient vectors, then (via the Axiom of Choice) there is
a linear functional λ in the dual space V ∗ so that λ(vi) = 0 for i 6= io, but λ(vo) = 1. Then cioλ is a solution
of the system Ξ.

Next, for two solutions λ, λ′ of Ξ the difference µ = λ − λ′ is a solution of the homogeneous system
Ξo = {(vi, 0)}. If the vi span V , then the condition

µ(vi) = 0 for all i ∈ I
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implies that µ = 0. This is the uniqueness.

Now suppose that Ξ is homogeneous with finite-dimensional solution space N , and let k̃ be an extension
field of k. Given a solution Λ of Ξ⊗k k̃, we must find finitely-many solutions λj of Ξ and scalars aj ∈ k̃ so
that

Λ =
∑

k

aj λj

Whatever the k̃-span of the coefficient vectors vi ⊗ 1 in V ⊗k k̃ may be, it is W ⊗k k̃ where W is the k-span
of the vi in k. Let e1, . . . , en be a k-basis for a necessarily finite-dimensional complementary subspace to
W inside V . Then the ej ⊗ 1 form a k̃-basis for a k̃-subspace complementary to W ⊗k k̃ in V ⊗k k̃. Let
λ1, . . . , λn be in the solution space N so that λi(ej) is 1 or 0 depending on whether i = j or not. Then it is
easy to check that

λ̃ =
∑

j

λ(ej)λj

Finally, let λ̃ be the unique solution to Ξ⊗k k̃. By the first part of this lemma, the uniqueness of the solution
implies that the vi ⊗ 1 span V ⊗k k̃ over k̃, but that vio

⊗ 1 does not lie in the k̃-span of the other vectors.
This immediately implies that the vectors vi span V over k, and that vio is not in the k-span of the other
vectors. Thus, again by the first part of this lemma, there is a unique solution λ in Homk(V, k). The natural
inclusion and isomorphism

Homk(V, k) ⊂ Homk(V, k̃) ≈ Homk̃(V ⊗k k̃, k̃)

necessarily send λ to λ̃, so λ̃ is k-rational, as asserted. Done.For an extension field k̃ of k so that O ⊗k k̃ is
still an integral domain, with M⊗k k̃ the field of fractions of O ⊗k k̃, as a notational device let

X ⊗k k̃ = prime ideal spectrum of O ⊗k k̃

Let V be an O-module. A parametrized linear system over O (or over X) with coefficients in V ⊗OM
is a collection Ξ of ordered pairs (µi, fi) with µi ∈M ⊗OM, fi ∈M.

A generic solution to such a parametrized system is

λ ∈ (V ⊗OM)∗ = HomM(V ⊗OM,M)

so that for all indices i
λ(µi) = fi

That is, a generic solution is simply a solution (in the previous sense) to the M-linear system on the M-
vectorspace V ⊗OM.

Note that we do not require the coefficient vectors µi to be in the module V , but only in V ⊗O M, and
likewise the fi need not be in O, but only in M. Of course, the same collection of generic solutions would be
obtained if each (µi, fi) were replaced by (giµi, gifi) for non-zero gi ∈ O. Thus, one could assume without
loss of generality that all the µi are in V and the fi are in O, but it is not necessary to do so.

For x ∈ X, f ∈ M is holomorphic at x if f ∈ Ox. An element µ of V ⊗O M is holomorphic at x if
µ ∈M ⊗OOx. A parametrized system Ξ = {(µi, fi)} is holomorphic at x if for all indices i both fi and µi

are holomorphic at x. (From the definitions, every parametrized system is holomorphic at the generic point
0 ∈ X).

For any x ∈ X at which the parametrized system Ξ is holomorphic, we have the associated pointwise
system Ξx, obtained by replacing all the elements µi ∈M ⊗O Ox by their images in V ⊗O kx, and likewise
by replacing the fi ∈ Ox by their images in kx. Thus, Ξx is a kx-linear system with coefficients in V ⊗O kx.

A pointwise solution λx at x to the parametrized linear system Ξ is just a solution to the linear system
Ξx. Thus, it is

λ ∈ HomO(V, kx) ≈ Homkx
(V ⊗O kx, kx)
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so that for all indices i
λ(µi) = fi mod xOx

Let y ⊂ x be two prime ideals in X. Then Sy ⊃ Sx, Oy ⊃ Ox, and there is a natural inclusion

Ox/yOx ⊂ Oy/yOy = ky

A solution λ to the pointwise system Ξy at y is holomorphic at x if

λ(V ⊗O ky) ⊂ Ox/yOx ⊂ ky

In that case, the solution λ to Ξy gives a solution to the pointwise system Ξx by taking the image of λ under
the natural map

Homky
(V ⊗O ky,Ox/yOx) ≈ HomO(V,Ox/yOx) → HomO(V, kx)

≈ Homkx(V ⊗O kx, kx)

where the last map arises from the quotient map

Ox/yOx → Ox/xOx = kx

Lemma: Suppose that O is Noetherian. Given f 6= 0 in M, there is a finite collection η1, . . . , ηn of
irreducible hyperplanes so that 1/f ∈ Ox for x not in the union η1 ∪ . . .∪ ηn. In particular, the hyperplanes
are those attached to the isolated primes in a primary decomposition of the ideal fO.

Proof: For a prime ideal x ∈ X, if f 6∈ x then 1/f ∈ Ox. Thus, we must show that if f ∈ x then there is a
height-one prime y so that f ∈ y ⊂ x.

