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Draft

As Bernstein has commented, the germ of this idea for meromorphic continuation of certain Eisenstein
series is the so-called ‘third proof’ of A. Selberg (described in SLN 1001, appendix F). Bernstein apparently
intended application not only to higher-rank cases but also to other sorts of problems entirely. However, there
are details which needed working out to give complete proofs for Eisenstein series on higher-rank groups.
See also A. Borel’s book on automorphic forms on SL(2,R) for a modification of Bernstein’s argument (in
that special case) which avoids certain complications by reverting to a more traditional argument.

The idea of the continuation principle is as follows. We use terminology whose intent should be clear,
but whose definition is only given below. Let X be a system of linear equations depending holomorphically
upon a parameter s in a connected complex manifold. Suppose that for all s in some non-empty open set this
system has a unique solution v,. Then the continuation principle would assert this solution v, extends
to a meromorphic function s — v; on the whole manifold. Moreover, almost everywhere (in fact, outside
a proper analytic subset) v, is the unique solution of X,. That is, the principle would be that unique
holomorphic characterization assures meromorphic continuation.

The present notes represent an attempt to pay attention to all details, and to formulate and prove things
in as smooth and extensible manner as possible. In particular, this requires inclusion of some facts about
vector-valued integrals and vector-valued holomorphic functions which deserve to be considered ‘standard’,
but probably are not.

Thanks to D. Hejhal and P. Sarnak for notes of a lecture given by J. Bernstein possibly in 1984, maybe
at Stanford.

e Weak-to-strong principles
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Weak-to-strong principles

Definition: Let V be a topological vectorspace. A V-valued function s — f(s) is holomorphic at a point

S, if
o 1) = 1(50)

exists

It is simply holomorphic if it is holomorphic pointwise everywhere.

Definition: Let V be a topological vectorspace. A V-valued function s — f(s) is weakly holomorphic if
for every continuous linear functional A on V the C-valued function s — A(f(s)) is holomorphic.

An immediate goal is to determine useful contexts in which weak holomorphy implies holomorphy. To
emphasize the distinction, we may use the phrase strong holomorphy rather than simply holomorphy. The
issue then is that of weak-to-strong principles.

Definition: A family of operators Ts : V — W from one topological vectorspace to another is weakly
holomorphic in a parameter s (in a connected complex manifold, for example a connected open subset, of
C) if for every vector v € V and for every continuous functional y € W* the C-valued function u(Tsv) is
holomorphic in s.

Remark: A virtue of this definition is that it seems not to explicitly mention a topology on the space of
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operators from V to W. In fact, of course, there is a topology implicity defined, namely the weak operator
topology.

Before we address weak-to-strong problems, we can exploit a different mechanism (Hartogs’ theorem in
several complex variables) to note an important fact:

Proposition: Let S; : A - B and T, : B — C be two weakly holomorphic families of continuous linear
operators on topological vectorspaces A, B, C'. Then the composition 7505 : A — C is weakly holomorphic.
Similarly, for a weakly holomorphic A-valued function s — f(s) and for a weakly holomorphic continuous
linear map S; : A — B, the composite Ss o f is a weakly holomorphic B-valued function.

Proof: This is an immediate corollary of Hartogs’ theorem that separate analyticity of a function of several
complex variables implies joint analyticity (without any other hypotheses). Specifically, consider the family
of operators

Tt o Ss

By the definition of weak holomorphy, for z € A and a linear functional y € C* the C-valued function

(s,8) = w(Ty(Ss(2))

is separately analytic. By Hartogs’ theorem, it is jointly analytic. It follows that the diagonal function
s = (s,8) = p(Ts(Ss(z))

is analytic. The same prove suffices for the second assertion. &

It should be striking that no hypotheses on the topological vectorspaces are necessary for the latter
composition closure property of weakly holomorphic maps. By contrast, the rest of this section will be
devoted to inference of genuine holomorphy from weak holomorphy.

Definition: A Gelfand-Pettis or weak integral of a function s — f(s) on a measure space (X, u) with
values in a topological vectorspace V' is an element I € V' so that for all A € V'*

A(T) = /X #(s) du(s)

Definition: A topological vectorspace is quasi-complete if every bounded (in the topological vectorspace
sense, not necessarily the metric sense) Cauchy net is convergent.

