
How do robot swarms behave? What graphs can tell us
Daniel Boley

University of Minnesota
Minneapolis, United States

boley@umn.edu

Maria Gini
University of Minnesota

Minneapolis, United States
gini@umn.edu

Yi Zhang
University of Minnesota

Minneapolis, United States
yi.zhang@vanderbilt.edu

ABSTRACT
This paper proposes a novel way of modeling swarms of robots.
The main idea we propose is to apply to swarm robotics theoretical
methods and algorithms developed for random walks on graphs.
Most mathematical models used for swarm robotics are continu-
ous models based on ODEs as opposed to discrete models. Many
properties of random walks on graphs can be derived from the
so-called graph Laplacian matrix and its pseudo-inverse. Examples
include the first passage time to reach a goal, average round-trip
times, probability of passing a landmark, and the like. Using dis-
crete graph structures will also allow us to model swarms of robots
having a mix of different behaviors. Using graph models is a major
innovation in swarm robotics that we believe has the potential to
provide new theoretical tools for the study of swarms of robots. In
this paper we model the movement of multiple robot agents on an
arena discrete in time and space. We then show how several critical
properties for the discrete model can be estimated rapidly using
linear algebra tools from spectral graph theory.

KEYWORDS
Robot swarms, graph theory, Markov chains, graph Laplacian

ACM Reference Format:
Daniel Boley, Maria Gini, and Yi Zhang. 2023. How do robot swarms be-
have? What graphs can tell us. In ARMS workshop at 22nd International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2023),
London, United Kingdom, May 29, 2023, 7 pages.

1 INTRODUCTION
In swarm robotics, a large group of simple robots coordinates im-
plicitly to collectively perform tasks. The robots in general have
limited individual capabilities in terms of sensing, processing power,
and inter-agent communications, but the number of robots makes
up for the individual limitations.

Robot swarms can be used for many real-world tasks, such as
cleaning an area [67], demining, rescuing people, or mowing a lawn,
which require complete coverage of the space and where ideally
each location should be visited only once to avoid unnecessary
repetitions, or tasks that require maintaining surveillance over an
area to detect intruders, fire, etc. [37, 45], or to map an unknown
area [43].

A task of special interest in the swarm community, due to its
real-world applications, is “foraging”, where robots search for target
objects, such as food, and bring them back to a centralized location
called the nest. Multiple robots can be released to search for targets
within a predefined area. We denote this process as “searching”
because robots don’t know the target locations.

ARMS workshop at 22nd International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2023), , May 29, 2023, London, United Kingdom. © 2023

Robot searching has many real-world applications. For instance,
collecting trash in an area and looking for survivors are examples
of real-world problems that can be modeled as foraging tasks. In
this paper, we define the searching time as the time required by
at least one of the robots to first reach a target. For many tasks,
especially time-sensitive ones, an estimate of searching time is often
necessary. Furthermore, having an estimated search time can help
design multi-robot systems that are more efficient at searching, for
instance, to decide how many robots to use, where to deploy them,
and sensors they would need.

Traditionally, researchers run a large number of simulations
and average the results to obtain empirical models of robot behav-
iors. Simulation (e.g. using ARGoS [61]) can be time-consuming,
especially when the region to be searched is large. Experimental
investigations involving real robots (see [22] for an example) are
costly and can even be impractical. We are instead interested in
developing mathematical models of swarm behaviors that could be
used to estimate how the robots will behave before carrying out
any experiments or simulations.

To model swarm behaviors we need to specify how robots move.
Randomwalk (RW) is frequently used for exploration, because of its
limited processing requirements and scalability [32, 52, 57]. Random
walk is a discrete-time stochastic process where successive random
steps are used. When the random steps are time-independent, the
process can be described by a discrete-time Markov chain [47].

When the probability of the next step depends on the direction
in which the robot has moved previously [38, 57, 60] the motion
is called Correlated Random Walk (CRW) [42]. In CRW the state
transition probabilities depend on both the location and orientation
of the walker [55]). CRW is not the most efficient way of walking
but it is commonly used to model insect behaviors, which is the
motivation behind a large fraction of the research in swarms. CRWs
are more feasible than random walk with real robots (e.g., most
wheeled robots are non-holonomic and cannot rotate in place, as
required for a standard random walk).

In this work, we develop computation models that can rapidly
compute aggregate properties and probability distributions of search
time, coverage time, time to collision, etc., as the number of robots,
targets, and obstacles vary.

As an example, an important property of random walks that has
been studied extensively is the “first passage time,” or Hitting time
(HT), which is the average time to first visit a node while doing a
random walk (RW) from another node in a given network [49, 53].

Not all properties can be modeled using a random walk model.
Some properties may be modeled only approximately because they
would involve varying the transition probabilities over time as the
world state varies.