Let J =
⋂

i Qi be a primary decomposition of an ideal J ⊂ x, where Qi is primary with associated prime
xi. Taking radicals,

x = radx ⊃
⋂
i

radQi =
⋂
i

xi

so, for some index i, x ⊃ xi. Thus, x must contain some one of the minimal (i.e., isolated) primes among
the primes associated to J .

Krull’s Principal Ideal Theorem asserts that every prime minimal among those occurring in a primary
decomposition of fOx is height-one. This gives the result. Done.
Lemma: Let Y be a non-meager subset of X, the prime spectrum of O, where O is a Noetherian integral
domain. Then ⋂

x∈Y

xOx = {0}

Proof: Let r 6= 0 be in the indicated intersection. By the previous lemma, there would be finitely-many
hypersurfaces η1, . . . , ηn so that for x ∈ X off the union of these hypersurfaces we would have both r ∈ Ox

and 1/r ∈ Ox. Removing from Y the intersections of Y with these hypersurfaces would still leave a non-
meager set Yr. In particular, Yr would be non-empty, and, by construction, for all x ∈ Yr both r and 1/r
would lie in Ox. But this would contradict the hypothesis r ∈ xOx. Thus, it must be that the indicated
intersection is {0}, as claimed. Done.
Lemma: Let Ξ = {(µi, fi) : i ∈ I} be a O-parametrized system with coefficients in V ⊗OM. Then

• There is a union
⋃

i∈I ηi of irreducible hyperplanes ηi off which the system Ξ is holomorphic.
• Let {mj : j ∈ J} be a generating set for V over O. For a generic solution λ of Ξ, there is a union

⋃
j∈J ηi

of irreducible hyperplanes ηi off which λ is holomorphic.

Proof: Let {gi : i ∈ I} be a collection of non-zero elements of O so that, for for all i, giµi ∈M and gifi ∈ O.
Then Ξ is holomorphic off the union of the hyperplanes attached to the isolated primes occurring in the
primary decompositions of the ideals giO.
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Similarly, let {gj : i ∈ J} be a collection of non-zero elements of O so that, for for all j ∈ J , giλ(mj) ∈ O.
Then λ is holomorphic off the union of the hyperplanes attached to the isolated primes occurring in the
primary decompositions of the ideals gjO. Done.
Theorem: Let k be a field, and O a commutative Noetheria k-algebra. Let k̃ be an extension field of k so
that O⊗k k̃ is still an integral domain, with M⊗k k̃ the field of fractions of O⊗k k̃. Let Ξ = {(µi, fi) : i ∈ I}
be an O-parametrized linear system with coefficients in V ⊗OM where V is a countably-generated O-module,
where also the index set I is countable. Let Ξ ⊗k k̃ be the system obtained by extending scalars from k to
k̃, and let X ⊗k k̃ be the prime spectrum of O ⊗k k̃.

• If there is a unique generic solution λ to Ξ ⊗k k̃, then for x ∈ X ⊗k k̃ off a meager set there is a unique
solution λx to the pointwise linear system (Ξ⊗k k̃)x at x, and this pointwise solution is obtained from λ via
the natural map

HomO⊗kk̃(V ⊗k k̃, (O ⊗k k̃)x) → HomO⊗kk̃(V ⊗k k̃, k̃x)

≈ Homk̃x
(V ⊗(O⊗kk̃) k̃x, k̃x)

• Suppose that Y is a non-meager subset of X⊗k k̃ so that for x ∈ Y the system Ξ⊗k k̃ is holomorphic at x,
and so that for x ∈ Y the pointwise system (Ξ⊗k k̃)x at x has a unique solution λx. Then there is a unique
generic solution to Ξ⊗k k̃, and this solution is rational over k.

Proof: First, we reduce to the case that at most one of the fi is not 0 ∈ M. If all fi are already 0, we are
done. So suppose that some fio

is non-zero. For another index i, replace the condition

λ(vi) = fi

by the condition

λ(vi −
fi

fio

vio) = 0

The collection of generic solutions is unchanged by such an adjustment, and off a meager subset of X this
change gives pointwise systems equivalent to the original pointwise system Ξx. Thus, overlooking a meager
subset of X, we can assume without loss of generality that for at most one index io is fio

not 0.

Also, we ignore the countably-many hypersurfaces on which the system Ξ fails to be holomorphic.

If there is a unique generic solution λ, then by the proposition the vectors µi span V ⊗O M, and if fio
is

not 0 then µio does not lie in the M-span of the other vectors.

Let v1, v2, . . . be a countable collection of generators for the O-module V . The images of these vj span all
the vectorspaces V ⊗O kx for x ∈ X. Then v1⊗1, v2⊗1, . . . is an M-basis for V ⊗OM. Express each mj ⊗1
as an M-linear combination of the µi as

vj ⊗ 1 =
∑

i

gji µi

with gji ∈ M. Off the meager set of points x ∈ X where some one of the gji fails to be holomorphic,
tensoring with kx = Ox/xOx expresses the image of vj as a kx-linear combination of the images of µi in
V ⊗O kx. (We have already excluded the meager set on which any one of the µi fails to be holomorphic).
That is, we conclude that off a meager set the pointwise system Ξx has at most one solution.

Then, given a generic solution λ, off the meager set where λ fails to be holomorphic, the image of λ under
the natural map

HomM(V ⊗OM,Ox) ≈ HomO(V,Ox)

→ HomO(V, kx) ≈ Homkx
(V ⊗O kx, kx)

is a solution of the pointwise system Ξx. Thus, uniqueness of the generic solution implies uniqueness of
solution to pointwise systems Ξx for x off a meager set.
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On the other hand, suppose that for x in a non-meager subset Y (on which Ξ is holomorphic) the pointwise
system Ξx has a unique solution. To prove that a generic solution exists, we must show that µio

does not
lie in the M-span of the other µi. Indeed, if

µio
=
∑
i 6=io

giµi

with gi ∈ M, then, off the meager set where some one of the gi or µi fails to be holomorphic, the image of
µio in V ⊗ Okx would be a kx-linear combination of the images of the other elements µi with i 6= io. The
proposition above assures that this cannot happen. Thus, there is at least one generic solution.