Proposition: Continuous compactly-supported functions f : X — V with values in quasi-complete (locally
convex) topological vectorspaces V' have Gelfand-Pettis integrals with respect to finite positive regular Borel
measures 1 on compact spaces X, and these integrals are unique. In particular, for a measure u with total
measure (X ) = 1, the integral [, f(x)du(s) lies in the closure of the convex hull of the image f(X) of the
measure space X.

Proof: See Bourbaki’s Integration. Also, in Rudin’s Functional Analysis it is proven that the previous
proposition holds for V' in which the convex hull of a compact set has compact closure, and in Bourbaki’s
Topological Vectorspaces it is proven that quasi-complete spaces have the latter property. In any case, the
uniqueness follows from the local convexity, by invoking the Hahn-Banach theorem. &

The following property of Gelfand-Pettis integrals is broadly useful in applications, such as justifying
differentiation under integrals.

Proposition: Let T : V — W be a continuous linear map, and let f : X — V be a continuous compactly
supported V-valued function on a topological measure space X with finite positive Borel measure p. Suppose
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that V is locally convex and quasi-complete, so that (from above) a Gelfand-Pettis integral of f exists and
is unique. Suppose that W is locally convex. Then

r( [ 1@ du@) = [ T dutw

In particular, T' ([, f(z)dp(z)) is a Gelfand-Pettis integral of T o f.

Proof: First, the integral exists in V, from above. Second, for any continuous linear functional A on W, Ao T
is a continuous linear functional on V. Thus, by the defining property of the Gelfand-Pettis integral, for
every such A

(AoT) ( [ 1@ du<x>) ~ [ 0T @) dute)

This exactly asserts that T ( f, f(z)du(z)) is a Gelfand-Pettis integral of the W-valued function T'o f. Since

the two vectors T ([ f(z)du(z)) and [y T f(z)dp(z) give identical values under all A € W*, and since W
is locally convex, these two vectors are equal, as claimed. &

Corollary: Let V' be quasi-complete (and locally convex). Then weakly holomorphic V-valued functions
are (strongly) holomorphic.

Proof: The Cauchy integral formulas involve continuous integrals on compacta, so these integrals exist as
Gelfand-Pettis integrals. Thus, we can obtain V-valued convergent power series expansions for weakly holo-
morphic V-valued functions, from which (strong) holomorphy follows by an obvious extension of Abel’s
theorem that analytic functions are holomorphic. See also Rudin’s Functional Analysis in which the hypoth-
esis that Gelfand-Pettis integrals exist is observed to be sufficient to reach this conclusion. &

Remark: The fact that for Banach-space valued functions weak holomorphy implies holomorphy is better-
known, but inadequate for applications, and not much simpler to prove than the more general fact. Of
course, in practice many spaces can be presented as limits or colimits of Banach spaces, and sometimes
weak-to-strong questions can be reduced to the Banach space case. However, the general result using quasi-
completeness is simpler and easier.

Corollary: Give the space Hom°(X,Y) of continuous mappings T : X — Y from an LF space X (strict
colimit of Fréchet spaces, e.g., a Fréchet space) to a quasi-complete space Y the natural weak operator
topology as follows. For z € X and p € Y*, define a seminorm p,, , on Hom°(X,Y) by

Peu(T) = |u(T(z))|
Then with this topology Hom°(X,Y) is quasi-complete.

Proof: The collection of finite linear combinations of the functionals
T — uw(Tx)

is exactly the dual space of Hom°(X,Y) when it is given the weak operator topology, so we can invoke the
previous result. &

Corollary: Let s — T be a weakly holomorphic Hom°( X, Y)-valued function, meaning that for every z € X
and p € Y* the C-valued function

s = w(Ts(x))

is holomorphic. Then s — T is holomorphic when Hom?(X,Y") is given the weak operator topology.

Proof: Collect the results above. L)
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In fact, a more general result asserting quasi-completeness of spaces of continuous linear mappings holds,
of which the above corollary is the special case in which the target space Y is given its weak topology.