Our aim is to develop and measure empirically models that are
able to capture swarm behaviors well enough to make global pre-
dictions about their performance.

To the best of our knowledge, the spectral analysis of directed
graphs has not been applied directly to multi-robot systems or
swarm robots. Thus, we aim to leverage some of the methods to
rapidly compute aggregate properties of digraphs and to develop a
computation model that can rapidly and accurately approximate
properties such as the HT in the multi-robot searching process.

2 RELATEDWORK
An enormous body of work exists on the analysis of random walks
on graphs such as estimating hitting times, centrality measures,
cover times, and other aggregate properties. The relation between
the undirected graph Laplacian and connectivity of undirected
graphs were treated in, e.g., [16, 24, 29, 66]. The computation of
graph connectivity properties based on the graph Laplacian was
used in specific applications in [3] (expander graphs), [31] (rec-
ommender systems), [65] (computer vision). All of these were for
undirected graphs.

Fewer papers exist discussing directed graphs (digraphs) in lim-
ited contexts: [11] has a short treatment within a text mostly de-
voted to the symmetric case; [14] treats the Matrix tree theorem
and extends some results to the directed graph case; [17, 71] extend
eigenvalue bounds for the Cheeger constant, previously developed
for undirected graph, to digraphs by using closely related undi-
rected graphs. Computing the eigenvalues of the appropriate graph
Laplacian matrix is much easier than computing the Cheeger con-
stant itself, so these eigenvalues yield a quick estimate on the overall
connectivity of the digraph.

Much fundamental material on random walks, Markov chains,
recurrence times, and related topics can be found in these books [2,
44, 47] and survey on random walks [49] and the survey [53] which
discusses a wide range of properties of random walks including
cover and hitting times, stationary probabilities in both discrete
and continuous time.

Another thread of research has given some theoretical bounds on
how many robots are needed to explore a grid using a systematic
finite-state algorithm with a collection of robots with constant
memory and limited sensors [5], or can observe all other robots’
positions [21, 64], in the context of a cleaning or exploration task.

Some recent papers have addressed the analysis of different
exploration strategies for one or more agents over a graph [45,
57, 58]. The papers [28, 41, 48, 70] use spectral properties of the
underlying Markov chain to derive bounds on the hitting and cover
times. The papers [10, 51] give hitting and cover times for specific
graphs (e.g., cycles) or graphs that maximize the cover time, while
[6] does the same for a tree. Hitting times for multiple simultaneous
random walks are treated in [59, 63]. The paper [34] generalized
the fundamental matrix to the fundamental tensor encapsulating
betweenness measures.

Many results for HT exist. In particular, the average time to reach
a given node can be computed based on the fundamental matrix
associated with the probability transition matrix of the network
[36], by treating the target node as an absorbing state. Boley et al.
[9] showed how to obtain average HTs from any node to any node

in a directed graph at once using the asymmetric graph Laplacian,
and later showed one way to obtain this rapidly using sparse matrix
methods [8]. In the HT literature, there are also papers about HT
higher moments [19, 44], upper bounds [10], and distributions [46].
In addition, there are studies on the speed-up of a random walker
search when there are multiple searchers [4, 26, 59] and random
walker collisions [7, 33].

Obtaining a-priori estimates of hitting times, cover times, and the
like is very useful if one can avoid the expense of long simulations
since they allow one to adjust the system to optimize performance.
Several authors [4, 10, 13, 26, 27] found the bounds on the cover time
vary greatly depending on the starting node, the number of agents,
and even the layout of the specific graph. For a two-dimensional
𝑛×𝑛 grid (the layout closest to the graphs of interest in this paper), it
was found that a small number of independent agents can reduce the
cover time proportionally, but beyond𝑂 (log𝑛) agents it can quickly
saturate [4, 27]. The papers [59, 63] also address how the cover time
varies with the number of agents. These theoretical results suggest
that some coordination between the agents, or carefully staging
the agents initially in different parts of the domain, would make a
big difference. These papers are focused on ordinary walks over an
undirected graph.

A few papers derive overall estimates of the probabilities of colli-
sions theoretically [7, 33, 62] but these do not involve simulations of
robot agents. Collisions are hard to model using a memoryless pro-
cess with transition probabilities fixed in advance, so some papers
have incorporated an average collision probability fixed upfront
(e.g., [39] & references therein).

Another body of papers derives facts about the probability dis-
tribution of hitting times, cover times, or mixing times beyond the
mean values, some in terms of higher moments or fitting a standard
probability distribution [15, 23, 25, 46, 72]. The papers [40, 42] ob-
tained formulas for the hitting time probability distribution using
the Laplace and Z transforms, respectfully. The higher moments
are used for network seed-set selection in [30].