Suppose that there were two distinct generic solutions, and call their difference δ. The pointwise uniqueness
hypothesis assures that, for x in a non-meager set Y (on which we may assume δ holomorphic), the image
of δ in Homkx(V ⊗O kx, kx) is 0. Thus, for all x ∈ Y , for all of the countably-many O-generators mj for V ,

δ(mj ⊗ 1) ⊂ xOx

But we saw above that the intersection of sets xOx for x ranging over any non-meager set is {0}. Thus,
δ(mj ⊗ 1) = 0, proving uniqueness. Done.Now we can return to discussion of parametrized families of
smooth representations, in the setting of linear systems and parametrized linear systems.

Let {ti} be a countable set of O-generators for V . Let {gj} be a countable dense subset of G. The condition
that an O-linear map

λ : M ⊗OM→M

be an O-parametrized family of intertwining operators is that

λ(π(gj)ti) = λ(ti)

for all indices i, j, since the isotropy group of each ti is open (by smoothness). This is

λ(π(gj)ti − ti) = 0

The countable collection of such conditions is a homogeneous parametrized linear system Ξ with coefficients
in V ⊗OM.

First we prove the Rationality Lemma without concern for extending scalars. That is, we suppose that
k̃ = k. Then the hypothesis of the theorem is that the associated pointwise system Ξx has a solution space
for dimension less than or equal 1 for x in the non-meager subset Y of X.

Consider the single further condition
λ(µo) = 1

and let Ξ+ be the system obtained from the homogeneous system Ξ by adjoining this condition. On a
non-meager set Ξ+ has the unique solution µo. Thus, by the previous theorem, there is a unique generic
solution ϕ to Ξ+. (By earlier results, necessarily ϕx = ψ(x) on a non-meager subset). And, by the previous
theorem, the uniqueness of the generic solution to Ξ+ implies that off a meager subset of X the pointwise
solution is unique.

Finally, consider the issue of extension of scalars. The previous discussion applies as well to the representation
π ⊗k k̃ of G on V ⊗k k̃, yielding an intertwining

ϕ̃ : π ⊗k k̃ → O⊗k k̃

Further, by the theorem above, this intertwining is k-rational. Thus, in particular, rather than merely being
able to assert that ϕ(µo) ∈M⊗k k̃, we know that actually ϕ(µo) ∈M. Done.

3.2Orbit filtrations on test functions
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The material of this section has its origin in [Bruhat 1961], although some technical adjustments are necessary
for present use. See also treatment of related matters in [Bernstein-Zelevinsky 1976], [Bernstein-Zelevinsky
1976], [Bernstein 1984].

Let G be a locally compact, Hausdorff topological group. For a closed subgroup H of G, the quotient G/H
is Hausdorff because H is closed. Let Ω be a Hausdorff topological space with a continuous transitive action
of G upon it. Suppose that G has a countable basis. Let x0 be any fixed element of Ω, and let

Gx0 := {g ∈ G : gx0 = x0}

be the isotropy group of x0 in G. Recall the basic
Lemma: The natural map

G/Gx0 → Ω

by gGx0 → gx0 is a homeomorphism.

Proof: The map gGx0 → gx0 is a continuous bijection, by assumption. We need to show that it is open.
Let U be an open subset of G, and take a compact neighborhood V of 1 ∈ G so that V −1 = V and gV 2 ⊂ U
for fixed g ∈ U .

Since G has a countable basis, there is a countable list g1, g2, . . . of elements of G so that G =
⋃

i giV . Let
Wn = gnV xo. By the transitivity, Ω =

⋃
iWi. Now Wn is compact, being a continuous image of a compact

set, so is closed since it is in the Hausdorff space Ω.

Since Ω is locally compact and Hausdorff, by Urysohn’s Lemma it is regular. In particular, if no Wn contained
an open set, then there would be a sequence of non-empty open sets Un with compact closure so that

Un−1 −Wn−1 ⊃ Ūn

and
Ū1 ⊃ Ū2 ⊃ Ū3 ⊃ . . .

Then
⋂
Ūi 6= ∅, yet this intersection fails to meet any Wn, contradiction.

Therefore, some Wm = gmV x0 contains an open set S of Ω. For h ∈ V so that hx0 ∈ S,

gx0 = gh−1hx0 ∈ gh−1S ⊂ gh−1V x0 ⊂ gV −1 · V x0 ⊂ Ux0

Therefore, gx0 is an interior point of Ux0, for all g ∈ U . Done.Let Ω be any locally
compact Hausdorff space or a complete metric space. Recall that a locally compact Hausdorff space with a
countable basis is metrizable (and complete). Let G be a locally compact Hausdorff topological group, with
a countable basis, so that G has a countable dense subset. Suppose that G acts continuously on Ω. From
the Baire category theorem we can deduce several properties of the orbits of G on Ω, as follows.
Lemma: Suppose that the collection G\Ω of G-orbits on Ω is countable. Then there is at least one open
G-orbit in Ω, and every G-orbit is open in its own closure in Ω.

