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This paper is the product of an eight week research program that was headed by Professor Paul Garrett.
It was designed to give undergraduates the opportunity to experience research in mathematics. Originally I
had wanted to learn about topology and algebraic number theory, but due to time constraints I found that
I only could learn about the latter.

At the beginning of summer I wanted to be able to relate the math that I had already been taught to the
math I was learning. I then noticed that I could relate the two through a proof of the infinitude of primes.
This seemed ideal to me, as this was one of the many ideas i had learned earlier in the year. Although most
of the ideas are explained, If I were to continue this in the future I would concentrate on a proof that i could
not do; relating prime ideals to prime integers. With that I will begin with a proof that Euclid gave using
aspects described in number theory.

Suppose that there are only finitely many primes, p1 . . . pn where n is a finite number. Then let N =
p1p2 . . . pn + 1. By unique factorization, N has a prime divisor, call it p. Then p cannot be any of p1 . . . pn,
otherwise p would divide the difference N − p1p2 . . . pn = 1, which is impossible. Therefore p is still another
prime and we conclude that there are infinitely many primes.

I will proceed with the following background information that is necessary in order to understand the
basics about ring theory and field theory. It can be found in any book about Abstract Algebra. First is
the definition of a group. A group G is defined to be a set with a binary operation ∗ having the following
properties:
• a, b in G implies that a ∗ b is in G (closure)
• there exists an e ∈ G such that a ∗ e = a = e ∗ a for all a ∈ G (identity)
• (a ∗ b) ∗ c = a ∗ (b ∗ c) (associativity)
• for all a ∈ G there exists a−1 ∈ G such that a ∗ a−1 = e = a−1a. (Inverse)

In general a group does not needs to be commutative. A group that is commutative is said to be abelian,
the defining property being
• For all a, b ∈ G, a ∗ b = b ∗ a.

The term ‘operation’ does not always refer to a familiar tangible operation. It can mean the regular
operations of multiplication, addition . . ., but it can also mean an abstract form. They may seem odd and
without basis, but many times they can be helpful in group theory.

Some clear examples of groups (abelian in this case) are the usual integers, Z, under addition, the
rational numbers Q under addition, and the positive real numbers, R+ under multiplication. It is important
to note that while Z forms a group under addition it does not form a group under multiplication. This is
shown by the lack of an inverse for some elements. For example, 2×? = 1.

Some abstract entities have further operations and properties. A ring is a non-empty set R, with two
operations + and ·, satisfying
• closure under +
• existence of an identity for +
• associativity of +
• existence of an inverse for +
• commutativity of +
Note that these five conditions require that the set is an abelian group under addition. In addition, the set
R must have
• closure under multiplication
• associativity of multiplication
• distributivity: a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a for all a, b, c ∈ R.
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As with groups, a ring’s multiplication does not need to be commutative. A ring for which a · b = b · a
is said to be a commutative ring (not an abelian ring).

A commutative ring R is an integral domain if for a, b ∈ R a · b = 0 implies that either a = 0 or b = 0.
Although this may seem to be obviously always true, there are many examples (matrices, for example) where
this fails.

A ring is a division ring if every non-zero element has a multiplicative inverse. A ring R is a field if it
is a commutative division ring. A good example of a field is the set of rational numbers.

For a ring R, and a non-empty subset I of R, I is an ideal of R if :
• I is an additive subgroup of R.
• for r ∈ R, a ∈ I, ra ∈ I and ar ∈ I.

It is important to note that in commutative rings ar = ra, and therefore there is no distinction between
left, right, and two-sided ideals. In non-commutative rings this is not generally true and therefore ideals are
said to be either left, right, or two-sided.

An integral domain R is a principal ideal domain if every ideal I is principle, that is, if I = aR for some
a ∈ R.