The computation of the moments involves the solution of large
linear systems involving various forms of the graph Laplacian or
probability transition matrix, as in [19, 20] based on the GTH algo-
rithm [35]. Later works were based on a mix of direct and iterative
methods [8, 18]. Unlike the other methods, the method sketched in
[8] is a pure iterative method, and was used successfully in [68] to
empirically fit a probability distribution to the hitting times.

Most of the work described so far is theoretical, with no experi-
mental work with real robots or physics–based simulators. In the
swarm community, instead, most of the work is experimental, done
using simulators such as ARGoS [61].

Many swarm algorithms use random or correlated random walk,
because of their simplicity, but not all. Some instead synchronize
the robot motions through the environment, like in [67], where
robots clean a non-convex region using the dirt on the floor as
the main means of inter-robot communication and follow a strict
protocol to guarantee full coverage.

A recent survey of foraging algorithms [50] analyzes the state
of the art in foraging, with special attention to the foundations of
swarm research as well as to applications of robot swarms.

A specific version of foraging called “Central Space Foraging,”
is characterized by having the collection area (goal node) in the

center of the space, which is circular. The problem has been studied
systematically [1] to analyze the performance of a few different
algorithms. Specifically, the robots move randomly, or follow a
deterministic path such as a multi-robot Archimedes spiral, or move
radially from the center. The comparisons in the paper are done
experimentally, but the paper provides theoretical upper bounds
for the time needed to complete the task.

A theoretical study of emergent behavior in multi-agent systems
of simple agents with limited memory and limited communication
has yielded some theoretical guarantees for a model problem. A
typical result [12, 56] involves a uniform triangular/hexagonal grid
with periodic boundary conditions. They provide theoretical guar-
antees that a congregation or dispersion behavior will naturally
arise in their system of simple robots depending on the setting of a
parameter or the presence of “food.”

3 PROPOSED APPROACH
In the swarm community, the environment used for searching tasks
is typically 2D, most often with continuous space. In our approach,
we use a discrete space modeled as a graph, and use a correlated
random walk (CRW) to model the motion of the robots in discrete
time. We generalize the grid representation with a graph, and use
methods developed for graphs to estimate the behaviors of the
robots in the swarm.

We show how we can obtain the approximate distribution of
the basic property, the hitting time, by a direct calculation, thereby
avoiding the expense of running simulations. Analogous properties
can be obtained using the non-symmetric graph Laplacian and
other matrices derived therefrom [8, 48]. The example is simple but
sufficient to provide a better understanding of the idea. To simplify
the notation, we number the states in the random walk so that the
absorbing state is numbered last.

3.1 Computation of HT Mean and Variance
Using the transition matrix P associated with this network, the HT
mean h𝜇 and variance h𝜎2 from states outside the sensing range to
the absorbing state can be determined. Here the 𝑖-th component of
the vector h𝜇 is the average number of steps when starting from
node 𝑖 before reaching the absorbing state (numbered 𝑛), and the
𝑖-th component of h𝜎2 is the corresponding variance. Following
[36], we partition P to get Q, the probability transition matrix
corresponding to the non-absorbing states, via:

P =

[
Q r
0 1

]
. (1)

Here r is a single vector whose 𝑖 entry is the probability of transi-
tioning from state 𝑖 to the absorbing state. These formulas can be
easily generalized to the case of multiple absorbing states where
r is a matrix. This matrix is row stochastic: Pe = e, where e is a
vector of all ones of appropriate dimension. This implies that

Qe + r = e =⇒ r = (I − Q)e (2)

The fundamental matrix N of P is [36]:

N = (I − Q)−1 . (3)

The probability of reaching the absorbing state on exactly the 𝑘-th
time step, starting from node 𝑖 , is [Q𝑘−1r]𝑖 .

In the following, we use the following identities:

(a) N2 = I + 2Q + 3Q2 + 4Q3 + 5Q4 + · · ·
(b) N3 = I + 3Q + 6Q2 + 10Q3 + 15Q4 + · · ·
(c) 2N3 − N2 = I + 4Q + 9Q2 + 16Q3 + 25Q4 + · · ·

(4)

The vector of means, h𝜇 , can be determined by:

h𝜇 = 1 · r + 2 · Qr + 3 · Q2r + · · · = N2r = Ne (5)

where e is a vector of all 1s of appropriate dimension. One computes
this by solving the system of equations:

(I − Q)h𝜇 = e (6)

This system can be efficiently solved for by iterative methods such
as Restarted GMRES [8, 54], even if I − Q is extremely large (e.g.,
100, 000 × 100, 000 or larger) as long as it is sparse (see below).