Proof: By the Baire category theorem, at least one orbit Gox (with xo ∈ Ω) has non-empty interior. Let U
be an open subset of Gxo, and goxo ∈ U with go ∈ G. Then for arbitrary g ∈ G

gxo = (gg−1
o )(goxo) ∈ (gg−1

o )U ⊂ Gxo

Thus, every point gxo of Gxo is an interior point, so Gxo is open.

Now fix x1 ∈ Ω. The closure Ω1 of Gx1 in Ω is still locally compact, Hausdorff, and countably-based, so is
complete metrizable. Also, it is still acted upon continuously by G. By the previous argument, there is at
least one open orbit Gx2 inside Ω1. Every point of Gx2, including interior points, is in the closure of Gx1,
so necessarily Gx2 = Gx1, as claimed. Done.Let O be a commutative ring with identity. As earlier,
for a totally disconnected space Ω let C∞c (Ω) denote the collection of compactly-supported locally constant
O-valued test functions on Ω. The following two lemmas are elementary:
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Lemma: Let Ω1, . . . ,Ωn, . . . be disjoint open sets in a totally disconnected space Ω. Then the direct sum
of restriction maps

f → ⊕ (f |Ωi
)

C∞c (
⋃
i

Ωi) =
⊕

i

C∞c (Ωi)

is an isomorphism. Done.
Lemma: For an open subset Y of a totally disconnected space Ω we have an exact sequence

0 → C∞c (Y ) → C∞c (Ω) → C∞c (Ω− Y ) → 0

where the map C∞c (Ω) → C∞c (Ω− Y ) is by restriction. Done.

Analogues of the above lemmas for somewhat more general spaces of test functions are necessary. As earlier,
the space C∞c (H\Ω, σ) is defined to be those σ-valued functions f on Ω which are compactly-supported left
modulo H and so that

f(hx) = σ(h)(f(x))

Here σ is a smooth representation of H on an O-module (the latter also denoted σ).

The obvious analogues are not true in much greater generality than when Ω is constructed as follows, as in
the theorem giving the orbit criterion for locally strong meromorphy, which will suffice for our purposes. Let
H̃ be a locally compact totally disconnected topological group of which H is a closed subgroup. Let Y be a
closed subset of H̃ stable under left multiplication by H. Let Z be a locally compact totally disconnected
space on which H acts trivially. Then take

Ω = Y × Z

Proposition: Let U be an open subset of Ω, with Ω as just above. Let σ be an O-parametrized smooth
representation of H on an O-module V . Then we have an exact sequence

0 → C∞c (H\U, σ) → C∞c (H\Ω, σ) → C∞c (H\(Ω− U), σ) → 0

where the first map is ‘extend-by-zero’, and the second is restriction of functions from Ω to Ω− U .

Proof: If extending elements of C∞c (H\U, σ) by zero off Y really were to yield elements of C∞c (H\Ω, σ),
then the injectivity would be clear. To justify extending by zero, we must show that a subset C of U which
is compact left modulo H in U is also compact left modulo H in Ω. Here that we use the fact that all
this is happening inside a larger topological group H̃. In particular, since H is a closed subgroup of H̃, the
quotient H\H̃ is Hausdorff. Then H\C is assumed compact in H\U , and we are to show that it is compact
in H\Ω. But these quotient topologies are the same as the subspace topologies from H\H̃, from the first
lemma above. Thus, compactness of H\HC in H\U implies compactness of H\HC in H\H̃. Then since
H\Ω is closed and H\H̃ is Hausdorff, H\HZ is surely compact in H\Ω. Thus, we have proven that the
extension-by-zero map makes sense, and it is certainly an injection.

Restriction to Ω− U of a function with compact support left mod H inside U certainly gives 0; and, if the
restriction to Ω − U of a function is 0, then its support must be contained in U . Again, compactness of
support is assessed in the quotient H\H̃. This proves exactness at the middle joint.

What remains to be checked is the surjectivity of the restriction map from C∞c (H\Ω, σ) to C∞c (H\(Ω−U), σ)
for an open H-stable subset U of Ω. It is elementary that the restriction map

C∞c (Ω,O) → C∞c (Ω− U,O)

is surjective. Thus, by the right exactness of tensor products, tensoring over O with the representation space
V of σ still gives a surjective restriction map

C∞c (Ω,O)⊗O V → C∞c (Ω− U,O)⊗O V

51



Paul Garrett: Euler factorization of global integrals (February 19, 2005)

The averaging maps
αΩ : C∞c (Ω,O)⊗ V → C∞c (H\Ω, σ)

αΩ−U : C∞c (Ω− U,O)⊗ V → C∞c (H\(Ω− U), σ)

given (in both cases) by the formula

f ⊗ v → (x→
∫

H

f(hx)σ(h−1)v dh

are surjective.

Thus, all arrows except possibly the lower horizontal one in the commuting square

C∞c (Ω,O)⊗ V → C∞c (Ω− U,O)⊗ V
αΩ ↓ ↓ αΩ−U

C∞c (H\Ω, σ)⊗ V → C∞c (H\(Ω− U), σ)⊗ V

are surjections. But then it is clear that the lower horizontal one is a surjection, as well. Done.Let H
and Ω be as just above, and let G be another totally disconnected locally compact topological group acting
(continuously) on the right on Ω. Suppose that there are finitely-many G × H-orbits on Ω. From above,
each orbit is open in its closure.

Write z ≥ w for G×H-orbits z, w on Ω if w is in the closure z̄ of z. Since z, w are both G×H-orbits, z̄ and
z̄ ∩ w are unions of orbits, and if w meets z̄ (non-trivially) we can conclude that

w ∩ z̄ = w

Thus, if w merely meets the closure z̄ of z, then z ≥ w. Since the closure of the closure of a set is the closure,
the relation ≤ is a partial ordering.