Now that we have a background of basic group, ring, and field theory, we can move on to algebraic
number theory. Here we will learn about Dedekind domains, and how they relate to principal ideal domains.
First is the theory of the field of fractions, which as its name may suggest is a field made up of fractions.
The formal definition is stated thusly:

Suppose that R is a commutative integral domain. The field of fractions K of R is a field containing R
so that every non-zero element r ∈ R has an inverse (denoted 1

r ) in K. Every element of K can be written
in the form r

s for r, s ∈ R. This definition should seem particular familiar as it is the exact construction of
Q from Z. (Some things need to be checked to know that such K exists, but this is not hard, and is not
terribly interesting.)

One of the basic ideas of algebraic number theory is the idea of an algebraic number. Algebraic numbers
are defined to be roots of polynomial equations with rational coefficients. For example,

√
2 is an algebraic

number because it satisfies the equation x2 − 2 = 0. For that matter, all numbers expressible in terms of
radicals are algebraic numbers. It is easy to see that every integer a is an algebraic number since it satisfies
the equation x− a = 0.

Although some numbers are obviously algebraic just because of their form, in general it is not easy to
express in simpler terms the roots of high-degree polynomial equations, and conversely it is often difficult to
determine for which polynomial a complicated radical expression is a root. For example, it may be intuitively
clear that 5

√
3+
√

7 is an algebraic number, but it is not obvious to which polynomial equation it is a root. A
number that is not expressible as a root of a polynomial (with rational coefficients) is called transcendental.
Some common examples are π and e (the base of the natural logarithms).

An algebraic number that is a root to a monic equation with integer coefficients is called an algebraic
integer or simply an integer for short. A number field K is a finite field extension of Q.

Next is the definition of module. Like ideals, modules are left and right sensitive in general. For a ring
R, a module, in this case a right module, is a set M which has addition and also has scalar multiplication by
elements of R. That is to say that if m,n are in M and r ∈ R, then there are elements m+n and m ·r in M .
M is an abelian group under addition, and the scalar multiplication must have the following properties.
• m(rs) = (mr)s for all m in M and r, s in R (associativity)
• (m+ n)r = mr + nr and m(r + s) = mr +ms for all m,n in M and r, s in R (distributivity)
• m · e = m for all m in M , where e is the identity element in R (property of the identity)
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Not too surprisingly a left module is defined similarly, where in place of right scalar multiplication
there is left multiplication. When dealing with modules it is often necessary to work with submodules and
generators. For a given module M over a fixed ring R, a submodule of M is a subset M ′ of M such that:
• 0 ∈M ′
• if m,n ∈M ′ then m+ n ∈M ′
• if m ∈M ′ and r ∈ R, then m · r ∈M ′.

Two obvious cases of sub-modules are are the 0-module, 0 = {0}, and also M itself. When a submodule
M ′ of M is neither 0 nor the whole module M it is called a proper submodule of M . Clearly a submodule is
a module itself. Also, since R is a module over itself, then it is clear that an ideal a in R is an R-submodule
of R. Sub-modules and modules are an important idea of algebraic number theory. They are also needed to
explain Noetherian-ness and integrality which shall be discussed below.

In order to understand Dedekind domains it is important to give an explanation of integrality and
Noetherian-ness. These two concepts deserve an extensive discussion in their own right, but a definition
and an explanation will suffice here. First is integrality which is defined thusly: for o a ring and O a ring
extension of o, a ∈ O is integral over o if and only if there is a monic polynomial f in o[X] such that
f(a) = 0. This definition is very similar to that of algebraic number. In fact when o is a field then ‘algebraic
over’ and ‘integral over’ coincide.

An often useful theorem relating to integrality is that: An element a in O is integral over o if and only
if the ring o[a] is finitely generated as an o module. The proof of this can be found in Frohlich and Taylor
on page 27.

A definition and a theorem may not be the best way to understand integrality. Therefore here is an
example of how integrally closed-ness fails: Z[

√
−3]. This is not integrally closed since the non-trivial root

of unity ω=(−1+
√
−3)

2 lies in the field of fractions Q(
√
−3) and is integral over o because it satisfies the

polynomial X2 +X + 1 = 0.

