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The result sketched here is of fundamental importance in the ‘modern’ theory of automorphic forms and
L-functions. What it amounts to is proof that representation theory is in principle relevant to study of
automorphic forms and L-function.

The goal here is to get to a coherent statement of the basic factorization theorem for irreducible unitary
representations of reductive linear adele groups, starting from very minimal prerequisites. Thus, the writing
is discursive and explanatory. All necessary background definitions are given. There are no proofs. Along
the way, many basic concepts of wider importance are illustrated, as well.

One disclaimer is necessary: while in principle this factorization result makes it clear that representation
theory is relevant to study of automorphic forms and L-functions, in practice there are other things necessary.
In effect, one needs to know that the representation theory of reductive linear p-adic groups is tractable, so
that conversion of other issues into representation theory is a change for the better. Thus, beyond the
material here, one will need to know (at least) the basic properties of spherical and unramified principal
series representations of reductive linear groups over local fields. The fact that in some sense there is just
one irreducible representation of a reductive linear p-adic group will have to be pursued later.

References and historical notes will be added later, maybe.

Many of the statements made here without proof are very difficult to prove! Just because no mention of proof
is made it should not be presumed that it’s ‘just an exercise’ !

• Topological groups, Haar measures, Haar integrals
• Topologies on operators on Hilbert spaces
• Unitary representations of topological groups
• Representations of the convolution algebra L1(G)
• Commutants, Schur’s lemma, central characters
• Banach algebras, C∗-algebras, representations
• Stellar algebras of topological groups
• Tensor products of Hilbert spaces
• Type I groups
• Criterion for Type I-ness: liminal and postliminal algebras
• Reductive linear groups
• Reductive groups over local fields are Type I
• Factorization of representations of adele groups
• Admissibility of representations
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1. Topological groups, Haar measures, Haar integrals

Let G be a topological group. Usually this tacitly requires also that the group is locally compact and
Hausdorff, and probably also separable, in the sense that it has a countable dense subset. The latter
hypothesis is necessary to apply a Baire-category style arguments to prove that any Hausdorff space X on
which G acts transitively is homeomorphic to G/Gx, where x ∈ X is fixed and Gx is the isotropy group of
x in G.

We are interested only in positive regular Borel measures µ on G. That is, we are interested only in non-
negative real-valued measures µ defined on σ-algebras containing the open sets so that

µ(E) = inf of µ(U) where U is open containing E: outer regularity

µ(E) = sup of µ(K) where K is compact contained in E: inner regularity

And a positive regular Borel measure µ is a right Haar measure if for all measurable sets E and g ∈ G

µ(Eg) = µ(E)

Similarly a left Haar measure has the property

µ(gE) = µ(E)

The theorem is that a topological group has a unique right Haar measure, up to positive real multiples.
Similarly, up to positive real multiples, there is a unique left Haar measure.

A topological group is unimodular if a right Haar measure is also a left Haar measure.

2. Topologies on operators on Hilbert spaces

Let V be a (complex) Hilbert space with inner product 〈, 〉 and norm ||. Let B(V ) be the algebra of continuous
linear operators T : V → V . There are at least 3 important topologies on B(V ).

The uniform or norm topology is the strongest topology we will consider, and gives B(V ) the structure of
Banach space. This topology is defined via the operator norm

|T | = sup
|v|=1

|Tv|

where as indicated v ranges over unit vectors (in V ).

The strong topology on BV is defined by a collection of semi-norms

νv(T ) = |Tv|

as v ranges over V . Note that it is unlikely that there is a countable collection of semi-norms giving this
topology, so it is therefore not obviously metrizable.

The weak topology on B(V ) is defined by a collection of semi-norms

νv,w(T ) = |〈Tv,w〉|

as v, w range over V .

There are also ultra-strong and ultra-weak topologies, and others besides, but we don’t need them here.
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3. Unitary representations of topological groups

Let B(V )× be the group of continuous linear operators on a Hilbert space V having continuous inverses.

A (continuous) representation of a topological group G on a Hilbert space V is a group homomorphism

π : G → B(V )×

so that also π is continuous in the strong topology on B(V ).