Proposition: Give the space Hom°(X,Y') of continuous mappings 7' : X — Y from an LF space X (strict
colimit of Fréchet spaces, e.g., a Fréchet space) to a quasi-complete space Y the natural strong operator
topology as follows. For z € X and a convex balanced open subset U of Y*, define a seminorm p, , on
Hom°(X,Y) by

pru(T)=inf{t >0:Tz € tU}

Then with this topology Hom®(X,Y) is quasi-complete. s

Meromorphic continuation principle

Let V be a topological vector space. A system of linear equations X, in V is a collection
Xo ={(V;, T;,v;) :i € I}
where I is a (not necessarily countable) set of indices, each V; is a topological vector space,
T,V =V,

is a continuous linear map for each index i, and v; € V; are the ‘targets’. A solution of the system X, is a
vector v € V such that T;(v) = v; for all indices ¢. The set of solutions is denoted by Sol X,.

Now let the systems of linear equations X, = {V;,T;s,vi s} depend on a parameter s varying in a
connected complex manifold, the parameter space. Say that the parametrized linear system X = {X; :
s € S} is holomorphic in s if T; s and v; s are weakly holomorphic in s. (Note that {V;} does not depend
upon s.)

Definition: Let X = {X;} be a parametrized system of linear equations in a space V', holomorphic in s.
Suppose that there is a finite-dimensional space F' and a weakly holomorphic family of continuous linear
maps fs : I — V such that, for each s, Im fs D Sol Xg. Then say that {fs} is a finite holomorphic
envelope for the system X, and that X is of finite type.

Definition: Let U,,a € A be an open cover of the parameter space. Suppose that for each a € A we have
a finite envelope { s e U,} for the system

X ={X,:5€U,}

Then the collection
{fl9:seU,,a e A}

is said to be a locally finite holomorphic envelope of X.
Remark: If there is a meromorphic continuation vs of a solution, then by taking F' = C and
fs :C—>V

to be
fs(2) = 2 - v

we trivially obtain a finite holomorphic envelope for parameter values s away from the poles of vs. That is,
if there is a meromorphic continuation, then for trivial reasons there is a finite holomorphic envelope, and
the system is of finite type.

Theorem: Continuation Principle: Let X = {X; : s} be a locally finite system of linear equations
Ti,s V= V;
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for s varying in a connected complex manifold. Suppose that each V; is (locally convex and) quasi-complete.
Then the continuation principle holds. That is, if for s in some non-empty open subset there is a unique
solution vy, then this solution depends meromorphically upon s, has a meromorphic continuation to s in the
whole manifold, and for fixed s off a locally finite set of analytic hypersurfaces inside the complex manifold,
the solution v, is the unique solution to the system Xj.

Proof: Tt is sufficient to check the continuation principle locally, so let f; : F' — V be a family of morphisms
so that Im f; D Sol X, with F' finite-dimensional. We can reformulate the statement in terms of the finite-
dimensional space F'. Namely, put

K ={ve F: fs(v) € Sol X;} = { inverse images in F of solutions }

(The set K} is an affine subspace of F.) By elementary finite-dimensional linear algebra, X has a unique

solution if and only if
dim K} = dim ker f,

The weak holomorphy of T; ; and f; yield the weak holomorphy of the composite T; ; o f; from the finite-
dimensional space F' to V;, by the corollary of Hartogs’ theorem above. The finite-dimensional space F' is
certainly LF, and Vj; is quasi-complete, so by invocation of results above on weak holomorphy the space
Hom?(F,V;) is quasi-complete, and a weakly holomorphic family in Hom°(F,V;) is in fact holomorphic.

Take F' = C". Using linear functionals on V' and V; which separate points we can describe ker f, and
K] by systems of linear equations of the forms

kerfsz{(xl,...,acn)EF:Zaajxj:Q a€ A}

J

K} = { inverse images of solutions } = {(z1,...,%,) € F: Z bgjx; =cg, B € B}
J

where a, j, bg ;, cg all depend implicitly upon s, and are holomorphic C-valued functions of s. (The index sets
A, B may be of arbitrary cardinality.) Arrange these coefficients into matrices My, Ny, Qs holomorphically
parametrized by s, with entries

_ . _ bg, forl1<jy<nmn
Ms(a;]):a/aj Ns(ﬁa]):bﬁj Qs(ﬁ;]):{ Cﬁlg] for;i;a

of sizes card (A)-by-n, card (B)-by-n, card(B)-by-(n + 1). We have
dim ker f; = n — rank M

Certainly for all s
rank N; < rank (@),

and if the inequality is strict then there is no solution to the system X;. By finite-dimensional linear algebra,
assuming that rank Ny = rank (),
dim K} =n — rank B,

