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Introduction:
Hecke L-functions of idele class characters of number fields are a generalization of several major classes

of classical functions, including the Riemann and Dedekind zeta functions and Dirichlet L-series. Originally
conceived by E. Hecke, they were reinterpreted around 1950 by John Tate, who was able to reprove their
analytic continuation and functional equation using adelic Fourier analysis. Although my studies this summer
were focused on the details of Tate’s proof, the emphasis here will be on the L-functions themselves, along
with all the necessary preliminary information. In the first section, the places and completions of number
fields are introduced, multiplicative characters of the completions are defined and classified, and L-functions
of these local characters are defined. In the second, global L-functions of idele class characters are constructed
in terms of the local L-functions, and Hecke L-functions are introduced, along with their connection to the
Riemann and Dedekind zeta functions. In the final section, I include the theorem, proven by both Hecke and
Tate, that Hecke L-functions admit meromorphic continuations to the entire complex plane. I then conclude
by using this theorem to examine the analytic properties of the Riemann zeta function. Over the course of
the paper, some degree of familiarity with algebraic number theory and local fields is assumed. My source
throughout is D. Ramakrishnan and R. Valenza’s book Fourier Analysis on Number Fields.

Local L-factors:
We begin by defining L-functions of multiplicative characters of local fields, which we will then use to

construct the global L-functions that are to be our primary subject.
First, we need the following definitions:

Definition. Let F be a field. A function | · | : F → R is a valuation if it satisfies the following conditions:
(i) |x| ≥ 0 for all x ∈ F , and |x| = 0 iff x = 0.
(ii) |xy| = |x| |y|.
(iii) There exists c ∈ R+ such that for all x, y ∈ F , |x+ y| ≤ c max{|x|, |y|}.

If | · | satisfies (iii) with c = 2, it satisfies the triangle inequality, and we say that | · | is Archimedean. If
| · | satisfies (iii) with c = 1, then it satisfies the ultrametric inequality |x + y| ≤ max{|x|, |y|}, and we say
that it is non-Archimedean. We will also require a notion of equivalence of valutions.

Definition. Two valuations | · | and | · |′ are equivalent if there exists a positive real constant s such that
| · |′=| · |s. This defines an equivalence relation that partitions the set of valuations of F into equivalence
classes. The equivalence classes of nontrivial valuations are referred to as places of F .

Notice that if two valuations are equivalent, then they are either both Archimedean or both non-
Archimedean.

By Ostrowski’s Theorem, every valuation on Q is equivalent to | · |∞, the usual absolute value, or to
| · |p, a p-adic absolute value, for some rational prime p. In other words, the places of Q are in bijective
correspondence with the set consisting of the rational primes and the “prime at infinity.” It is clear, moreover,
that the set of non-Archimedean (or finite) places are in bijective correspondence with the set of rational
primes.

Now consider the case of an arbitrary algebraic number field K (i.e. K a finite extension of Q). Any
place ν of K defines, by restriction, a place u of Q in the sense that given a representative valuation | · |ν in
the place ν, we may define a valuation | · |u on Q by |x|u = |x|ν for all x ∈ Q, which in turn belongs to some
place u of Q. Whenever places ν of K and u of Q satisfy the relation |x|ν = |x|u for all x ∈ Q we say that
ν lies over u and write ν|u.

For any field F , let Fν denote the completion of F with respect to a representative valuation, say | · |ν ,
in the place ν. In other words, let Fν denote the smallest superset of F with the property that, with respect
to the metric induced by | · |ν , every Cauchy sequence of elements of F converges to an element of Fν .

The following proposition will be useful later:
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Proposition 1. Let K be a finite extension of Q, and let u be a place of Q. The number of places ν of K
lying above u is less than or equal to [K : Q], the degree of the extension K/Q.