It is easy to arrange examples to show that we should not expect nor demand continuity in the norm topology,
but only the strong topology.

A unitary representation π of a group G on a Hilbert space V is a representation so that for all v, w ∈ V

〈π(g)v, π(g)w〉 = 〈v, w〉

A unitary representation (π, V ) of G often is denoted simply by ‘π’ or ‘V ’ for reasons of brevity.

4. Representations of the convolution algebra

Let G be a unimodular topological group. Let L1(G), as usual, denote the collection of absolutely integrable
complex-valued functions on G, and let | |1 denote the usual norm on this Banach space. We have a
convolution ∗ on L1(G) defined by

(f ∗ φ)(g) =
∫

G

f(gh−1) φ(h) dh

where dh refers to a fixed choice of Haar measure on G. One fundamental result, which follows from Fubini’s
theorem, is

|f ∗ φ|1 = |f |1 · |φ|1

Any unitary representation (π, V ) of G gives rise to an algebra representation of L1(G) by ‘defining’

π(f)v =
∫

G

f(g) · π(g)v dg

(There are several ways to be sure that this integral makes sense). It is formal that

π(f ∗ φ) = π(f) ◦ π(φ)

which is to say that the convolution product fits into this story just right.

We can estimate the operator norm of operators π(f), as follows. Then for v ∈ V

|π(f)v| ≤
∫
|f(g)π(g)v| dg =

∫
|f(g)| |π(g)v| dg

∫
|f(g)| |v| dg = |v|

∫
|f(g)| dg = |v| |f |1

since π is unitary. Thus,
|π(f)| ≤ |f |1

5. Commutants, Schur’s lemma, central characters
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Let A be a subalgebra of the algebra B(V ) of continuous linear operators on a Hilbert space V . Then the
commutant A′ of A is defined to be

A′ = {T ∈ B(V ) : T ◦ α = α ◦ T, for all α ∈ A}

Schur’s Lemma asserts that, if (π, V ) is an irreducible unitary Hilbert space representation of a topological
group G, then the commutant ρ(G)′ of ρ(G) consists just of the scalar operators C · 1 on V . This is an
immediate consequence of elementary spectral theory for bounded operators on Hilbert spaces.

One important and basic corollary is that on an irreducible representation (π, V ) of a topological group G
the center Z of G acts by scalars. Indeed, one can see that there is a (continuous) group homomorphism
ω : Z → C× so that for z ∈ Z

π(z) = ω(z) · 1V

where 1V is the identity on V . This ‘character’ (meaning one-dimensional representation) ω is the central
character of π. So, as corollary of Schur’s lemma for unitary representations, we find that irreducible unitary
representations have central characters.

6. Banach algebras, C-star-algebras, representations

A (complex) Banach algebra is an associative C-algebra B with a norm || with the sub-multiplicative
property

|xy| ≤ |x| · |y|

The basic example of such is the collection B(V ) of continuous linear operators on a Hilbert space V .

An involution on an algebra B is a C-conjugate-linear map B → B so that

x∗∗ = x (xy)∗ = y∗x∗

A Banach algebra is a Banach ∗-algebra if there is an involution x → x∗ on B so that also

|x∗| = |x|

A Banach ∗-algebra is a C∗-algebra if for all x ∈ A

|x∗x| = |x|2

The fundamental example of a C∗-algebra is the collection B(V ) of all continuous linear operators on a
Hilbert space V , with ∗ being the usual adjoint.

A representation π of a C∗-algebra A on a Hilbert space V is a C-algebra homomorphism

φ : A → B(V )

which also preserves the involution ∗, that is,

f(x∗) = f(x)∗

where x∗ denotes the involution in A and f(x)∗ denotes the usual involution by adjoint in B(V ).

An element p of a C∗-algebra is self-adjoint if p∗ = p. This is in complete analogy with the terminology
for operators on Hilbert spaces. An element p of a C∗-algebra is an idempotent if p2 = p. This is also
standard.