For an orbit z, let
[z] =

⋃
w≤z

w

(z) =
⋃

w<z

w = [z]− z

Let M be a module. Let T be a poset with order <, and suppose that for each t ∈ T we have a submodule
Mt ⊂M , and that s < t implies that Ms ⊂Mt. Then the collection

{Mt : t ∈ T}

is a filtration of M indexed by T . For t ∈ T the associated graded piece of M is the quotient object∑
s≤t

Ms/
∑
s<t

Ms

Thus, in the situation under consideration at present, we would consider M = C∞c (H\Ω, σ), take T to be
the collection of G×H orbits on Ω, and

Mz = C∞c (H\[z], σ)

With the hypothesis that there are finitely-many orbits, the results above concerning test functions yield:
Corollary: Suppose that there are finitely-many G ×H-orbits on Ω. Then the filtration of C∞c (H\Ω, σ)
indexed by the partially ordered set of G×H-orbits has associated graded pieces

C∞c (H\[z], σ)
C∞c (H\(z), σ)

≈ C∞c (H\z, σ)

That is, each orbit’s own space of equivariant test functions appears among the graded pieces of the G×H-
orbit filtration on Ω, and these are all of the graded pieces. Done.
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3.3Exactness of some functors

Now we begin preparations for proof of the orbit criterion for locally strong meromorphy. Here we prove
the exactness of some relatively elementary functors on smooth representation spaces. Some of this occurs
in the unpublished notes [Casselman 1976] in a different form.

Let O be a commutative ring with identity, and A an associative O-algebra. Say that A is an idempotented
algebra if for any finite collection η1, . . . , ηn of elements of A there is an idempotent e ∈ A so that
eηi = ηi = ηie for all i.

A module M over an idempotented algebra A is smooth if, for every finite list m1, . . . ,mn of elements of M
there is an idempotent e in A so that emi = mi for all i. For example, A is smooth as a (left) module over
itself.

Given any module M over an idempotented algebra A, we form the submodule M∞ of smooth vectors in M
by taking the set of m ∈ M so that there exists some idempotent e ∈ A so that em = m. Then M∞ is the
unique maximal smooth submodule of M .

An O-algebra A is augmented if it is equipped with an O-algebra homomorphism ε : A → O which maps
every sufficiently small idempotent to 1. For fixed augmentation ε, the trivial A-module denoted by ε is the
O-module O itself on which η ∈ A acts by

ηr = ε(η) · r

for all r ∈ O.

In the case of a Hecke algebra G of a totally disconnected group G, the standard augmentation is simply the
integral of a locally-constant, compactly-supported O-valued function: thus,

ε(chKgK) = meas(KgK)

for every g ∈ G, where chKgK is the characteristic function of KgK and meas is a Q-valued right Haar
measure. (These ‘integrals’ are in fact finite sums, so there is no analysis, and this makes sense over an
arbitrary field of characteristic zero, at least).

Proposition: For any fixed idempotent e in an idempotented O-algebra A the functor V → eV is an exact
functor from smooth A-modules to eAe-modules.

Proof: Suppose that

A
φ

→
B
ψ

→
C

is an exact sequence of A-modules. Then for x ∈ A

ψ(φ(ex)) = e(ψ(φ(x)) = e · 0 = 0

so the kernel of ψ on eB is contained in the image φ(eA) = eφ(A). On the other hand, if ψ(ey) = 0 for
y ∈ B, then invoking the exactness of the original sequence take x ∈ A so that φ(x) = ey. But then also

φ(ex) = eφ(x) = e(ey) = ey

since e is idempotent. This verifies the asserted exactness. Done.We can abstract the notion of
Jacquet module. Say that an augmented idempotented algebra N has large idempotents if, given a finite
collection f1, . . . , fn ∈ N , there is an idempotent e so that

efi = fie = ε(f) · e

where ε is the augmentation. (This abstracts the situation in which N is the Hecke algebra of a unipotent
p-adic group).
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The ε-co-isotype Vε is the largest quotient of V so that any N -homomorphism

ϕ : V → ε

factors through the quotient map V → Vε. This is the natural dual notion to the more common usage
of εisotype, meaning the smallest submodule V ε so that every homomorphism ε → V factors through the
inclusion V ε ⊂ V .

We may define the Jacquet functor J on N -modules to be that which associates to a smooth N -module
V the ε-co-isotype Vε. Again we have an exactness result which does not depend upon the nature of the
‘scalars’ O:

Proposition: For an idempotented O-algebra N with ‘large idempotents’, and with augmentation ε, the
functor J which takes the ε-co-isotype Vε of a smooth N -module V is exact.

Proof: First, it is elementary to check that Vε is the quotient of V by the O-submodule generated by all
expressions of the form

η · v − ε(η)v

with η ∈ N and v ∈ V .

Second, we claim that an element v ∈ V is in the kernel of the quotient map q : V → Vε of the ε co-isotype
if and only if there is an idempotent e in N so that ev = 0.

If v =
∑

i(ηiv − ε(ηi)v) is in the kernel of q, then take an idempotent e so that eηi = ε(ηi)e for all i. Then

e(ηiv − ε(ηi)v) = 0

On the other hand if ev = 0, then
v = 1 · v − 0 · v = ε(e)v − ev

which lies in the kernel of q. This proves the claim.

Suppose that

A
f

→
B
g

→
C

is an exact sequence of N -modules.