The vector of variances, h𝜎2 , can be calculated by by first com-
puting the uncentered second moment [44]:

ĥ𝜎2 = (2N − I)h𝜇 = 2Nh𝜇 − h𝜇 (7)

where h2𝜇 means elementwise squaring. This formula can be derived
by applying the identity (4c) to the following definition of the
uncentered second moment:

ĥ𝜎2 =

∞∑︁
𝑘=1

𝑘2Q𝑘−1r (8)

Subtracting the squares of the means yields the centered second
moment, namely the variance:

h𝜎2 = 2Nh𝜇 − h𝜇 − h2𝜇 , (9)

where h2𝜇 means elementwise squaring. The quantity Nh𝜇 can be
calculated by applying the same fast iterative method used to solve
(6) to the system (I − Q)x = h𝜇 . Then the HT standard deviation
h𝜎 can be obtained.

3.2 Hitting Times for Different Targets
In the above analysis, we fixed the nest as an arbitrarily chosen
target node, numbered 𝑛 for convenience. In this section, we show
how the computations carried out for one target can be used to
obtain similar quantities for another target node. As a simple matter,
the set of equations corresponding to (6) can be obtained by drop-
ping row and column 𝑘 instead of 𝑛, or equivalently by permuting
the numbering of the nodes so that the new target is numbered 𝑛.
If space allows, one can precompute the entire inverse N for one
target, and then rapidly compute the inverse for a different target
by making low rank corrections, based on the following lemmas
[8].
Lemma 1 [8].

(a) Let L =

(
L11 l12
l𝑇21 𝑙𝑛𝑛

)
be an 𝑛 × 𝑛 irreducible matrix such that

nullity(L) = 1. Let M = L† be the pseudo-inverse of L partitioned
similarly and assume v𝑇 L = 0, Lu = 0, where u, v are partitioned as
u𝑇 = (u𝑇1 , 𝑢𝑛) and v𝑇 = (v𝑇1 , 𝑣𝑛). Assume 𝑢𝑛 > 0 and 𝑣𝑛 > 0. Then
the inverse of the (𝑛 − 1) × (𝑛 − 1) matrix L11 exists and is given by

L−1
11 =

(
I𝑛−1 +

u1u𝑇1
𝑢2
𝑛

)
M11

(
I𝑛−1 +

v1v𝑇1
𝑣2𝑛

)
= (I𝑛−1 , −u1/𝑢𝑛)

(
M11 m12
m𝑇
21 𝑚𝑛𝑛

) (
I𝑛−1

−v𝑇1 /𝑣𝑛

)
.

(b) Conversely, we can write L and M = L† in terms of L11, L−111 , u,
v as follows

L =

[
L11 − 1

𝑢𝑛
L11u1

− 1
𝑣𝑛

v𝑇1 L11
v𝑇1 L11u1
𝑢𝑛𝑣𝑛

]
=

[
I𝑛−1

− 1
𝑣𝑛

v𝑇1

]
L11

[
I𝑛−1, − 1

𝑢𝑛
u1

]
M =

[
M11 m12
m𝑇
21 𝑚𝑛𝑛

]
=

[
I𝑛−1−

u1u𝑇1
u𝑇 u

− 𝑢𝑛
u𝑇 u ·u

𝑇
1

]
L−1
11

[
I𝑛−1−

v1v𝑇1
v𝑇 v ,− 𝑣𝑛

v𝑇 v ·v1
]

Since the rows and columns can be permuted arbitrarily, these
formulas allow us to compute the inverse of any (𝑛 − 1) × (𝑛 −
1) principal submatrix rapidly from the inverse of just one such
principal submatrix I − Q of (1).

3.3 Fast Solution of Linear Systems
The system of linear equations (6) derived from a random walk
enjoys special properties that make it possible to solve them using
methods that are faster that using a standard elimination algorithm.
Here we give a sketch on how this works. For details, see [8] and
references therein. First we note that Q can be embedded within a
larger irreducible probability transition matrix for a random walk
with no transient states:

P̃ =

[
Q r
s𝑇 𝑡

]
(10)

with strictly positive stationary probabilities 𝜋𝑖 > 0, 𝑖 = 1, . . . , 𝑛
such that 𝝅𝑇 P̃ = 𝝅𝑇 . Here 𝝅𝑇 = (𝜋1, . . . , 𝜋𝑛). The underlying
graph is strongly connected, in the sense that there is a path from
any node to any other node and back again. Let Π =Diag(𝝅) de-
note the diagonal matrix with the stationary probabilities on the
diagonal. Then the diagonally scaled matrix I− P̂ = Π

1/2 (I− P̃)Π−1/2

enjoys the property that its left and right nullspaces are the same,
spanned by the single vector