Proof: In characteristic 0, every finite extension is separable. Hence K/Q is separable, and thus we know
that K = Q(α) for some α in the algebraic closure Q of Q. Let p(x) be the minimal polynomial of α over
F , and let n = deg(p(x)). Suppose p(x) factors over Qu as

p(x) =
r∏
j=1

pj(x),

r ≤ n, with corresponding roots α1, α2, . . . , αr ∈ Qu. Naturally, [K : Q] = deg(p(x)) = n. It suffices to show
that the number of places ν of K lying over u is less than the number of embeddings of K into Qu induced
by the assignments α→ αj . The proof falls into two sections:

(i) To see that whenever ν|u, Kν = Qu(αj) for some j, consider the following diagram:

Q Kν

| |
K = Q(α) ↪→ Kν

| |
Q ↪→ Qu

Notice that Kν contains Qu(β), where β is the image of α under the central embedding. Of course, β must
be a root of p(x), say αj . Since Qu(αj) is a finite extension of Qu, it is also complete, and contains both Q
and αj , meaning that Qu(αj) ⊇ Kν . So Kν = Qu(αj).

(ii) Any extension Qu(β) may be regarded as a topological vector space isomorphic to (Qu)m, where
m is the degree of the minimal polynomial of β over Qu. (Qu)m is endowed with a norm derived from the
absolute value | · |u on Qu. Thus each of the extensions Qu(αj) admits an absolute value | · | of this form
(which must agree with | · |u on Qu). When this absolute value is restricted to the image of K = Q(α) under
the embedding into Qu(αj), it induces a valuation | · |ν on K and a corresponding place ν. Namely, for all
x ∈ K, |x|ν = |σj(x)|, where σj denotes the relevant embedding. But then | · |ν agrees with | · |u on Q, since
for all x ∈ Q

|x|ν = |σj(x)| = |x| = |x|u.

So ν lies over u. By part (i), every ν|u arises in this way. Thus the number of ν lying over u is less than
or equal to the number of embeddings of K into Qu or, equivalently, the number of associations α → αj ,
which is less than or equal to [K : Q] = n. ///

Once again, consider Kν , the completion of an algebraic number field K with respect to a place ν. Since
K is a finite extension of Q, it must be the case that Kν is a finite extension of Qu, where u is the place
induced by the restriction of ν, as described above. As I noted earlier, we know all the possible places of Q,
and hence we also know all of the possible completions. From these we may determine the completions of
K. We may treat the cases in which ν is Archimedean and non-Archimedean separately:
(i) ν Archimedean: Clearly ν must lie over an Archimedean place of Q, but the only place of this kind

is the one corresponding to the standard absolute value | · |∞. So Kν must be a finite extension of
Q∞ = R, and thus Kν = R or C.

(ii) ν non-Archimedean: It must be the case that ν lies over some finite prime p. Hence Kν is a finite
extension of Qp, a p-adic field.

Now, before we may proceed, it is necessary to examine a few of the properties of non-Archimedean
local fields. Suppose that Kν is such a field. First, define the set of local integers Oν of Kν to be Oν =
{x ∈ Kν : |x|ν ≤ 1} which, one can readily verify, is a subring of Kν . The set of local units O×ν , which
forms a group under multiplication, is defined to be O×ν = {x ∈ Kν : |x|ν = 1}. In addition, one can show
that Oν contains a unique maximal ideal Pν = Oν \ O×ν = πνOν , where πν , the uniformizing parameter, is
an element of Oν of greatest possible absolute value less than one. (Note: this description of πν is in fact a
sensible one, since Oν can be shown to be a discrete valuation ring.)
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It follows by maximality of Pν that the quotient ring Oν/Pν is a field and, moreover, it is of finite order.
Let qν = |Oν/Pν |. In general, when we take a representative absolute value | · |ν from a non-Archimedean
place ν, we normalize it so that |πν |ν = q−1

ν .
It is perhaps useful to consider the non-Archimedean local fields of the form Qp, the p-adic fields. In

any Qp, the local ring of integers is Zp, the p-adic integers, the maximal ideal in each Zp is pZp (hence the
uniformizing parameter is p), and the order of the residue field is qp = |Zp/pZp| = |{Zp, 1 +Zp, . . . , (p−1) +
Zp}| = p. Using this result, we have:

Proposition 2. Let K be an algebraic number field, let ν be a non-Archimedean place of K, and let p be
the finite prime such that ν|p. Then qν = |Oν/Pν | = pkν for some kν ≥ 1.