Therefore, the condition that dim K} = dimker f; can be rewritten as

rank My = rank N, = rank (),

Let S, be the dense subset (actually, S, is the complement of an analytic subset) of the parameter
space where rank M, rank N,, and rank(), all take their maximum values. Since by hypothesis S, N} is
not empty, and since the ranks are equal for s € (), all those maximal ranks are equal to the same number
r. Then for all s € S, the rank condition holds and X, has a solution, and the solution is unique.
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In order to prove the continuation principle we must show that X = {X;} has a meromorphic solution
vs. Making use of the finite envelope of the system X, to find a meromorphic solution of X it is enough to
find a meromorphic solution of the parametrized system

Y = {Ys}

where

Y, = {Z bgiz; = cg : for all 8}

with implicit dependence upon s. Let r be the maximum rank, as above. Choose s, € S, and choose an
r-by-r minor

Dso = {b[j,j . ﬁ S {61;---;161"}7.7 € {jl;---;j’r}}

of full rank, inside the matrix N,_, with constraints on the indices as indicated. Let S; C S, be the set of
points s where D, has full rank, that is, where det D, # 0. Consider the system of equations

Z =/ Z bgjx; =cg:p €{P1,...,0r}} (with s implicit)

je{jla"'ajr}

By Cramer’s Rule, for s € Sy this system has a unique solution (z1 s, ..., ). Further, since the coefficients
are holomorphic in s, the expression for the solution obtained via Cramer’s rule show that the solution is
meromorphic in s. Extending this solution by z; = 0 for j not among ji,...,jr, we see that it satisfies
the r equations corresponding to rows 8 € {f1,...,08-} of the system Y;. Then for s € S; the equality
rank Ny, = rank(); = r implies that after satisfying the first r equations of Y, it will automatically satisfy
the rest of the equations in the system Y.

Thus, the system has a weakly holomorphic solution. Earlier observations on weak-to-strong principles
assure that this solution is holomorphic. This proves the continuation principle. &
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Criteria for finiteness

Proposition: (Dominance) (Called inference by Bernstein.) Let X' = {X} be another holomorphically
parametrized system of equations in a linear space V', with the same parameter space as a system X = {X;}
on a space V. We say that X' dominates X if there exists a family of morphisms h, : V! — V, weakly
holomorphic in s, so that for each s

Sol X C hg(Sol X))

If X! is locally finite then X is locally finite.

Proof: The fact that compositions of weakly holomorphic mappings are weakly holomorphic assures that X
really meets the definition of ‘system’. Granting this, the conclusion is clear. &

Remark: The following criterion has a delicate feature: it requires holomorphy in the uniform-norm topology
on operators, not in the weak operator topology.

Proposition: (Banach-space criterion) Suppose V is a Banach space and X is given by one parametrized
homogeneous equation Ts(v) = 0, with T : V' — W, where W is also a Banach space, and where s — T is
holomorphic for the uniform-norm Banach-space topology on Hom®(V, W). Suppose that for some fixed s,
there exists an operator A : W — V so that the composite

Ao,

has finite-dimensional kernel V, and closed image V;. Then X is of finite type in some neighborhood of s,.

Proof: Let Vi be the image of Ao T, , and let V, be the kernel of A o T, . By the Hahn-Banach theorem
there exist continuous linear maps pry, : V — V, and pry, : V — V; which are ‘projections’ in the weak
sense that for 1 = 1,2

Prv; |y, = lv;
Consider a new system X in V, given by the equation
T,(v) =0

where
T.=pry,0AoTs:V =V

Since every solution of X is a solution of X', X' dominates X. Consider the family of maps
ws=pry, ®T,:V =V, &V

where V, ® V; is given the natural Banach-space topology. Since the family s — A o Ty is continuous for
the uniform-norm topology on Hom°(V, V), the same is true of the family s — ¢;. By construction, ¢, is
a bijection, and by the open-mapping theorem ¢, _ is an isomorphism. The (continuous) inverse 903_01 has an
operator norm 0 < §~! < 4+00. For s sufficiently near s, so that

s, — sl < 2
9030 (108 2

we find that 5 5
06(@)| 2 |5, ()] = [93(2) = P, @) 2 8- [o| = 5 - [o] > 5 - |al

This shows that ¢, is an isomorphism for s in a neighborhood of s,.
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Next, we show that the map s — ;! is holomorphic on a neighborhood of s,. To do this, it suffices
to observe that the uniform norm topology on Hom®(V,V, @ V1) when restricted to the subset of invertible
elements is the same as the uniform norm topology on Hom°(V, & V1, V) restricted to invertible elements.
And, indeed, this is so, because on a sufficiently small neighborhood of an invertible map T, the inversion
map T — T~! is continuous, by an elementary Banach-space computation.