√
𝝅 = (√𝜋1, . . . ,

√
𝜋𝑛)𝑇 , and that

I − P̂ +
√
𝝅
√
𝝅
𝑇 is positive definite (though not symmetric). Hence

an iterative method based on multiplying vectors by this matrix
will converge [8]. Examples of such iterative methods include sim-
ple Richardson iteration, or Krylov space methods like GMRES.
Because these iterative methods depend only on forming matrix
vector products involving the matrix, the cost is proportional to the
number of nonzero entries in the matrix, i.e., the nunber of edges
in the underlying graph. The matrix I − P̂ is singular, of course, but
its pseudo-inverse can be written using an ordinary inverse:

(I − P̂)† = (I − P̂ +
√
𝝅
√
𝝅
𝑇)−1 −

√
𝝅
√
𝝅
𝑇
. (11)

Hence we can compute the matrix-vector product (I − P̂)†v for
any vector v by using a fast iterative method to solve the linear
system (I − P̂ +

√
𝝅
√
𝝅
𝑇)x = v. Putting this all together means

that solving the system (6) can be accomplished by embedding it
within a strongly connected graph, scaling it by Π

1/2 , and using
Lemma 1 to reduce the problem to solving a system involving the
pseudo-inverse (11), solved using a fast iterative method.

3.4 Peripheral Nodes
In certain foraging situations it may be important to ensure one
has explored all parts of a graph that might be assembled from
sensor data. Instead of using a visualization of the graph to man-
ually identify the hard-to-reach areas of the graph, an automated

method can better ensure consistency in identifying such nooks
and crannies. The spectral analysis of graphs, or specifically the
pseudo inverse provides one possible way to do this. The Kirchoff
index is a measure of the connectivity of the graph, and is defined
as the sum average round-trip commute time in a random walk
between any pair of nodes. It has been shown that this quantity is
equal to the trace of the pseudo-inverse of the scaled combinatorial
Laplacian L̂ = Π(I−P), even for strongly connected directed graphs
[8]:

K =
∑︁
𝑖 𝑗

H(𝑖, 𝑗) = 𝑛 ·
∑︁
𝑗

�̂� 𝑗 𝑗 = 𝑛 · Tr(M̂), (12)

where �̂�𝑖 𝑗 is the 𝑖, 𝑗-th element of the matrix M̂ = L̂†, and Tr(A) =∑
𝑗 A𝑗 𝑗 stands for the trace of matrix A, namely the sum of the

diagonal elements. We can measure how peripheral a node 𝑞 is by
measuring the average hitting time between any pair of nodes but
restricting oneselves to paths that go through the node 𝑞. If we
denote this “average node peripherality” as K𝑞 , it can be shown [9]
that this quantity equals

K𝑞 =
∑︁
𝑖 𝑗

H𝑞 (𝑖, 𝑗) = 𝑛 · Tr(M) + 𝑛2𝑚𝑞𝑞 = 𝑛 · (K + 𝑛 ·𝑚𝑞𝑞). (13)

Hence the diagonal entries of the pseudo-inverse M can imme-
diately identify which nodes are more central (and perhaps be a
bottleneck) and which nodes are more peripheral. This measure
of “peripherality” differs from the stationary probability 𝜋𝑞 mainly
for graphs that have loosely connected components or long stringy
paths.

3.5 Distribution from Moments
Starting with the estimates for the first two moments (mean and
variance) one can fit an appropriate distribution for the hitting
time. This can be used to extrapolate the behavior of a set of robot
agents under different circumstances. Since the hitting time is non-
negative and has no intrinsic upper limit, we can fit a Gamma
Distribution whose cumulative distribution function (CDF) [the
probability the target will be reached in time less than or equal to
𝑇] is:

CDF(𝑇) =
∫ 𝑇

0

𝛽𝛼

Γ(𝛼) 𝜏
𝛼−1𝑒−𝛽𝜏𝑑𝜏 (14)

with

𝛼 =
(mean(𝑇))2

var(𝑇) , 𝛽 =
mean(𝑇)
var(𝑇) , (15)

where 𝑇 is the random variable (h − hmin in this case), and 𝛼, 𝛽 are
the shape and rate parameters written in terms of the mean and
variance of 𝑇 . The hitting time cannot be less than the shortest
path length hmin, hence we shift the Gamma distribution by this
amount.

4 COMPUTATIONAL EXAMPLE
We use the methods described in Section 3 to directly compute
the probability distribution of hitting times and related properties
for a specific example. We validate the results by comparing the
estimates obtained by direct calculation with those from simulation.
Analogous properties can be obtained using the non-symmetric
graph Laplacian and other matrices derived therefrom, as sketched
in Section 3.

Figure 1: 30×30 arena showing 3 starting positions. Numbers
are mean(std-dev) of hitting times to reach target nest (gray
area in the middle) from each position.

