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After exploring a variety of di�erent areas in number theory, I ended
up concentrating for the last two weeks on p-adic numbers. p-adic numbers
show up in a variety of ways, from the study of certain Diophantine equations
to modern physics. In this paper I will de�ne p-adic numbers, explain some
of their properties, and present the de�nition of the p-adic absolute value,
which with more time could be used for the creation of Qp , the completion
of the rational numbers with respect to the p-adic absolute value.

First of all, we de�ne the p-adic expansion fp(x) of a rational number x
to be the unique way of expressing x as the sum

X

n�n0

anp
n;

with ai 2 Z, 0 � ai < p. Before we can take this too seriously, we should be
sure that all x 2 Q have such an expansion.

Theorem Every rational number x has a p-adic expansion as de�ned above.

Proof: First, note that if both x1 and x2 have a p-adic expansion, then
x1x2 will have a p-adic expansion. With this in mind, to show that a number
x = a

b
has a p-adic expansion, all we need to show is that x1 = a and x2 =

1
b

have p-adic expansions.
The proof that a positive integer a has a p-adic expansion can be shown

by induction. First of all, the numbers 0 and 1 have p-adic expansions for
every prime, namely:

fp(0) = 0 and fp(1) = 1:

Next we assume that all natural numbers x, for 1 � x < a, have a p-adic
expansion. To prove that a also has a p-adic expansion, we rely on the fact
that for any combination of a and p, there is a unique whole number � such
that

�p � a < (�+ 1)p:
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Let a0 = a � �p. By the inductive hypothesis, � has a p-adic expression.
Assuming we know the p-adic expansion of �, we can explicitly �nd the
p-adic expansion of a:

fp(a) = a0 + pfp(�):

The proof that a positive number 1
b
has a p-adic expansion is a little

more diÆcult. From the �rst part of this proof, we know that b has a p-adic
expansion.

1

b
=

1

fp(b)
=

1

a0 + a1p+ a2p2 + � � �+ anpn + � � �
:

We need some di�erent way of expressing this fraction. To get this, recall
that 1

1�z
=
P1

n=0 z
n: If a0 6=0, then a0 has an inverse mod p. (An inverse

mod p is �ne, rather than a traditional inverse, because say a0a
�1
0 = mp+1,

then the 1 is all that will remain out front, while the mp's will be carried
over to the a1 term.) Therefore, multiplying the top and bottom of the
fraction by a�10 will put it into a form from which we can quickly see that
there will be a p-adic expansion. If a0 = 0 we don't have to do much more,
just multiply the top and bottom of the fraction by p�1a�11 .

Finally, we observe that

fp(�1) =
1X

n=0

(p� 1)pn:

That allows us to express negative numbers as their p-adic expansions. With
that, we have shown that every rational number indeed has a p-adic expan-
sion. |

At the moment we have
Q � Qp ;

and we do not know whether there are elements of Qp which are not equiv-
alent to elements of Q . There are more things we can realize about Qp .
First of all, Qp is a �eld. Because it seems rather intuitive, the proof is
omitted. For a proof, see [Vladimirov 94]. Also, in order for in�nitely long
p-adic numbers to converge, we must deal with p-adic numbers in a context
in which pn will get smaller as n gets larger.

This next section will be devoted to showing that Qp is strictly bigger
than Q : To do this, we introduce a new method for obtaining the p-adic
expansion of rational numbers, and show that this method can be used for
numbers which are not rational.
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Say, for instance, that we want to �nd the 5-adic expansion for x = �7.
We can �nd this by considering the congruences:

x2 = 49 mod 5n

for every n � 1. Now, for the �rst congruence,

x2 = 49 mod 51;

we have, as could have been expected, two di�erent solutions: x = 2 and
x = 3. Because 7 = 2 mod 5, we can guess that it is going to be the
beginning of the 5-adic expansion of 7. Solving

x2 = 49 mod 52

gives us x = 7 and x = 18. The 5-adic expansion of 7 is already done,
because as n gets larger, x = 7 will remain a solution. Remembering the
x = 2 from the �rst solution, we can get the 5-adic expansion of 7:

7 = 2 + 1�5:

The 5-adic expansion of �7, which is what we were after in the �rst place,
will be more interesting. Continuing in the same way as before we will get:

�7 = 3 + 3�5 + 4�52 + 4�53 + � � � :

To analyze our results further, we will use the following de�nition:

De�nition: Let p be a prime. We say a sequence of integers �n such that

0 � �n � pn � 1 is coherent if, for every n � 1, we have

�n+1 = �n mod pn:

Note that a sequence which will give us a p-adic expansion must be
coherent (simply because of what a p-adic expansion is). As examples, both
of our sequences above were coherent. Now we try to obtain a (coherent)
p-adic expansion for a number which is not rational. Let's try to determine
a 7-adic expansion of the square root of 2. We begin with the equation

x2 = 2 mod 7:

3



3 provides us with a solution to this (and we will ignore the second solution).
Now, for the sequence to be coherent, the next solution must be of the form
x = 3 + 7k.