Now we can easily see that there is a finite envelope for the parametrized system X':
Sol Xg = g5 ' (Vo @ {0})

and V, is finite-dimensional by hypothesis. &

Corollary: (Compact operator criterion) Suppose that V is a Banach space and that X is given by one
parametrized homogeneous equation Ts(v) = 0, with T, : V' — W, where W is also a Banach space, and
where s — T is holomorphic for the uniform-norm Banach-space topology on Hom®(V, W). Suppose that
for some fixed s, the operator T  has a left inverse modulo compact operators, that is, that there exists an
operator A: W — V so that

Ao ); =1y + (compact operator)

Then X is of finite type in some neighborhood of s,.

Proof: By compact operator theory theory V, is finite-dimensional. Another compact-operator argument
shows that V] is necessarily a closed subspace of V. (By Fredholm theory, in fact V] is of finite codimension
equal to the dimension of V,, but we don’t need this). This presents the hypotheses of the previous criterion.

L)

Example: Eisenstein series for S1L(2,7Z)

We illustrate the use of the continuation principle via the simplest Eisenstein series, namely, by proving
meromorphic continuation of the spherical Eisenstein series for the discrete subgroup I' = SL(2,Z) of
G =SL(2,R). Let K = SO(2) C G be the standard maximal compact subgroup. We restrict our attention
to right K-invariant functions on G. Define

— — 1 = . + — — y1/2 0 . — a 0 . X
N—{nm—(o 1>.$€R} A —{ay—( 0yl :y >0} A={ 0 a-! ca € R*}

and let
b 3 k
P:{(O *>}:ANcG

Put I' = SL(2,7Z). As usual, for complex s, define a C-valued function z — a2 on G by

s — S
ana,yk: =Y

with y > 0,n € N, k € K. We may simply write a® for the function z — a?.
Siegel sets Sy in G are subsets of the form
St = {nga, K : x € [0,1],y > t}
for fixed t > 0. Classical ‘reduction theory’ asserts that for any 0 < t < 1/3/2,
r-S;=d«¢

For a smooth function ¢ of moderate growth on (I'N P)\G, define an Eisenstein series attached to it
by

E(p)(9) = Y olv9)

INP\I'
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On the other hand, for a function f on (I' N N)\G define its constant term cpf along P by

crf(g) = / oy S0

Remark: The maps £ and ¢ commute with the right regular representation of G' on functions on G, since
both formation of Eisenstein series and formation of constant terms involve action on the left.

For Re(s) > 1, define the simplest Eisenstein series by Es(g) = E(a;).
The series for E; converges absolutely and uniformly on compacta, in g € G and s € C for Res > g, > 1.

A little work (recapitulating Godement’s proof of convergence of Eisenstein series) shows that (for
Re(s) > 1) E, is a function of moderate growth, i.e., for large N, a~~ E, is bounded on every Siegel set S;.

Proposition: The constant term c¢pF, of E; is of the form
cpE; = a® + bal™*
for a constant b depending upon s.

Proof: (Sketch) To understand this properly it is better to look at the Eisenstein series on the adele group
rather than the real Lie group. Then each of the two Bruhat cells contributes a summand to this constant
term, with the small cell returning simply a®, while the big cell presents an integral

/ a’®(wng) dn
Na

0 1 ) Without loss of generality we can take g = a € A, and then by conjugating a across n

1 0
and w (with suitable change of measure on N) we see that this integral is a scalar multiple of a'~*. (The

fact that this scalar has an Euler product, etc., is not of concern at the moment, so we need not do anything
further for now.) &

where w = (

Fix a large positive real number £ and let
L*(T'\G/K,?) = { f locally integrable on I'\G/K so that / 1f(z)]? a; %t dz < 400}
I\G

be a fixed Hilbert space of /-moderate-growth right K-invariant functions on I'\G. By the theory of the
constant term, a convergent Eisenstein series Fy lies in L?(T'\G/K,{) if £ is large enough.