Now that integrality has been established is is necessary to define Noetherian-ness. An o 0-module M
is called noetherian if all of its submodules are finitely generated over o. The ring o is a noetherian ring
if o is a noetherian o-module, i.e. if all the ideals of o are finitely generated over o. A great example of
noetherian-ness is that a principle ideal domain is automatically a noetherian ring. In addition, any finite
ring is a noetherian ring, and any finite module is a noetherian module.

Making use of the earlier definition of a module, I will now define noetherian-ness in the context of
modules, in particular in terms of ascending chains of modules. This condition puts a ‘limit’ on the modules
of a ring. Let M1 ⊂ M2 ⊂ . . ., denote an ascending sequence of o-modules. The chain is said to stabilize
if there is an integer k such that Mj = Mk for all j ≥ k. In addition to the ascending chain condition, a
module M is said to satisfy the maximal condition if any non-empty partially ordered set of submodules of
M has a maximum.

A theorem that goes with the conditions of noetherian are: Let M be a module. then the following are
equivalent:
•M is noetherian
•M satisfies the ascending chain condition
•M satisfies the maximal condition

Proof: 1 implies 2: Let {Mi} be an ascending chain of modules as above. Then
⋃
Mi is a submodule of M ,

so it is finitely generated. Choose k large enough so that the generators of
⋃
Mi are in Mk, so the chain

ends there.

2 implies 3: By contradiction assume that X is a partially ordered set of submodules that does not have
a maximum. Assume that for some i ≥ 1 there is a chain of modules M1 ⊂ . . . ⊂Mi of members of X, with
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proper inclusions. Since Mi is not maximal there is a further member and that then does not stabilize, and
there is an infinite ascending chain in M . This is a contradiction and therefore 2 implies 3.

3 implies 1: Given a submodule N of M , let X be the set of finitely generated submodules of N .
Clearly, X is not empty, so it has a maximum L. if L 6= N , there is some n in N with n not in L but
then L+ nR ∈ X, but this contradicts the maximality of L so L = N , and then N is finitely generated and
therefore it is noetherian.

Before proceeding with Dedekind domains it is important to understand unique factorization. For
example we often think of the ordinary integers as having unique factorization. In fact this has been proven
for a long time. In the integers a number like 6 is factored into to prime elements 2 and 3. In this case 2,3
are prime elements because they have no non trivial factorization. For a more formal definition we say that
an element v is irreducible if there is no factorization v = wx of v in R except for the trivial factors, meaning
that either w or x is a unit (has a multiplicative inverse) in R.

Unique factorization does not always hold, and in fact in a Dedekind domain that is many times the
case. In Dedekind domains the idea of ideals allows the factorization of ideals into prime elements. Therefore
a definition is called for. A Dedekind domain, named after the mathematician who first studied them, is an
integral domain, o, for which the following three conditions are true:

1) o is a noetherian Ring 2) o is integrally closed in its field of fractions K 3) all non-zero prime elements
of o are maximal ideals

For an ideal to be maximal means that the ideal is proper, and if contained inside of another proper
ideal, then the two ideals are equal. Otherwise stated formulaic-ally: For a 6= 0 and a ⊂ b ⊂ o for an ideal
b implies a = b.

It is also important to note that Dedekind domains have many of the same desired properties as do the
integers Z.

A theorem that will come in very handy is

Theorem: Any principle ideal domain (PID) is a Dedekind domain.

Proof: We must show that a PID has all three of the characteristics mentioned above. As has already been
stated any PID is automatically noetherian. Therefore number 1 is trivial. Next we will show that all of
the non-zero prime ideals are maximal. Let a = a · o denote a prime ideal of o, and also let b = b · o be a
maximal ideal which contains a. Therefore we have that a = bc for some c in o. Since a is a prime ideal,
either b ∈ a and so a = b as was needed to be shown, or else c = ad for some d in o. If the second is true
then we have that a = abd, so that b in o∗ and also b−1 in o which is a contradiction and therefore all prime
ideals are maximal. Finally let a

b be integral over o, with a, b ∈ o, b 6= 0, and gcd(a, b) = 1. Then a
b is a root

of a monic polynomial with some coefficients ci ∈ o, by definition. That is,(a
b

)n
+ cn−1

(a
b

)n−1

+ . . .+ c1

(a
b

)
+ c0 = 0

and by multiplying out the denominators

an + bcn−1a
n−1 + . . .+ bn−1c1a+ bnc0 = 0

this tells us that b divides an. Since gcd(a, b) = 1, it follows that b is in o∗, and therefore a
b ∈ o. Thus o is

integrally closed in its field of fractions. It is therefore shown that all PID’s are Dedekind domains.