Proof: Without too much difficulty, one can see that since Kν is a finite extension of Qp, the residue field of
Kν , Oν/Pν , is a finite extension of the residue field of Qp, Zp/pZp. Thus it must be the case that

qν = |Oν/Pν | = |Zp/pZp|kν (for some kν ≥ 1)

= pkν ///

Characters:
Using our classification of the completions Kν , we may now determine the forms taken by characters of

the multiplicative subgroups of completions of each type, and ultimately define L-functions of each type of
character. First, a few definitions:

Definition. Let Kν be as described above (not necessarily Archimedean or non-Archimedean). A character
of K∗ν (the set of nonzero elements of Kν) is a (continuous) homomorphism from K∗ν to C∗. A character χ
is said to be unitary if its codomain is S1. We say that a character is unramified if its restriction to the
group of local units, Uν is trivial. Otherwise we say that it is ramified.

Clearly, K∗ν ' Uν × Γ, where Uν = {x ∈ K∗ν : |x|ν = 1} and Γ = {y ∈ R∗+ : y = |x|ν for some x ∈ K∗ν}.
Thus any character χ may be factored as χ = µ| · |s, where µ is the pullback of a unitary character on Uν ,
uniquely determined by the restriction of χ, and s ∈ C.

For each completion Kν , the characters and corresponding L-functions are as follows:
(i) Kν = R: The only unitary characters of K∗ν = R∗ are the trivial character µ = 1, which maps every

element of R∗ to 1, or the sign character µ = sgn, which maps every x ∈ R∗ to x
|x| . Given that any

character χ factors as described above, we may define

L(χ) = L(µ| · |s) =
{

π−
s
2 Γ( s2 ) µ = 1

π−
s+1

2 Γ( s+1
2 ) µ = sgn

where, as usual, Γ(x) =
∫∞

0
e−ttx−1dt.

(ii) Kν = C: One can see, first, that the only unitary characters on Uν = S1 are of the form µn : eiθ 7→ einθ,
for some n ∈ Z. Thus the only continuous homomorphisms from K∗ν = C∗ to itself are of the form

χs,n : reiθ 7→ rseinθ

for n ∈ Z and s ∈ C. Define

L(χs,n) = (2π)−(s+
|n|
2 )Γ(s+

|n|
2

)

(iii) Kν is a finite extension of some Qp: In this case, for any character χ of K∗ν , we simply define

L(χ) =
{

1
1−χ(πν) if χ is unramified

1 otherwise.

In any of the cases above, we define the L-function corresponding to a character χ to be L(s, χ) =
L(χ| · |s) for all s ∈ C. Naturally, the right hand side is given by the relevant formula outlined above.
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Global L-functions:
Now that we have defined local L-functions, we may proceed to global considerations. Ultimately, we

will construct global L-functions as the products of these local factors.
Let K be an algebraic number field. The adele group of K is defined to be the restricted direct product

of the completions Kν of K with respect to the local rings of integers, Oν . In other words,

AK = {(xν) ∈
∏
ν

Kν : x ∈ Oν for all but finitely many places ν of K},

where the product is the set-theoretic one, taken over all places ν of K. Clearly, AK forms a group under
componentwise addition.

More important for our purposes, though, is the idele group IK of K, defined to be the restricted direct
product of the multiplicative subgroups K∗ν of the completions of K with respect to the local unit groups
O×ν , i.e.

IK = {(xν) ∈
∏
ν

K∗ν : x ∈ O×ν for all but finitely many places ν of K}

It is clear that IK is a group under componentwise multiplication. In addition, there is an algebraic embed-
ding

K∗ ↪→ IK
x 7→ (x, x, x, ...).

This embedding is well defined, since K∗ embeds in each K∗ν , and for every x ∈ K∗, |x|ν = 1 for almost all
places ν of K. We may define a norm | · | on the adeles (and, by restriction, on the ideles) as follows: for
any (xν) ∈ AK , let |(xν)| =

∏
ν |xν |ν .

As before, we are interested in the characters of the idele group of K. In particular, we will be concerned
with the idele class characters:

Definition. An idele class character is a (continuous) homomorphism from IK to C∗ that is trivial on the
image of K∗ in IK under the diagonal embedding mentioned above.

Fix an idele class character χ. For each place ν of K, define a local character

χν : K∗ν → C∗

t 7→ χ(1, . . . , t, 1, . . . , 1)
↑

νth component

Then χ(y) =
∏
ν χν(y). It follows from a general result concerning the characters of restricted direct products

that the χν are trivial on O×ν (are unramified) for all but finitely many places ν. It is now possible to define
the global L-function of such a character in terms of the local versions defined above.