7. Stellar algebras of topological groups
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For unimodular topological group G we already have the convolution algebra L1(G) of G, which acts upon
any unitary representation space (π, V ) of G by

π(f)v =
∫

G

f(g) · π(g)v dg

where dg denotes Haar measure. That is, this convolution algebra is the first analogue of the group algebra
of a finite group.

We define the stellar norm on L1(G) by

|f |∗ = sup
σ

|σ(f)|

where σ ranges over all unitary representations of G. Especially when G is separable we could just as well
take the sup over isomorphism classes of separable Hilbert space representations, making clear that the sup
is taken over a countable set rather than some dangerously big class which might lead to some set-theoretic
fallacies.

The straightforward little computation done above shows that

|f |∗ ≤ |f |L1

The completion C∗(G) of L1(G) is the stellar algebra of G. The inequality comparing the two norms shows
that L1(G) imbeds continuously into C∗(G). An equivalent definition of the stellar algebra is that it is the
completion of the convolution algebra Co

c of compactly-supported continuous complex-valued functions on
G.

By the definition of the stellar norm, any unitary representation of G induces a representation of C∗(G).

This stellar algebra has the involution arising from

f∗(g) = f(g−1)

With respect to this involution, C∗(G) is a C∗-algebra.

8. Tensor products of Hilbert spaces

Let V,W be two Hilbert spaces, with inner products 〈, 〉 and (, ) respectively. Let V ⊗ W be the tensor
product of the two complex vector spaces over C. This tensor product has a positive-definite (hermitian)
inner product [, ] defined by taking the sesquilinear extension of

[v ⊗ w, v′ ⊗ w′] = 〈v, v′〉(w,w′)

(As usual, sesquilinear means linear in the first argument and conjugate-linear in the second). The completion
of this (pre-Hilbert) space with respect to this hermitian form is the Hilbert tensor product or completed
tensor product

V ⊗̂W

of the two Hilbert spaces.

One can check that without overtly completing the tensor product is not complete unless one of the two
spaces is finite-dimensional.

If we replace W by the conjugate Hilbert space W (viewed as the topological dual of W ), then the tensor
product V ⊗ W can be naturally identified with the collection of finite-rank linear operators W → V by
taking

v ⊗ λ → Tv⊗λ
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where
Tv⊗λ(w) = λ(w) · v

The completion is (essentially by definition) the completion with respect to the Hilbert-Schmidt norm
on finite-rank operators. (This norm does not extend to all of B(V )).

The analogous tensor product construction for a countable collection V1, V2, V3, . . . of Hilbert spaces Vi is a
little more complicated. Indeed, it is necessary to specify a unit vector ei in each Hilbert space Vi in the
collection. Then the restricted tensor product of the Vi with respect to the unit vectors ei is the vector
space of all finite sums of tensors

v1 ⊗ v2 ⊗ v3 ⊗ . . .

where for almost all (that is, all but finitely-many) indices i we have

vi = ei

The inner product on this pre-Hilbert space is given by (the hermitian extension of)

〈v1 ⊗ v2 ⊗ v3 ⊗ . . . , v′1 ⊗ v′2 ⊗ v′3 ⊗ . . .〉 = 〈v1, v
′
1〉〈v2, v

′
2〉〈v2, v

′
2〉 . . .

Since all but finitely-many of the vi and v′i are actually just the corresponding unit vector ei, all but finitely-
many factors in the last product are just 1, so there is no issue of convergence.

Then the completed restricted tensor product

⊗̂′

i
Vi

of the spaces Vi with respect to choice of the unit vectors ei ∈ Vi is the completion of the restricted tensor
product with respect to this inner product.

Note that there is usually no overt reference to the unit vectors in discussion of such a restricted tensor
product. In practice this is harmless, since the choice of the unit vectors will be given us by some other
mechanism.

9. Type I groups

A unitary representation ρ of a topological group G is a factor representation or simply a factor if the
double commutant is trivial, that is, if

ρ(G)′′ ∩ ρ(G)′ = C · 1

Then, the algebra ρ(G)′′ has center just C · 1 (In the terminology of von Neumann algebras, ρ(G)′′ is the
von Neumann algebra generated by ρ(G)).