Let 5 be a K-conjugation invariant test function on G. As usual we let such 7 act on any (quasi-complete,
locally convex) G-representation space V' by

n°v=/ n(g) g -vdg
G

Since v — nv is a K-morphism, K-isotypes are preserved by n. Then, since the (principal series) represen-
tation V; generated by g — aj has a one-dimensional K-fixed subspace, for any conjugation-invariant test
function g

n-a® = A;-a’

for a constant A; depending upon s. Since formation of Eisenstein series (in the region of convergence) is a
sum of left translates of a®, in that region we have

n'ES:)\s'Es
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Lemma: For any 7, the corresponding function s — Ay is entire in s € C. We can choose 17 so that A; is
non-constant, and in particular not identically zero. Further, given s,, there is a choice of n so that As;, # 0.

Proof: (omitted for now) L

Consider the holomorphically parametrized system X of equations in the space L*(T'\G/K, £):

(a2 —(1—8))-cpvs = (25—1)-a°
(n— As) - vs = 0 for all  in C°(G)™™Y

The first equation involves a map to distributions on A, since we have no assurance that cpv, is differentiable.

Remark: The second condition is chosen so that the operator annihilates the more mysterious summand
of the two summand in the constant term. We must not presume anything in advance about that more
mysterious summand, since in fact we wish to use the theory of Eisenstein series to prove things about such
entities.

Theorem: The Eisenstein series F; has a meromorphic continuation to s € C. Moreover, there exists a
meromorphic C-valued function ¢(s) such that E(1 —s) = ¢(1 — s)E; and ¢(s)c(1 —s) =1, and

cpE; =a® +c(s)a'~*

Proof: First, we prove uniqueness: the Eisenstein series FE, is the unique solution to X, for s in some
non-empty open set.

For Re(s) large positive the system X, has at least the solution FEj, since for large Re(s) the series for
E; converges uniformly on compacta. Suppose that for some fixed s with Re(s) large positive the system
X, has two distinct solutions v; and v,. Then their difference will satisfy

(0 — As)(v1 — v2)
{

cp(vy — v2) = by

0

1-—s

for some complex number b, where for each n € C(G)™ the eigenvalue of ¢, is A\;. By the ‘theory of
the constant term’, any left (I' N IV)-invariant function f of moderate growth on (N NT)\G with nf = f
for some p € CS°(G)™" has the property that f(z) — cpf(z) is of rapid decay as a, — +oo (in Siegel sets).
Therefore, on Siegel sets the difference v; — vy is

vy — vy = by' % + (rapid decay)
Hence v1 — vs is in L2(T\G/ K, £) N L*(T'\G).

Choose a real-valued test function i in C%°(()™G) such that n(g) = n(g~—!) for all g. The corresponding
operator R, in L*(T'\G) is bounded, and, by direct computation of its Hilbert-space adjoint, it is self-adjoint.
Further, refine the choice of 7 so that As is not constant, and is non-zero on a neighborhood of s, with Re (s,)
large. For complex s in a neighborhood of s,, using the inner product {,) on L*(T'\G), we have

)\3(f:f>:<Rnf7f>:<f:Rnf>:)\_s(f;f)

This proves that either A, is real or (f, f) = 0. Of course the latter holds only if f = 0. But by elementary
properties of holomorphic functions, on any non-empty open the non-constant holomorphic function A, takes
on some non-real values. This proves that f = 0, and proves the uniqueness.

Now we prove finiteness. Fix a cutoff point ¢, for sufficiently large real ¢,. For a function f on
N\G/K define its tail (above t,) to be

tail (f)(z) = {f(a:) if al > t,

0 else
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Define a truncation operator
trunc : L*(T\G/K,{) — L*(T\G/K,{)

by
trunc (f) = f — E(tail (cpf))

Then trunc (f) differs from f only in points z € G with al > t,, by subtracting from f(x) its average over
(TN N)\N. Note that L*(T\G/K, ¥) is trunc -stable.

Theorem: (Selberg, Gelfand, Piatetskii-Shapiro) Fix n € C®(K\G). For f € L*(T'\G/K,¥) the function
(n o trunc ) f is smooth, and all its derivatives are rapidly decreasing functions on Siegel sets. Further, the
operator n o trunc : L?(T\G/K,t) — L?*(T'\G/K,{) is compact. &

Remark: In fact, what is true is that on any Hilbert space of functions of sufficiently strong polynomial
decay the operator n is compact.

