Solutions for midterm 1

1. Since Q is a field, every non-zero polynomial in a single variable with coefficients in \mathbb{Q} has a finite number of roots in \mathbb{Q} (in fact the number of roots is at most the degree of the polynomial). But the set of all integers is infinite. Therefore a non-zero polynomial cannot vanish at every integer.

Thus the only polynomial that vanishes at every integer is the zero polynomial. But the zero polynomial vanishes at every point of \mathbb{Q}^1 . Therefore the set of all integers in \mathbb{Q}^1 is not an algebraic variety.

Answer: No.

2. Since g and h are polynomials in a single variable over a field, the ideal (g,h)is generated by the GCD of g and h. To find this GCD we divide g by h with a remainder:

emainder:
$$x^2 - x - 2$$

$$x^3 + x^2 - x - 1$$

$$x^3 - x^2 - 2x$$

$$x^3 - x^2 - 2x$$

$$2x^2 + x - 1$$

$$2x^2 - 2x - 4$$

$$3x + 3$$
Thus the remainder is $x = 3x + 3$

Thus the remainder is r = 3x + 3. The GCD of g and h equals the GCD of h and r. Since r = 3(x+1) and 3 is a non-zero element of the field \mathbb{Q} , the GCD of h and r equals the GCD of h and x+1. To find the GCD of h and x+1 we divide h by x + 1 with remainder:

$$\begin{array}{c|c}
x + 1 & x - 2 \\
x + 1 & x^2 - x - 2 \\
\hline
 & x^2 + x \\
 & -2x - 2 \\
\hline
 & -2x - 2
\end{array}$$

Thus the remainder is zero, i.e. the GCD of g and h is x+1. Therefore the ideal (g,h) equals the ideal (x+1). The polynomial f belongs to the ideal (g,h)=(x+1)if and only if f is divisible by (x+1). We divide f by x+1:

$$\begin{array}{c|c}
x-1 \\
x^2-2 \\
x^2+x \\
-x-2 \\
-x-1 \\
-1
\end{array}$$

Thus the remainder is $-1 \neq 0$, i.e. f is not divisible by x+1. Therefore the polynomial f is not in the ideal (g, h).

Answer: No.

- 3. (a) lex ordering: $x^3y^4z^2 > x^3y^3z^3 > y^5z^6$ (b) grlex ordering: $y^5z^6 > x^3y^4z^2 > x^3y^3z^3$
- (c) grevlex ordering: $y^5z^6 > x^3y^4z^2 > x^3y^3z^3$

4.

$$g_{1} = -xy^{3} + x$$

$$g_{2} = x + y^{2}$$

$$x^{3} + 3x^{2}y^{2} + y^{4}$$

$$x^{3} + x^{2}y^{2}$$

$$2x^{2}y^{2} + y^{4}$$

$$2x^{2}y^{2} + 2xy^{4}$$

$$-2xy^{4} + y^{4}$$

$$-2xy^{4} + 2xy$$

$$-2xy + y^{4}$$

$$-2xy - 2y^{3}$$

$$y^{4} + 2y^{3}$$

Answer: the remainder equals $r = y^4 + 2y^3$

5. A polynomial f belongs to a monomial ideal I if and only if every monomial appearing in f is divisible by some monomial generator of I. But the monomial x^4y^2z appearing in f is divisible by neither xyz^2 , nor x^5y , nor yz^3 .

6a. The leading monomials of
$$f$$
 and g are x^2y and x^3 . Their LCM is x^3y . The leading terms of f and g are $3x^2y$ and $-5x^3$.
$$S(f,g) = \frac{x^3y}{3x^2y}(3x^2y - 4y^3) - \frac{x^3y}{-5x^3}(-5x^3 + 2xy^2) = -\frac{4}{3}xy^3 + \frac{2}{5}xy^3 = -\frac{14}{15}xy^3.$$
 Answer: $S(f,g) = -\frac{14}{15}xy^3$.

6b The leading monomial of S(f,G) is xy^3 and it not divisible by the leading monomial of f nor by the leading monomial of g. Therefore the remainder of S(f,g)upon division by the basis $G = \{f, g\}$ is non-zero. By the Buchberger criterion, $\{f,g\}$ is not a Groebner basis of the ideal I=(f,g).

Answer: No.