Problem 2, p. 94

"2. Use the algorithm given in Theorem 2 to find a Groebner basis for each of the following ideals. You may wish to use a computer algebra system to compute the S-polynomials and remainders. Use the lex, then the grlex order in each case, and then compare your results."

Ideal	G_{Lex} (x>y>z)	G_{Grlex} (x>y>z)
$\langle x^2y - 1, xy^2 - x \rangle$	$g1 = x^{2}y - 1$ $g2 = xy^{2} - x$ $g3 = x^{2} - y$ $g4 = y^{2} - 1$ $g5 = y^{3} - y$	Same g1,,g5 as in G_{Lex}
$< x^2 + y, \ x^4 + 2x^2y + y^2 + 3 >$	$g1 = x^{2} + y$ $g2 = x^{4} + 2x^{2}y + y^{2} + 3$ $g3 = 3$	same as G_{Lex}
$\langle x-z^4, y-z^5 \rangle$	$g1 = x - z^4$ $g2 = y - z^5$	$g1 = -z^{4} + x$ $g2 = -z^{5} + y$ $g3 = -xz + y$ $g4 = yz^{3} - x^{2}$ $g5 = -y^{2}z^{2} + x^{3}$ $g6 = x^{4} - y^{3}z$