Definition. Let χ be an idele class character. The L-function of χ is defined to be

L(χ) =
∏
ν

L(χν),

wherever this is convergent.

To ensure that this definition is a useful one, we must check that the product converges somewhere.

Theorem 1. Let χ be an idele class character of exponent σ = Re(s) > 1. Then L(χ) =
∏
ν L(χν) is

absolutely convergent and nonzero.

Proof: We may write χ = χ0| · |s, where χ0 is unitary and Re(s) > 1. Recall that χν is ramified for finitely
many ν and, as such, L(χν) = 1 at a finite number of places. As such, to establish the convergence of L(χ)
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we need only concern ourselves with the places at which χν is unramified. By definition of L(χν), then,∏
ν

|L(χν)| =
∏
ν

| 1
1− χν(πν)

|

=
∏
ν

| 1
1− χ0,ν(πν)|πν |s

|

=
∏
ν

| 1
1− χ0,ν(πν)q−sν

|

We must show that the logarithm of this product converges:

log(
∏
ν

|L(χν)|) = log(
∏
ν

1
|1− χ0,ν(πν)q−sν |

)

=
∑
ν

log(
1

|1− χ0,ν(πν)q−sν |
)

=
∑
ν

Re(log(
1

1− χ0,ν(πν)q−sν
))

= Re(
∑
ν

log(
1

1− χ0,ν(πν)q−sν
)

Using the power series expansion of log( 1
1−x ), we have

log(
∏
ν

|L(χν)|) = Re(
∑
ν

∑
m>0

χ0,ν(πν)mq−msν

m
)

Since χ0,ν is unitary and Re(q−msν ) ≤ |q−msν | = q−mσν , it suffices to show that the sum
∑
ν

∑
m>0

q−mσν

m
converges for all σ > 1. Each finite place ν of K lies above some finite place of Q corresponding to a rational
prime p, and for any ν|p, qv is a positive power of p, by Proposition 2. In addition, the number of places ν
of K lying above p is bounded above by n = [K : F ], by Proposition 1. We may rewrite the sum as

∑
ν

∑
m>0

q−mσν

m
=
∑
ν|p

∑
p

∑
m>0

q−mσν

m

=
∑
ν|p

∑
p

∑
m>0

p−mkvσ

m
(kv ≥ 1)

≤
∑
ν|p

∑
p

∑
m>0

p−mσ

m

≤ n
∑
p

∑
m>0

p−mσ

m

= n log(
∏
p

1
1− p−σ

)

= n log(
∑
n≥1

1
nσ

)

But the sum
∑
n≥1

1
nσ converges absolutely for σ > 1, so we have established the absolute convergence of

L(χ). ///
So our definition was a reasonable one. Using this global L-function, we may make the following

definition:
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Definition. Let χ be an idele class character. Define the corresponding Hecke L-function to be L(s, χ) =
L(χ| · |s), where the function on the right hand side is the global L-function defined above. For our purposes,
it is convenient to define finite and infinite versions:

L(s, χf ) =
∏

ν finite

L(s, χν)

L(s, χ∞) =
∏

ν infinite

L(s, χν)

Naturally, L(s, χ) = L(s, χf )L(s, χ∞).

It is now possible to demonstrate the way in which the Riemann and Dedekind zeta functions arise as
the finite parts of a Hecke L-function. Let χ = 1, the trivial idele class character. Then each of the induced
characters χν are trivial for all places ν of K since, by definition,

χν(t) = χ(1, . . . , 1, t, 1, . . .) = 1

for all t ∈ K∗ν . Clearly, then, χν is unramified as a character of K∗ν for all places ν of K. Thus the finite part
of the Hecke L-function is

L(s, χf ) =
∏

ν finite
L(s, χν)

=
∏

ν finite

1
1− χν(πν)|πν |sv

=
∏

ν finite

1
1− |πν |sv

=
∏

ν finite

1
1− q−sν

where we have used the fact that each χν is trivial.
As we noted earlier, every finite place ν of Q corresponds to a rational prime p. Also, at the place p,

the order of the corresponding residue field is qp = |Zp/pZp| = p. Hence, in this case,

L(s, χf ) =
∏
p

1
1− q−sp

=
∏
p

1
1− p−s

= ζ(s)

,

the Riemann zeta function, for Re(s) > 1.
Now, with χ still the trivial idele class character, consider L(s, χf ) over an arbitrary number field K.

