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[Draft]
We give a very simple, mostly local, argument for the equality of certain linear combinations of theta series
and certain Eisenstein series, a Siegel-Weil formula.

As Michael Harris has pointed out, the germ of this sort of argument is present in [Andrianov 1979], though
of course in a different language. Not surprisingly, with the benefit of sufficient hindsight, the proof of
Siegel-Weil far into the convergent region can be made a straightforward consequence of by-now-standard
constructions and ideas.

By its nature, this argument succeeds only for weights (K∞-types) sufficiently far into the regions of
convergence of Eisenstein series, in contrast to vastly more delicate work of Kudla-Rallis and of Jiang
concerning Siegel-Weil formulas and related matters outside the region of convergence.

In accidentally rediscovering this argument, I was reminded of the idea of comparing sizes of Hecke eigenvalues
of holomorphic Eisenstein series versus holomorphic cuspforms by [Harris 1981], where such a comparison
was used to give a very brief argument for rationality properties of holomorphic Eisenstein series. And Harris
has informed me that the idea of comparison of sizes of eigenvalues came to him from from Andrianov’s use
[Andrianov 1979] of such comparisons in his argument for Siegel-Weil.

With regard to evolution of styles and viwpoints: already in a note added in proof, in [Harris 1981], Harris
observed that a very general argument about boundedness of spherical functions, using [MacDonald 1971],
could replace baroque (needlessly detailed) arguments using Hecke operators. We use such ideas here.
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1. Statement of the theorem

Let Q be a quadratic form of dimension 2m over a totally real field k and suppose that Q is anisotropic
at every real place of k. This implies (by a part of reduction theory often called Mahler’s lemma) that the
quotient O(Q)k\O(Q)A is compact. In particular, we suppose that Q is positive-definite at every real place.

The Weil or oscillator representation of the adele group O(Q) × Sp(n) is a representation on Schwartz
functions f on (Q⊗ kn)A given by

h · f(x) = f(h−1x) (for h ∈ O(Q)A)

The representation is more complicated to define for g ∈ Sp(n), and depends upon a character ψ on A/k.
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For Φ in the Schwartz space on the adelized Q⊗ kn, the corresponding theta kernel ΘΦ is the function on
(Q⊗ kn)A

Θf (x) =
∑

y∈Q⊗kn

Φ(x+ y)

For a function f on O(Q)k\O(Q)A, the integral

θΦ,f =

∫

O(Q)k\O(Q)A

f(h) Θh·Φ(0) dh

is the theta lift of f (via the kernel made from Φ). Letting g ∈ Sp(n)A act, we have a function θΦ,f given
by

θΦ,f (g) =

∫

O(Q)k\O(Q)A

f(h) Θgh·Φ(0) dh

For f continuous, since the quotient is compact, the integral converges nicely, and yields a left Sp(n)k-
invariant function θΦ,f on Sp(n)A. In particular, taking f = 1, we have

θΦ(g) =

∫

O(Q)k\O(Q)A

Θgh·Φ(0) dh

On the other hand, the function
ϕ(g) = (g · Φ)(0)

is in the degenerate principal series

Iχ = {f onSp(n)A : f(pg) = χ(p) · f(g)}

where

χ

(

A ∗
0 >A−1

)

= (detA)m · χ(detA)

where χ is the quadratic character attached to the discriminant ofQ. We can form the Siegel-type (degenerate)
Eisenstein series

EΦ(g) =
∑

γ∈Pk\Sp(n)k

(γg · Φ)(0) =
∑

γ∈Pk\Sp(n)k

ϕ(γg)

This is nicely convergent for m > n + 1, that is, for dimQ > 2n + 2. We will see that the whole family of
more general Klingen-type holomorphic Eisenstein series arising in the proof need m > 2n for convergence,
or dimQ > 4n.

Theorem: (Siegel-Weil) Let Φ be in the Schwartz space on the adelized Q⊗ kn, with dimQ > 4n. Then

θΦ = EΦ

(Of course, it is quite possible that both sides are 0.)

Remark: When translated into classical terms, the left-hand side is a linear combination of (holomorphic)
theta series on Sp(n).

2. Ingredients of the proof

There are two global parts of the argument. First, there is the Klingen structure theorem which expresses
holomorphic automorphic forms as sums (rather than something more complicated, such as integrals) of
holomorphic cuspforms and holomorphic Eisenstein series. There is also the global part of the construction
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of the Weil/oscillator representation, in effect proving that a global quadratic character is a Hecke character
(rather than merely a random product of local characters), and Poisson summation (which can be used to
show directly that the χ is a Hecke character).

There are several local parts of the argument. First, there is the specific archimedean computation to see that
the ∞-type of the theta lift θΦ is a holomorphic discrete series of the same type as the Siegel Eisenstein series.
This is well-known, though perhaps by now so apocryphal that it deserves repeating. Second, there is the
Jacquet-module computation at a finite prime (at which Φ is sufficiently well behaved), to see that (almost
everywhere, locally) the representation generated by the theta lift matches that of the Siegel Eisenstein
series.