A unitary Hilbert space representation (σ, V ) of a topological group G is (π-) isotypic (where π is an
irreducible unitary representation) if (σ, V ) is a sum (not necessarily direct) of G-homomorphic images of
copies of π. Sometimes it is said that σ is a multiple of π. Then from a good version of spectral theory it
follows that (σ, V ) is of the form

(π, Vπ)⊗̂(1,W )

where Vπ is the representation space of π, where (1,W ) denotes the trivial representation on a Hilbert space
W , and where the ⊗̂ denotes the completed tensor product. The converse, that such a completed tensor
product is isotypic, is easy.

A factor representation of a topological group G is said to be of Type I if it is isotypic.

A locally compact Hausdorff topological group is defined to be of Type I if every factor representation of it
is of Type I, i.e., is isotypic. It is fairly easy to show that an isotypic representation is a factor representation.
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As an example of the manner in which factor representations occur, let π be an irreducible representation of
the product G×H of two topological groups. Then the restriction of π to a representation of G is a factor
representation of G. (Indeed, the same conclusion holds if π itself is merely a factor).

The most important result here is the Factorization Lemma: If G is a Type I group and if π is an
irreducible unitary Hilbert space representation of G × H, then π is of the form π1 ⊗ π2 where π1 is an
irreducible unitary representation of G and π2 is an irreducible unitary representation of H.

Corollary: A finite product of Type I groups is of Type I.

Unfortunately, the terminology about ‘Type I’ in reference to groups is not compatible with the analogous
terminology in reference to von Neumann algebras, although it is compatible with the analogous terminology
for C∗-algebras (discussed below).

10. Criterion for Type I-ness: liminal and postliminal algebras

Of course it is not a trivial matter to prove that any given group is of Type I. And, in practice we want a
stronger conclusion anyway.

One helpful criterion for a factor representation π of a topological group G to be of Type I-ness is the
following: Suppose that π(f) is a non-zero compact operator, for some f ∈ Co

c (G). Then π is isotypic, so is
(by definition) of Type I.

Thus, as a corollary, if π(f) is a compact operator for every f ∈ Co
c (G) and for every irreducible unitary

representation π of G, then every factor representation of G is of Type I, that is, is isotypic. That is, under
this hypothesis, G is of Type I.

A C∗-algebra A is called liminal or CCR if π(f) is a compact operator for all irreducible representations π
of A and for all f ∈ A.

A C∗-algebra A is called postliminal or GCR or Type I if π(A) contains some compact operator for
all irreducible representations π of A and for all f ∈ A. This is a weaker condition than the condition of
liminality or CCR-ness.

By the criterion just above, for the stellar algebra C∗(G) of a topological group,

C∗(G) liminal (=CCR) ⇒ C∗(G) postliminal (=GCR=Type I) ⇒ G Type I

Thus, there is a slight distinction between the sense of ‘Type I’ for C∗-algebras and for topological groups.

Again, this terminology is not compatible with the analogous terminology for von Neumann algebras.

11. Reductive linear groups

Rather than give general definitions, we give the simplest example, which already illustrates the important
issues, without requiring sharper methods, broader background, and more mature viewpoint.

In characteristic zero, the prototypical local fields are the field of real numbers R and the fields Qp of p-adic
numbers. For the sake of a unifying notation, we may write

R = Q∞

and in the notation Qp allow p ≤ ∞, meaning that p is either a prime (in the usual sense) or is the symbol
∞.

As usual, Qp is the completion of the rational numbers Q with respect to the p-adic norm defined by

|a
b
pn|p = p−n
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where a, b are integers relatively prime to p and n is an integer. So

|p|p =
1
p

As usual, the ring Zp of p-adic integers can be described as the completion of Z in Qp, or also simply as

Zp = {α ∈ Qp : |α|p ≤ 1}

Alternatively, we can describe Zp as a projective limit of the finite rings Z/pN . Then Qp is Zp[ 1p ] (as a ring)
or is a direct limit of the Zp-modules p−nZp as n → +∞ (with inclusion maps).