All of the non-Archimedean places ν of K correspond to prime ideals Pν in the global ring of integers OK .
Recall that the absolute norm of any ideal A in OK is defined to be N(A) = [OK : A]. In particular, for
any prime ideal Pν , N(Pν) = [OK : Pν ] which, in fact, is equal to qν , the degree of the residue field OK/Pν .
Hence, in this case,

L(s, χf ) =
∏

ν finite

1
1− q−sν

=
∏

P prime

1
1−N(P )−s

=
∑
A 6={0}

1
N(A)s

where A ranges over the set of all nonzero ideals of OK . In this case, then, L(s, χf ) = ζK(s), the Dedekind
zeta function of K, for Re(s) > 1.

Hecke L-Functions: Meromorphic Continuation and Functional Equation
For any character χ, let χ∨ = χ−1| · |. We may now state the chief result proven in Tate’s thesis.
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Theorem 2. Let χ be a unitary idele class character. Then L(s, χ), which is initially defined and holomor-
phic in {Re(s) > 1} admits a meromorphic continuation to the whole s-plane, and satisfies the functional
equation

L(1− s, χ∨) = ε(s, χ)L(s, χ)

where ε(s, χ) =
∏
ν ε(χν | · |

s) ∈ C∗. Moreover, this meromorphic continuation is entire unless χ = | · |−iτ , τ ∈
R, in which case there exist poles at s = iτ and s = 1+iτ with residues−V ol(C1

K) and |N(DK/Q)|−
1
2 V ol(C1

K)
respectively.

Tate’s proof is too involved to be given here. In short, though, he realized the local L-factors as local
“zeta integrals” of the form Z(f, χ) =

∫
K∗ν

f(x)χ(x)d∗x, where χ is a character of K∗ν and f is a nice function
on K∗ν . The global L-functions are realized as global “zeta integrals” of the form Z(f, χ) =

∫
IK
f(x)χ(x)d∗x

where χ is an idele class character, and f is a nice function on the ideles of K. He was able to prove the
meromorphic continuation and functional equations of the local and global zeta integrals and, using these
results, to prove the theorem above. The calculation of the constants appearing in the formulas for the
residues of L(s, χ) is extremely complicated and will not be presented here either. Although the values are
not critical for our purposes, one may say, for what it’s worth, that C1

K is the norm one idele class group,
the quotient of I1

K = {(xν) ∈ IK : |x| = 1} by K∗, and the volume is taken with respect to the quotient
measure on the idele class group CK = IK/K∗. DK/Q is the global different of K/Q, which is defined to be
the inverse fractional ideal of D−1

K/Q = {x ∈ K : trK/Q(x · OK) ⊆ Z}.
We may now consider the theorem’s implications for the analytic continuation of the Riemann zeta

function.
Recall that, when K = Q, we have ζ(s) = L(s, χf ), where χ is the trivial idele class character and

Re(s) > 1. It is immediate from the theorem that ζ(s) admits a meromorphic continuation to the entire
complex plane. The theorem also allows us to identify its poles. Clearly χ is of the form | · |−iτ , with τ = 0.
We know then that the corresponding Hecke L-function L(s, χ) has simple poles at s = 0 and s = 1. Now,
since the only infinite place of Q is the one represented by the usual absolute value, and since the completion
of Q with respect to this place is R, the character induced by χ at this infinite place, say χω will be a
character of R∗. As we noted above, this induced character will be trivial. If we refer back to our definition
of the L-functions of characters of R∗, we see that

L(χω) = π−
s
2 Γ(

s

2
)

Given that
L(s, χ) = L(s, χf )L(s, χ∞)

= ζ(s)L(s, χω)

= ζ(s)π
s
2 Γ(

s

2
),

We can see that the simple pole of L(s, χ) at s = 0 may be accounted for by the gamma function which,
as we know, has a simple pole there. The gamma function is analytic at s = 1, though, so ζ must have a
simple pole there. Finally, since the gamma function is nonzero everywhere, this must be the only pole of
the analytic continuation of the Riemann ζ function.

While this result has been known for more than a century, it is merely the simplest example of the
power of theorem. Since Hecke L-functions generalize a host of classical functions, including the Dedekind
zeta function of an arbitrary number field and Dirichlet L-series, its true implications are far more profound.
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