Figure 2: Hitting times for random walks starting from posi-
tion D in Fig. 1.

We use a 30 × 30 arena illustrated in Fig. 1 from [69]. In this ex-
ample, each node is connected to six neighboring nodes. Each state
of the random walk represents a combination of the location in the
arena and the orientation of the robot, where the orientation is one
of the six possible incoming directions. The correlated randomwalk
(CRW) is modelled by having the probability to continue straight to
be much higher than the probability to turn in a different direction.
For example, if the robot arrives at a node from the west, then it will
have a 49% probability to continue to the node to its east, but only
a 24% probability to turn 60◦ to the right or to the left, and only
a 3% chance to take any of the other directions including reverse.
The goal node is the nest in the center of the arena. To simplify the
notation, we coalesce the nest into a single absorbing node, and
we number the states in the random walk so that the absorbing
state is numbered last. By encoding the orientation as part of the
state, the graph becomes directed, hence we must use formulas such
as those shown in Section 3 which are valid for directed graphs.
The distribution of hitting times observed in the 30 × 30 arena,
shown in Fig. 2, shows a good match with the theoretical Gamma
distribution calculated directly from the moments, and with the
behavior observed in an ARGoS simulation of robots in physical
space (figs. 3, 4).

Figure 3: Hitting times from ARGoS simulations on 30×30
arena, starting in the upper left corner of the arena.

Figure 4: Hitting times from Correlated Random Walk simu-
lations of the example of Fig. 3.

4.1 Multiple Robots
Using the computed Gamma Distribution, we can then compute an
estimated distribution for the probability that at least one robot in
a swarm of 𝑛 robots will reach the target in at most 𝑇 steps:

𝐶𝑛 (𝑇) = 1 − (1 − CDF(𝑇))𝑛 . (16)

For small 𝑛 on a reasonably small arena, it is possible to compare
this calculated distribution with empirical observations obtained
from simulation. We carried out some preliminary computations
using an arena consisting of a 2D grid with a collection area (goal
node) in the center. This setup is a discrete model for a foraging
task in which robots are supposed to collect items encountered
while wandering through the arena and carry them to the goal
node. Figure 5 shows there is a good match between the theoretical
distribution and the empirical distribution observed from 300 runs
over a 30 × 30 arena with 10 robots.

Using (16), we can answer questions for much larger arenas
for which the expense of simulation could be prohibitive. As an
example, using the methods of [8, 68], we can quickly answer the
question: how many robots would be needed to have an 80% chance
to reach the goal in the center of a 150 × 150 arena within 500 time
steps. By computing the estimated CDF on the 150 × 150 arena for
various 𝑛, one can see from the resulting Figure 6 that 200 robots
would be needed.

Figure 5: Times for the first of 10 robots to reach the goal
node in the middle of a 30×30 arena: simulated vs calculated.

Figure 6: Calculated CDFs of hitting times for the first of
many robots to reach the goal in the center of a 150 × 150
arena.

. .

5 CONCLUSIONS AND FUTUREWORK
We have proposed using Markov chains and graph algorithms to
study properties of swarms of robots engaged in foraging tasks.
We have shown how to compute the mean and standard deviation
of HT and the estimated distribution for the probability that at
least one robot in the swarm will reach a target within a given
upper-bound on the number of steps. This work is preliminary,
but we hope it will encourage the community to use graph-based
algorithms when studying swarms.

More theoretical work is needed in particular when robots are
likely to collide, for instance, because their density is high as when
they all start in a constrained area. Currently, most methods ig-
nore collisions, assuming the density of the robots is low, so the
probability of collision is low.

Work is also needed to model the probability of failures that
could be caused by hardware breakdown, battery depletion, etc.
This might entail extending our models, for instance using Markov
decision processes to handle time-varying environments or even
game theoretic methods to deal with adversarial agents.

In this paper, we have attempted to show that graph theory can
offer a rich set of tools with which to analyze a multi-robot system
and predict its global behavior without expensive simulations. This
suggests that further development of graph-basedmodels for swarm
robotics would be a very promising direction to pursue.

REFERENCES
[1] Aggarwal A, Gupta D, Vining WF, Fricke GM, and Moses ME. 2019. Ignorance

is not bliss: an analysis of Central-Place Foraging algorithms. In Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, New York
City, NY, 6510–6517. doi:10.1109/IROS40897.2019.8967665

[2] David Aldous and James Allen Fill. 2014. Reversible Markov Chains and
Random Walks on Graphs. http://www.stat.berkeley.edu/users/aldous/
RWG/book.html.