Suppose that (J g)(qBb) = 0 where qBb is the image in JB of b ∈ B via the quotient map qB : B → JB.
Then by definition of J we find that qC(gb) = 0, where qC : C → JC is the quotient map. Thus, by the first
observation of this proof, for a sufficiently large idempotent e of N we have e(gb) = 0. Since g is N -linear,
this implies that g(eb) = 0. By the exactness, there is a ∈ A so that f(a) = eb. Then

f(ea) = ef(a) = e(eb) = eb

That is, the kernel of J g is contained in the image of J f .

And
(J g)(J f)(qAa) = qC((g ◦ f)(a)) = qC(0) = 0

simply follows from our (correct) presumption that J is a functor. Done.

3.4Frobenius Reciprocity for parametrized families

For a locally compact Hausdorff totally disconnected group G, let G = GQ be the Hecke algebra of locally-
constant compactly-supported Q-valued functions on the totally disconnected group G. For any Q-algebra
A, let

GA = G ⊗Q A
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which can be naturally identified with the collection of A-valued compactly-supported locally-constant
functions on G. The product is the convolution

(η ∗ ζ)(g) =
∫

G

η(gh−1) ζ(h) dh

where dh denotes a Q-valued right Haar measure on G. The latter exists since G is totally disconnected.
Note that such an integral with compact support and locally-constant integrand uses only finite additivity,
and thus we can make sense of such integrals with integrands having values in any k-vectorspace whatsoever.

For an O-parametrized family π of smooth representations of G on an O-module V , there is a GO-module
structure on V by

η ·m =
∫

G

η(g)π(g)m dg

Thus, O-linear representations of G become G ⊗O-modules.

For a compact-open subgroup K of G, let eK be the element of GQ ⊂ GO given by

eK =
characteristic function of K

measure of K

A GO-module V is smooth if for every finite collection v1, . . . , vn of elements of V there is a compact-open
subgroup K of G so that eKmi = mi for all indices i. (The functor of the previous paragraph attaches
smooth GO-modules to O-parametrized families of smooth representations of G). Then from any smooth
GO-module V one can recover a smooth representation π of G by

π(g)m = χgK ·m

where χgK is the characteristic function of the subset gK of G, and where K is a small-enough compact-open
subgroup of G so that eKm = m. This functor is the inverse of the functor of the previous paragraph.

The G-module G itself has at least two natural (left) G-module structures on it. The first is G itself: the
multiplication is

η · f = η ∗ f (convolution)

which directly reflects the ring structure. On the other hand, let Mrt be the left G-module consisting of G
itself, but with the module structure

η ·m = m ∗ η̌

for η ∈ G and m ∈Mrt, where

η̌(g) =
η(g−1)
δG(g)

with δG being the modular function of G, normalized by

δG(go) =
d(gog)
dg

Direct computation verifies the isomorphism of G modules

Ψ : Mrt → G

by
Ψ(m) = m̌

Let H be the Hecke algebra of the closed subgroup H of G. Give G the natural right H-module structure as
follows:

(f · ζ)(go) =
∫

H

f(goh
−1) ζ(h) dh
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where ζ ∈ H and dh refers to a Q-valued right Haar measure on H. The associativity follows from the
associativity of convolution on H.

Proposition: Let σ be a smooth O-parametrized family of representations of a closed subgroup H of a
totally disconnected group G. Let G be the Hecke algebra of G, and H the Hecke algebra of H. Then the
map

Φ(f ⊗ v) = ασ(f̌ ⊗ v)

defines a GO-isomorphism

Φ : G ⊗H (σ ⊗ δG
δH

) → c-IndG
Hσ

where G has the G ×H-bimodule structure as above.

Proof: The only serious issue is that this is well-defined: we must check that

Φ(fζ ⊗ v) = Φ(f ⊗ ζv)

Computing:
Φ(fζ ⊗ v)(g) = ασ((fζ)ˇ ⊗ v)(g)

=
∫

H

σ(h−1)
[∫

H

f(hg)−1h−1
2 )

δG(hg)
ζ(h2) dh2 v

]
dh

=
∫

H

∫
H

σ(h−1)
f(g−1h−1)
δG(hg)

σ(h2)δH(h−1
2 )

δG(h−1
2 )

ζ(h2)

by replacing h by h−1
2 h. Then this is∫
H

σ(h−1) f̌(hg)
(
σ
δG
δH

)
(ζ)v dh dh2 = ασ(f̌ ⊗ ζv)(g) = Φ(f ⊗ ζv)(g)

which verifies that the map is well-defined. Then the fact that the indicated map is an isomorphism follows
easily. Done.The group-theoretic Frobenius Reciprocity isomorphism

HomG×k(π, IndG
Hσ) ≈ HomH×k(ResG

H π, σ)

does not hold in general for O-linear representations, but only for linear representations over fields k, where
σ is a k-linear smooth representation of H and π is a k-linear representation of G. The isomorphism is given
by

Φ → ϕΦ

described by
ϕΦ(v) = Φ(v)(1G)

for v ∈ π, with inverse
ϕ→ Φϕ

given by
Φϕ(v)(g) = ϕ(π(g)v)

On the other hand, in the language of modules over Hecke algebras, we have:

Proposition:

HomGO (π ⊗ c-IndG
Hσ,O) ≈ HomGO (π ⊗ (GO ⊗HO σ

δG
δH

),O)

≈ HomHO (π ⊗ σ
δG
δH

,O)
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and the map is Φ → ϕΦ described by

ϕΦ(v ⊗ x) = Φ(v ⊗ (e⊗ x))

where v ∈ π, x ∈ σ, and e ∈ GO is any idempotent ‘small enough’ so that ev = v. The inverse map is
ϕ→ Φϕ given by

Φϕ(v ⊗ (η ⊗ x)) = ϕ(η̌v ⊗ x)

for η ∈ GO. Done.