Theorem: : In every number field of finite degree the ring o of algebraic numbers is a Dedekind domain.
In addition to this every non-zero ideal of o can be uniquely factored into prime ideals.

4



A proof of the first part can be found in any book on algebraic number theory. I will give the proof
of the second part. It is very similar to the proof that Euclid gave to prove the unique factorization of the
integers into prime numbers.

Proof: Note that every non-zero ideal a is a product of prime ideals. Indeed, if this were false, then there
is a maximal ideal a not such a product, and cannot be prime. Thus a ⊂ p and a 6= p for some prime p.
Then ap−1 ⊂ o and ap−1 6= a but contains a. Hence ap−1 has a factorization, which when multiplied by
p gives a factorization of a.

Given two fractional ideals a, b we say that a divides b if and only if there exists an ideal c such that
ac = b. This amounts to a ⊂ b, because in that case, we take ca−1b.

From the definition of prime ideal, we see that whenever a,b are two ideals and a divides ab then p
divides a or p divides b. Then given two factorizations

p1p2 . . .pr = q1q2 . . .qs

into prime ideals, we conclude that p1 divides the product on the right, hence divides some qi, that is to say
equal to some qi. Multiplying by p−1 on both sides of the equality, proceed with induction to prove that
r = s and that the factors on both sides are equal up to a permutation.

If a is a fractional ideal 6= 0 and c ∈ o is such that c 6= 0 and ca ⊂ o then c = p1 . . .pr and ca = q1 . . .qs.
Therefore a has the factorization

a =
q1 . . .qs
p1 . . .pr

If we cancel any prime appearing both in the numerator and in the denominator, then it is clear that the
factorization is unique.

Theorem: In every number field of finite degree there are only finitely many prime ideals that divide any
given (ordinary) prime number p.

This is clearly an important theorem as it relates the prime ideals to prime numbers, that up until now
had been separated. However, the proof of this is rather difficult and will be left out. Instead I proceed to

Theorem: A Dedekind domain with only finitely many prime ideals is a principle ideal domain, and as
such, every non-zero element is, up to units, the product of prime elements in a unique way.

Proof: Let p1 . . .ps be the prime ideals. Given any ideal

a = pR1
1 . . .prss 6= 0

select an element x in pi but not in p2
i and find an element α of o such that

α = xi
rimod(piri+1)

If
α = pe11 . . .pess

is a factorization of the ideal generated by α, then it is obvious that ei = ri, for all i, and that a = α.

It is now time to give Larry Washington’s proof of the infinitude of prime numbers. This proof relates
back to the theorems of unique factorization, principle ideal domains, and the number of prime ideals that
divide a prime number.

Consider the field of numbers a+ b
√
−5, such that a, b are in Q. The ring o of algebraic integers in this

field consist of the numbers of the above form, with a, b in Z. It is easy to verify that 2, 3, 1 +
√
−5, 1−

√
−5
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are prime elements of this ring, since they cannot be decomposed into factors that are algebraic integers,
unless one of the factors is 1 or −1. Also note that 6 can be written in the form 6 = 2 · 3 and also
6 = (1 +

√
−5) · (1 −

√
−5). This means that factorization is not unique (up to units). Therefore by a

previous theorem o is not a principle ideal domain. It therefore must have infinitely many prime ideals.
Since each (ordinary) prime number is divisible by a finite number of prime ideals in o, there must be
infinitely many prime numbers.

We have now reached the conclusion that there are infinitely many primes, and it has been done so in
two different ways.
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