[3] Noga Alon. 1986. Eigenvalues and expanders. Combinatorica 6, 2 (1986), 83–96.
[4] Noga Alon, Chen Avin, Michal Kouckỳ, Gady Kozma, Zvi Lotker, and Mark R

Tuttle. 2011. Many random walks are faster than one. Combinatorics, Probability
and Computing 20, 4 (2011), 481–502.

[5] Yaniv Altshuler and Alfred Bruckstein. 2011. Static and Expanding Grid Coverage
with Ant Robots: Complexity Results. Theoretical Computer Science (TCS) 412, 35
(2011), 4661–4674.

[6] RB Bapat. 2011. On the first passage time of a simple random walk on a tree.
Statistics & probability letters 81, 10 (2011), 1552–1558.

[7] Martin T Barlow, Yuval Peres, and Perla Sousi. 2012. Collisions of random walks.
Annales de l’IHP Probabilités et statistiques 48, 4 (2012), 922–946.

[8] Daniel Boley. 2021. On fast computation of directed graph Laplacian pseudo-
inverse. Linear Algebra Appl. 623 (2021), 128–148.

[9] Daniel Boley, Gyan Ranjan, and Zhi-Li Zhang. 2011. Commute times for a
directed graph using an asymmetric Laplacian. Linear Algebra Appl. 435, 2 (2011),
224–242.

[10] Graham Brightwell and Peter Winkler. 1990. Maximum hitting time for random
walks on graphs. Random Structures & Algorithms 1, 3 (1990), 263–276.

[11] Richard A. Brualdi and Herbert J. Ryser. 1991. Combinatorial Matrix Theory.
Cambridge Univ. Press, Cambridge, UK.

[12] S. Cannon, J. Daymude, C. Gokmen, D. Randall, and A. Richa. 2019. A local
stochastic algorithm for separation in heterogeneous self-organizing particle
systems. https://arxiv.org/abs/1805.04599.

[13] Pietro Caputo and Matteo Quattropani. 2020. Stationary distribution and cover
time of sparse directed configuration models. Probability Theory and Related
Fields 178, 3 (2020), 1011–1066.

[14] Pavel Chebotarev and Rafig Agaev. 2002. Forest matrices around the Laplacian
matrix. Lin. Alg. and its Appl. 356, 1-3 (2002), 253–274.

[15] Haiyan Chen. 2007. The generating functions of hitting times for random walk
on trees. Statistics & probability letters 77, 15 (2007), 1574–1579.

[16] F.R. Chung. 1997. Spectral Graph Theory. Am. Math. Soc., Providence, RI.
[17] Fan Chung. 2005. Laplacians and the Cheeger inequality for directed graphs.

Annals of Combinatorics 9, 1 (2005), 1–19.
[18] Michael B. Cohen, Jon Kelner, John Peebles, Richard Peng, Aaron Sidford, and

Adrian Vladu. 2016. Faster algorithms for aomputing the stationary distribution,
simulating randomwalks, and more. In IEEE 57th Annual Symp. on Found. Comput.
Sci. (FOCS). IEEE, New York City, NY, 583–592.

[19] Tugrul Dayar and Nail Akar. 2005. Computing moments of first passage times
to a subset of states in Markov chains. SIAM J. Matrix Anal. Appl. 27, 2 (2005),
396–412.

[20] Tuğrul Dayar and William J. Stewart. 1996. On the effects of using the Grass-
mann–Taksar–Heyman method in iterative aggregation–disaggregation. SIAM
Journal on Scientific Computing 17, 1 (1996), 287–303.

[21] Stéphane Devismes, Anissa Lamani, Franck Petit, Pascal Raymond, and Sébastien
Tixeuil. 2012. Optimal grid exploration by asynchronous oblivious robots. In
Stabilization, Safety, and Security of Distributed Systems, Andréa W. Richa and
Christian Scheideler (Eds.). Springer, Berlin, Heidelberg, 64–76.

[22] Cristina Dimidov, Giuseppe Oriolo, and Vito Trianni. 2016. Random walks in
swarm robotics: an experiment with kilobots. In International Conference on
Swarm Intelligence. Springer, Berlin/Heidelberg, Germany, 185–196.

[23] Mucong Ding and Kwok Yip Szeto. 2018. First-passage time distribution for
random walks on complex networks using inverse Laplace transform and mean-
field approximation. arXiv preprint arXiv:1812.05598.

[24] W. E. Donath and A. J. Hoffman. 1973. Lower bounds for the partitioning of
graphs. IBM J. of Res. and Dev. 17 (1973), 410–425.

[25] Qinglai Dong and Lirong Cui. 2019. First hitting time distributions for Brow-
nian motion and regions with piecewise linear boundaries. Methodology and
Computing in Applied Probability 21 (2019), 1–23.