Now we can prove that X has a finite holomorphic envelope (is of finite type). Fix s, and prove that X,
has a finite envelope locally in a neighborhood of s,. Let v € L?(T'\G/ K, {) be a solution of X, for some s
close to s,. Then cpv is of the form ¢1a® + caa' ~* (for s away from finitely-many points) for some constants
c1, co possibly depending upon s, by the observation that a® and a'~* are two linearly independent solutions
of the differential equation required of the constant term.

From the theory of the constant term, since v satisfies nu = v for some n € C°(G)™ and is of moderate
growth on Siegel sets,
v = E(tail (cia® + coa'™%)) + (rapidly decreasing)

In particular, v € L?(T'\G/K,£) with £ chosen as above depending on the range of s. Put
L2(T\G/K, ) = {f € V; : trunc f = f}

and consider a new space V' = C® C @ L2(T'\G/K, ¥) with the natural topological vectorspace structure.
(The finite dimensional C? has a unique topology, and the direct sum has a unique topology whose restriction

to Vi, is the original. Thus, there is no choice of topology.) We define a family of continuous linear maps
T, : V' — L*(T\G/K,{) by
T,(b,c,h) = E(tail (ba® + ca' %)) + h

We must show that s — T is holomorphic in the uniform-norm operator topology on operators be-
tween these two Hilbert spaces. The restriction to L2(I'\G/K,£) is just the inclusion map, and does not
depend upon s, so is certainly holomorphic. Thus, it suffices to check that the family of linear maps
C? —» L?(I'\G/K, ) defined by

(b,c) = E(tail (ba® + ca' %))

is holomorphic in s. But, since ¢ — E(yp) is linear, it suffices to prove holomorphy of the L*(I'\G/K, £)-
valued function

s — E(tail (a®))
(which is entire in s). This is a direct computation.

Next, consider the homogeneous system X given via a single equation T} (v’') = 0, where
T!: V' - L*(T\G/K,¥)

is
T.=(n—Xs)oTs
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Note that because A; is a holomorphic scalar-valued function, and because 1 does not vary with s, the
parametrized family of operators
S =1 — A

is holomorphic in the uniform-norm topology on operators. It is enough to check that X' is of finite type. By
the compact-operator criterion it is enough to check that T, has a left inverse A modulo compact operators.
Define A : L*(T\G/K,£) — V' by

Av = (0,0, trunc v)

On the subspace L2(I'\G/K, ¢) the operator Ao T, is given by
AoT, (h) =ns, trunc (k) — As trunc (h) = nh — X, trunc (h)

That is, it differs from the non-zero scalar s, operator by the compact operator n o trunc . Since the space
L?(I'\G/K,¥) has finite codimension in V",

AoTs, = —Xs, + (compact operator)
which allows use of the compact-operator criterion. This finishes the proof of finiteness.

Since we have uniqueness and finiteness we can apply the continuation principle: the system X, has a
unique solution v, for s off a locally finite set of analytic hypersurfaces and s — v, is meromorphic in s.
This proves the meromorphic continuation of the Eisenstein series.

Further, we can obtain the functional equation satisfied by the constant term and by the Eisenstein

series, as in the statement of the theorem. Define ¢(s) by
cpE, =y® +c(s)y'~°

More precisely,

0 1—s
(y% —s)epEs = (1 —2s) - c(s) -y

Then ¢(s) has a meromorphic continuation since s has. Divide by ¢(s) and replace s by 1 — s:

0 5
g, ~ 1= s)epB(l —s)/c(l =) = (2s 1) -c(l = 5) -y

Thus, the constant-term part of the parametrized system defining FE; is also satisfied by E(1 — s)/c(1 — s).
Lemma: For n € C°(G)™, with )\, defined by

nNys = )\s

we have the relation

Proof: This results from the existence of the G-intertwining map

f— (a: — /N f(wnzx) dn)

from the principal series at s, in which ¢, is the spherical vector, to the principal series at 1 — s, in which
p1_s is the spherical vector, for non-trivial Weyl element w. &

Thus, by the uniqueness we have the equality (functional equation of the Eisenstein series)
E;=E(1-s)/c(1-2s)

By replacing s by 1 — s, we have E(1 — s) = E(s)/c(s) and hence ¢(1 — s) = ¢(s) L. L]
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