(3 + 7k)2 = 2 mod 72

9 + 42k + 49k2 = 2 mod 49

7 + 42k = 0 mod 49

k = 1:

That means that the second number in our (coherent) sequence is 10. The
third number, if it exists, will have to be of the form x = 10+49k, but rather
than grinding out solutions, we will settle for proving that the sequence can
be continued inde�nitely.

Theorem: If one has a solution of the form

x2 = b mod p;

with p > 2, then the solutions obtained when raising p to higher powers exist,

and will form a coherent sequence.

Proof: The proof will be by induction. The hypothesis of the theorem takes
care of the �rst part of the induction. Now assume we have x2n = b mod pn,
so x2n = b+k1p

n for some k1. We want to know if there exists a k2 such that

(xn + k2p
n)2 = b mod pn+1:

Expanding and replacing x2n with b+ k1p
n we get

b+ k1p
n + 2xnk2p

n + k2p
2n = b mod pn+1:

Cancelling out the b's and the term divisible by pn+1 we get

k1p
n + 2xnk2p

n = 0 mod pn+1:

Now, dividing by pn we get

k1 + 2xnk2 = 0 mod p:

We will now show that no matter what k1 is, we can choose k2 so that
the equality is true. Assume k1 = 2m (i.e., is even). Then let k2 = (p �
m)x�1n mod p. Assume k1 = 2m+ 1, then let k2 =

p�k
2 x�1n . Of course, x�1n
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will exist because p is a prime. Therefore we will be able to carry on the
sequence in�nitely. |

Even with just our one solution of x2 = 2 (the 7-adic solution), we
have shown that there is at least one element in Qp which is not in Q , and
therefore Qp is strictly bigger than Q .

In what will at �rst seem to take us in a new direction, we de�ne the
p-adic valuation vp on the rational numbers.

De�nitionThe p-adic valuation of a non-zero integer n is the unique number

vp(n) such that

n = pvp(n)n0 with p-n0:

We extend this de�nition to a rational number x = a
b
by saying

vp(x) = vp(a)� vp(b):

Finally, we de�ne vp(0) = +1.

Now we de�ne the p-adic absolute value.

De�nitionFor any x 2 Q not equal to 0, we de�ne the p-adic absolute value
of x to be

j x jp= p�vp(x);

and if x = 0, we set j x jp= 0.

We refer to that as an absolute value, but to ensure that it is an absolute
value we must verify the following three properties (which, if true, will show
that this absolute value is a non-archimedian absolute value.)

1. j xj = 0 if and only if x = 0.

2. jxyj = jx jj y j for all x; y 2 Q .

3. jx+ yj � maxfj x j; j y jg.

To show this is true, we will rely on the following Lemma:

Lemma For all x and y 2 Q, we have

1. vp(xy) = vp(x) + vp(y)

2. vp(x+ y) � min fvp(x); vp(y)g.
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Proof: We begin by assuming that both x and y are integers. Let x = pax0

and y = pby0, with both x0 and y0 not divisible by p. Now

xy = pa+bx0y0;

and therefore vp(xy) = vp(x) + vp(y). To prove the second part of the
Lemma, we assume that a � b. (We can always reverse the roles of x and y

if we need to.) With this in mind,

x+ y = pa(x0 + pb�ay0):

Therefore, vp(x+ y) = a = max fvp(x); vp(y)g: Now we must make sure this
is also true when x is not an integer but a rational number. Assume x = a

b

and y = c
d
, then:

vp(xy) = vp(
ac

bd
) = vp(a) + vp(c)� vp(b)� vp(d) = vp(

a

c
) + vp(

b

d
):

And,

vp(
a

b
+

c

d
) = vp(

ad+ bc

bd
) � min fvp(ad); vp(bc)g � vp(bd):

Now, assume that the minfvp(ad); vp(bc)g = vp(ad). Then,

vp(
a

b
+

c

d
)�vp(ad)� vp(bd) = vp(

a

b
):

This concludes the proof of the Lemma. |

We are now ready to show that the p-adic absolute value as we de�ned
it is, in fact, an absolute value and, more speci�cally, is a non-archimedian
absolute value.

Theorem:Our de�nition j x jp above de�nes a non-archimedian absolute

value on Q .

Proof:

1. For the �rst property, note that the absolute value cannot equal zero
for any �nite vp(x). Therefore jxjp = 0 if and only if x = 0.

2. We can prove the second property simply by using the Lemma and
manipulating the de�nitions.

jxyjp = p�vp(xy) = p�vp(x)�vp(y) = jxjpjyjp:
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3. Once again, we can prove this property directly from the Lemma.

jx+ yj = pvp(x+y)�p�min fvp(x);vp(y)g = max fp�vp(x); p�vp(y)g

= max fjxj; jyjg:

This concluces the proof. |

With more time it could be shown that the p-adic numbers dealt with in
the �rst half of the paper are a completion of Q with respect to the p-adic
absolute value dealt with in the second half of the paper.
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