3.5Proof of the orbit criterion for strong meromorphy

Keep notation as in the statement of the orbit criterion for locally strong meromorphy. With the preparation
of the previous sections, we can prove the orbit-criterion theorem.

Let Φ be a meromorphic O-parametrized family of intertwining operators

Φ ∈ HomG×O(C∞c (H\Ω, σ)⊗O c-IndG
Pχ,M)

Let
ϕΦ ∈ HomP×O(C∞c (H\Ω, σ)⊗O χ

δG
δH

,M)

be the element corresponding to it by Frobenius Reciprocity. That is, with f ∈ C∞c (H\Ω, σ) and v ∈ χ δG

δH
,

ϕϕ(f ⊗ v) = Φ(f ⊗ (e′ ⊗ v))

for any idempotent e′ ∈ G sufficiently small so that e′f = f . Thus, for convencience, let

χ′ = χ
δG
δH

Lemma: Let x be a height one prime in O. The meromorphic family Φ is locally strongly meromorphic
at x if and only if the meromorphic family ϕΦ associated to it by Frobenius Reciprocity (as just above) is
locally strongly meromorphic.

Proof: It is important to use the tensor product and Hecke-algebra version of Frobenius Reciprocity, rather
than the more group-theoretic, in order to verify this result.

Certainly the values of ϕΦ are among the values of Φ, by the definition of ϕΦ in terms of Φ. Conversely, for
f ∈ C∞c (H\C, σ), η ∈ G, v ∈ δG

δH
we have

Φ(f ⊗ (η ⊗ v)) = φ(η̌f ⊗ v)

Thus, the collection of values of ψΦ is identical to the collection of values assumed by ψϕΦ. Therefore,
if $N

x Φ takes values in Ox (rather than merely M), then $N
x ϕΦ has the same property, and conversely.

Done.Thus, we wish to prove that any meromorphic O-parametrized family of intertwining operators

ϕ ∈ HomP×O(C∞c (H\Ω, σ)⊗O χ′,M)

is ineluctably locally strongly meromorphic everywhere.

Since we will only consider one height-one prime x at a time, we may as well suppose that O is already a
discrete valuation ring with unique non-zero prime x. Thus, we may as well suppose that O = Ox already.
This simplification will allow us to write simply ‘π’ rather than ‘π ⊗O Ox’ when convenient.

Lemma: Let π be an O-parametrized family of smooth representations of a totally disconnected group G.
Let Φ be a meromorphic O-parametrized family of intertwining operators Φ in Hom)G×O(π,M). Define

Vi = {v ∈ π ⊗O Ox : $iΦ(v) ∈ Ox}
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(with local parameter $ for x), obtaining a filtration

Vo ⊂ V1 ⊂ V2 ⊂ . . . ⊂ π ⊗O Ox

If Φ fails to be locally strongly meromorphic at x then for every index i

HomG×Ox
(Vi+1/Vi, kx) ≈ HomG×kx

(Vi+1/Vi, kx) 6= {0}

Proof: (Suppress the ‘⊗OOx’). Certainly $Vi ⊂ Vi−1, so the quotients Vi/Vi−1 are indeed kxvectorspaces.

If Φ is not locally strongly meromorphic at x, then no one of the Vi contains π entirely. Further, since
ord xΦ(v) takes arbitrarily large negative values, by simply multiplying through by powers of $ we can
obtain every value of ord xΦ(v). If HomG×kx

(Vi/Vi−1, kx) is non-trivial then actually

HomG×Ox
(Vi−`/Vi−1−`, kx)

is also non-trivial, simply by multiplying everything by $. Thus, every quotient Vi/Vi−1 is a non-zero
kx-vectorspace and

HomG×Ox
(Vi/Vi−1, kx)

is non-zero for all indices i ≥ 1. Done.Generally, if a G×Ox-module V has the property that for any
ascending chain

V0 ⊂ V1 ⊂ . . .

of G×Ox-submodules only finitely-many of the spaces

HomG×kx
(Vi/Vi−1, kx)

are non-zero, then say that V is co-iso-Noetherian. References to the prime x and to the group G are
suppressed.

Thus, the last lemma can be paraphrased as asserting that if π is co-iso-Noetherian, then Φ is locally strongly
meromorphic.

So suppose that ϕ is not locally strongly meromorphic at x, and let Vi be a filtration of

C∞c (H\Ω, σ)⊗O χ′

as in the lemma.

Next, we use the finiteness of the double-coset space H\Ω/P to obtain a finite H × P -orbit filtration of
C∞c (H\Ω, σ) as P ×Ox-module:

Lemma: Let
{0} = Uo ⊂ U1 ⊂ . . . ⊂ Un = V

be a finite filtration by G × Ox-modules of a G × Ox-module V . Let Φ be a meromorphic O-parametrized
family in

HomG×Ox(V,Ox)

and let
Vi = {v ∈ V : $iΦ(v) ∈ Ox}

where $ is a local parameter for x. Suppose that

Vo = {0} ⊂ V1 ⊂ . . . ⊂ V

is an infinite filtration of V . Then for some index i the filtration

(Ui ∩ Vo) + Ui−1

Ui−1
⊂ (Ui ∩ V1) + Ui−1

Ui−1
⊂ . . . ⊂ (Ui ∩ Vn) + Ui−1

Ui−1
⊂ . . .
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of Ui/Ui−1 is infinite. Let i be the smallest such index. Then, further, letting

Γj =
(Ui ∩ Vj) + Ui−1

Ui−1

there are infinitely-many indices j so that

HomG×kx
(Γj/Γj−1, kx) 6= {0}

Proof: This is an extension of a Jordan-Holder argument.