The (rational) adeles A or adele ring consists of elements

α = (α∞, α2, α3, α5, α7, . . .) ∈
∏
p

Qp

(where the indexing is by primes, apart from the first component which is a real number) with the further
condition that

αp ∈ Zp for all but finitely-many primes p

Alternatively, it is the direct limit (with inclusion maps) of the rings

AS = R×

∏
p∈S

Qp

×

∏
p6∈S

Zp


as S ranges over larger and larger finite subsets of the collection of all primes.

Let R be a commutative ring. The prototypical reductive group is the general linear group

GL(n, R) = invertible n-by-n matrices with entries in R

In particular, an n-by-n matrix is in GL(n, R) if and only if its determinant is in the group of units R× of
R.

Thus, we have prototypical reductive linear groups over local fields

GL(n,R) GL(n,Qp)

Like the adeles themselves, the adele group GL(n,A) is not simply the product of the groups GL(n,Qp).
Rather, this adele group is the collection of

α = (α∞, α2, α3, α5, α7, . . .) ∈
∏

p≤∞

GL(n, Qp)

so that
αp ∈ GL(n,Zp) for all but finitely-many primes p

Alternatively, it is the direct limit (with inclusion maps) of the groups

GL(n,AS) = GL(n,R)×

∏
p∈S

GL(n,Qp)

×

∏
p6∈S

GL(n,Zp)


as S ranges over larger and larger finite subsets of the collection of all primes.
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In general, ‘prime’ is used as synonym for ‘completion’, so is meant to include the completion R of Q, for
example. Up to isomorphism, the real numbers R and the p-adic numbers Qp (as p varies over primes)
exhaust the list of all completions of Q.

12. Reductive groups over local fields are Type I

The very important basic result here is that stellar algebras of reductive linear groups over local fields are
liminal.

Therefore, reductive linear groups over local fields are of Type I.

This local result then has global application (to representations of adele groups), via the general factorization
property that irreducible unitary representations of products of Type I groups have. This mechanism is what
makes representation theory important to the theory of automorphic forms.

13. Factorization of representations of adele groups

The idea of the result here is that then irreducible unitary representations of adele groups of reductive linear
groups factor over primes.

This factorization can be described a more precisely, as follows. Let G be a reductive linear group defined
over a number field k. For a completion kv of k, let Gv be the group of kv-valued points of G. (Now, in
contrast to the previous section, we are using the letter v instead of p as index).

Then the assertion is that for any irreducible unitary representation π of the adelization GA of G, there are
irreducible unitary representations πv of the groups Gv = G(kv) so that π is a completed restricted direct
product

π ≈
⊗̂′

πv

Further, for almost all (meaning for all but finitely-many) completions kv, the ‘local’ representation πv is
spherical, meaning that it is irreducible and has a one-dimensional subspace of Kv-fixed vectors, where Kv

is a maximal compact subgroup of Gv.

In the case of p-adic groups GL(n,Qp), the standard maximal compact subgroups are

Kv = Kp = GL(n,Zp)

14. Admissibility of representations

Again, to prove that reductive groups over local fields are Type I, one proves the stronger result that their
stellar algebras are liminal. Here we only consider the p-adic case.

A unitary representation (π, V ) of a p-adic group G (such as GL(n,Qp)) is admissible if, for every compact
open subgroup K of G the subspace πK of K-fixed vectors is finite-dimensional.

It is a fundamental but difficult result that every irreducible unitary representation of a reductive linear
p-adic group is admissible.

It is elementary that the collection of finite linear combinations of translates of the characteristic functions
of compact open subgroups is dense in the stellar algebra C∗(G), for G a p-adic group. Therefore, if (π, V )
is admissible, then the stellar algebra acts by compact operators on V .

Thus, since every irreducible unitary representation of a p-adic group is admissible, the stellar algebra is
liminal, and thus the group is of Type I. This is the way the Type I property is proven, and, thus, the way
that the factorization over primes is obtained.
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