The last local issue consists of some relatively easy estimates to prove that the degenerate principal series
(generated locally almost everywhere by both the theta series and the Siegel Eisenstein series) cannot possibly
occur as the local representations generated by holomorphic cuspforms or the (non-Siegel) holomorphic
Klingen Eisenstein series. At heart, the essential point concerns boundedness of spherical functions, as in
[MacDonald 1971]. Again, it is not difficult to redo the parts of this we need.

If we were simply looking at SL(2), the Klingen idea is more elementary and classical, namely

θΦ −EΦ = holomorphic cuspform

But the local representations at almost all finite primes by the two terms on the left are the same, and
are irreducible unramified principal series, because the parameter is far away from the strip in which any
reducibility occurs. And these (irreducible) unramified principal series are not unitary (by simple local
estimates, after MacDonald), so could not arise as local representations generated by a cuspform, which
would be L2, and, thus, unitary.

3. Klingen’s structure theorem

The fact that holomorphic automorphic forms of sufficiently high weight are expressible as sums of cuspforms
and Eisenstein series is a peculiarity of the holomorphic case, and also does depend on having sufficiently
high weight (K∞-type).

The Eisenstein series
E(g) =

∑

γ∈Pk\Gk

ϕ(γg)

with

P = Siegel parabolic = popular parabolic = {

(

∗ ∗
0 ∗

)

}

ϕ

(

A ∗
0 >A−1

)

= | detA|s

on G = Sp(n) converges for Re(s) > n+ 1.

This follows, for example, from Godement’s criterion [].

This estimate yields the convergence of the holomorphic Siegel-type Eisenstein series of (scalar) weights
k > n+ 1.

Also, note that the holomorphic discrete series of lowest K∞-type

ρ :

(

A B
−B A

)

−→ det(A+ iB)k (with A+ iB ∈ U(n))

is a subrepresentation of the degenerate principal series (at real places)

Is = {f : f(pg) = χs(p) · f(g)}
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where

χs

(

A ∗
0 >A−1

)

= (detA)s

A holomorphic modular form for SL(2) = Sp(1) can be uniquely expressed as the sum of a holomorphic
cuspform and a holomorphic Eisenstein series. For larger groups the situation is similar, though somewhat
more complicated.

Theorem: (Andrianov, Klingen) Any holomorphic Siegel modular form on Sp(n) of scalar K∞-type is
uniquely expressible as the sum of a holomorphic cuspform, a holomorphic Siegel-type Eisenstein series, and
for each 0 < i < n an intermediate (now called Klingen-type) Eisenstein series, defined as follows.

First the classical definition illustrates the intent best. For Z =

(

z u
u> t

)

in the Siegel upper half space

Hn of degree n, with t r-by-r, etc., let

prr(Z) = prr

(

z u
u> t

)

= t ∈ Hr

As usual, let

j(g, Z) = det(cZ + d) for g =

(

∗ ∗
c d

)

∈ Sp(n)

The corresponding maximal parabolic is

P r =







∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 ∗ ∗ ∗






∈ Sp(n)

where the bottom right block is r-by-r, etc. For a holomorphic cuspform f on Hr of weight k, define the
Klingen-type Eisenstein series

Ef (Z) =
∑

γ∈P r

Z
\GZ

j(γ, Z)−k f(prrZ)

A crucial point about holomorphic Eisenstein series is the simplicity of their constant terms. For example,
given a holomorphic automorphic form F of weight k > 2 for SL(2,Z), with Fourier expansion

F (z) =
∑

n≥0

cn e
2πinz

the difference

F (z) − c0 ·
∑

γ∈PZ\SL(2,Z)

j(cz + d)−k

is a cuspform. This is true only because in the Bruhat cell decomposition of the constant term of the
Eisenstein series only the big-cell term contributes anything non-zero.

In the Fourier expansions of Siegel modular forms

F (Z) =
∑

T∈Λ

cT e
2πitr TZ

it is useful to talk about the rank of the indices T . The analogous and essential fact more generally is
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Lemma: In a Klingen Eisenstein series Ef made from a holomorphic cuspform f on Hr, Fourier coefficients
cT of Ef with rkT < r are all 0. And a generalized form of constant term exactly recaptures f , namely

lim
y−→+∞

Ef

(

iy · 1n−r ∗
∗ t

)

= f(t)

Granting this, we can see how to successively subtract Eisenstein series to leave a cuspform. Given a
holomorphic Siegel modular form F with Fourier coefficients CT , first

c0 = lim
y−→+∞

F ( iy · 1n )

The Siegel-type Eisenstein series E of the same weight as F is, after all, an extreme case of Klingen’s, and

Fn−1 = F − c0 · E

has 0th Fourier coefficient 0. Continuing,

f1(t) = lim
y−→+∞

(F − c0 ·E)

(

iy · 1n−1 ∗
∗ t

)

is a holomorphic cuspform on H1. Next,

f2(t) = lim
y−→+∞

(F − c0 ·E −Ef1
)

(

iy · 1n−2 ∗
∗ t

)

is a holomorphic cuspform on H2. Eventually,

fn(Z) = F − c0 · E − Ef1
− . . .−Efn−1

is a holomorphic cuspform on Hn.
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