Suppose the assertion of the lemma were false, i.e., that the induced filtrations of all of the quotients Ui/Ui−1

were finite. For each of the finitely-many indices i let j(i) be the smallest index so that j(i) ≥ j(i− 1) and
so that

(Ui ∩ Vj(i)) + Ui−1 = Ui

Since Uo = {0}, U1 ⊂ Vj(1). We prove Ui ⊂ Vj(i) by induction:

V = Ui ⊂ (Ui ∩ Vj(i)) + Ui−1 ⊂ (Ui ∩ Vj(i)) + (Ui−1 ∩ Vj(i−1))

⊂ (Ui ∩ Vj(i)) + (Ui−1 ∩ Vj(i)) ⊂ Ui ∩ Vj(i)

since
Ui−1 ∩ Vj(i) ⊂ Ui ∩ Vj(i)

Then
V = Un ⊂ Vj(n)

contradicting the fact that the filtration of the Vj is infinite.

Let i be the smallest index such that this filtration is infinite. The argument just given does prove that for
i′ < i

Ui′ ⊂ Vj(i′)

for some index j. In particular,
Ui−1 ⊂ Vj(i−1)

Thus, for j ≥ j(i− 1),
Ui ∩ Vj ⊃ Ui

and
(Ui ∩ Vj) + Ui−1 = Ui ∩ Vj

Thus, restricting j ≥ j(i− 1), the chain

Ui ∩ Vj ⊂ Ui ∩ Vj+1 ⊂ Ui ∩ Vj+2 ⊂ . . .

must be infinite. Thus, for given jo no matter how large, there is j > jo so that

Ui ∩ Vj

Ui ∩ Vj−1
6= 0

In particular, some element v of Vj but not in Vj−1 lies in Ui. Thus, $jΦ composed with reduction modulo
$ is non-trivial on such v ∈ Ui, proving that Γj/Γj−1 has non-trivial homomorphisms to kx. Done.We
have already shown that the graded pieces of the H × P -orbit filtration on C∞c (H\Ω, σ) are of the form

c-IndP
Θξσξ
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where
σξ(p) = σ(ξpξ−1)

for p ∈ P ∩ ξ−1Hξ. Thus, if the original Φ were not locally strongly meromorphic at x, then for some
ξ ∈ H\Ω/P the there would be an infinite chain of subspaces Vi of

c-IndP
Θξσξ ⊗kx

χ′ ⊗ kx

so that
HomP×kx

(Vi/Vi−1, kx) 6= {0}

Now c-IndP
Θξσξ is an image of C∞c (P,Ox) ⊗ σξ under an averaging map, where in the latter space P acts

trivially on σξ. Thus, if
c-IndP

Θξσξ ⊗ χ′

fails to have the co-iso-Noetherian propery so will

C∞c (P,Ox)⊗ σξ ⊗ χ′

Since σξ is finite-dimensional, this can happen only if already

C∞c (P,Ox)⊗ χ′

fails to have the co-iso-Noetherian property.

Next, we use the fact that χ is a finite sum of trivial representations of N (since χ is finite-dimensional and
trivial on N), and the assumption that N is an ascending union of compact open subgroups. The latter
hypothesis assures that the Jacquet functor (i.e., trivial co-isotype functor) for N is exact, as shown earlier.
And since N is normal in P , such co-isotypes are still P -representations. The exactness assures that

J Vi/J Vi−1 ≈ J (Vi/Vi−1)

for submodules Vi of C∞c (P,Ox)⊗χ′. Since generally (by the defining property of this co-isotype functor J )

HomP×Ox(V, kx) ≈ HomP ×Ox(J V, kx)

we conclude that
J (C∞c (P,Ox)⊗ χ′) ≈ (J (C∞c (P,Ox))⊗ χ′

fails to have the co-iso-Noetherian property.

But now the Jacquet module (co-isotype) JC∞c (P,Ox) is readily computed to be simply C∞c (N\P,Ox).
Thus, from this point we can restrict our attention to M -representations. Thus, to this point, we have
concluded that the original supposed failure of locally strong meromorphy implies that

C∞c (M,Ox)⊗ χ′

fails to have the co-iso-Noetherian condition as M ×Ox-module.

By hypothesis, for a certain idempotent e in the Hecke algebra GM of M , eχ = χ (referring to the
representation space of χ). Certainly δH and δG are trivial on compact subgroups, so also eχ′ = χ′.
Therefore,

HomM×Ox
(C∞c (M,Ox)⊗ χ′, kx) ≈ HomeGM e×Ox

(eC∞c (M,Ox)⊗ χ′, kx)

We saw earlier that the map E → eE from GM -modules to eGMe-modules is exact quite generally. Thus, it
must be that eC∞c (M,Ox)⊗ χ′ fails to be co-iso-Noetherian as a eGMe×Ox-module.
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But by hypothesis eGMe and Ox are Noetherian. By the finite-generation hypothesis on eC∞c (M,Ox) = eGM

and on χ′ = eχ′, the eGMe×Ox-module

eC∞c (M,Ox)⊗ χ′

is Noetherian. This certainly contradicts the conclusion that it was not co-iso-Noetherian, since Noetheri-
an-ness is a stronger condition than co-iso-Noetherian. So we conclude that, after all, Φ was locally strongly
meromorphic.

This completes the proof of the orbit criterion for strong meromorphy. Done.
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