[26] Klim Efremenko and Omer Reingold. 2009. How well do random walks par-
allelize? In Approximation, Randomization, and Combinatorial Optimization.

doi: 10.1109/IROS40897.2019.8967665

Algorithms and Techniques. APPROX RANDOM 2009 2009, Lecture Notes in Com-
puter Science, I. Dinur, K. Jansen, J. Naor, and J. Rolim (Eds.). Vol. 5687. Springer,
Berlin, Heidelberg.

[27] Robert Elsässer and Thomas Sauerwald. 2011. Tight bounds for the cover time of
multiple random walks. Theoretical Computer Science 412, 24 (2011), 2623–2641.

[28] Uriel Feige. 1995. A tight upper bound on the cover time for random walks on
graphs. Random structures and algorithms 6, 1 (1995), 51–54.

[29] Miroslav Fiedler. 1975. A property of eigenvectors of nonnegative symmetric
matrices and its applications to graph theory. Czechoslovak Math. J. 25, 100 (1975),
619–633.

[30] Alexander H Foss, Richard B Lehoucq, W Zachary Stuart, J Derek Tucker, and
Jonathan W Berry. 2020. A deterministic hitting-time moment approach to
seed-set expansion over a graph. arXiv preprint arXiv:2011.09544.

[31] Francoise Fouss, Alain Pirotte, Jean michele Renders, and Marco Saerens. 2007.
Random-walk computation of similarities between nodes of a graph with appli-
cation to collaborative recommendation. IEEE Trans. on Knowledge and Data
Engineering 19 (2007), 355–369.

[32] Ryusuke Fujisawa and Shigeto Dobata. 2013. Lévy walk enhances efficiency of
group foraging in pheromone-communicating swarm robots. In IEEE/SICE Int’l
Symposium on System Integration, SII 2013. IEEE, New York City, NY, 808–813.

[33] Alexandre Gaudillière. 2009. Collision probability for random trajectories in two
dimensions. Stochastic processes and their applications 119, 3 (2009), 775–810.

[34] Golshan Golnari, Zhi-Li Zhang, and Daniel Boley. 2019. Markov fundamental
tensor and its applications to network analysis. Linear Algebra Appl. 564 (2019),
126–158.

[35] Winfried K. Grassmann, Michael I. Taksar, and Daniel P. Heyman. 1985. Regen-
erative analysis and steady atate distributions for Markov Chains. Operations
Research 33, 5 (1985), 1107–1116.

[36] Charles Miller Grinstead and James Laurie Snell. 1997. Introduction to Probability.
Amer Math Soc., Boston, MA.

[37] Heiko Hamann. 2018. Modeling swarm systems and formal design methods.
In Swarm Robotics: A Formal Approach. Springer, Berlin/Heidelberg, Germany,
95–127.

[38] John Harwell and Maria Gini. 2018. Broadening applicability of swarm-robotic
foraging through constraint relaxation. In 2018 IEEE Int’l Conf. on Simulation,
Modeling, and Programming for Autonomous Robots (SIMPAR). IEEE, New York
City, NY, 116–122.

[39] John Harwell, Angel Sylvester, and Maria Gini. 2021. Characterizing the limits of
linear modeling of non-linear swarm behaviors. https://arxiv.org/abs/2110.12307.

[40] Jeffrey J Hunter. 2013. The distribution of mixing times in Markov chains. Asia-
Pacific Journal of Operational Research 30, 01 (2013), 1250045.

[41] Satoshi Ikeda, Izumi Kubo, and Masafumi Yamashita. 2009. The hitting and
cover times of random walks on finite graphs using local degree information.
Theoretical Computer Science 410, 1 (2009), 94–100.

[42] Minyoung Jeong, John Harwell, and Maria Gini. 2021. Analysis of exploration in
swarm robotic systems. In IAS-16. Springer, Berlin/Heidelberg, Germany, 445–
457.

[43] Miquel Kegeleirs, David Garzón Ramos, and Mauro Birattari. 2019. Random walk
exploration for swarm mapping. In Proc. Towards Autonomous Robotic Systems:
20th Annual Conference, TAROS 2019, Part II. Springer-Verlag, Berlin, Heidelberg,
211–222.

[44] John G Kemeny and J Laurie Snell. 1983. Finite Markov chains (with a new
appendix “Generalization of a fundamental matrix”). Springer, Berlin/Heidelberg,
Germany.

[45] Joseph P. Lancaster and David A. Gustafson. 2013. Predicting the behavior of
robotic swarms in search and tag tasks. Procedia Computer Science 20 (2013),
77–82. https://doi.org/10.1016/j.procs.2013.09.242 Complex Adaptive Systems.

[46] Hon Wai Lau and Kwok Yip Szeto. 2010. Asymptotic analysis of first passage
time in complex networks. EPL (Europhysics Letters) 90, 4 (2010), 40005.

[47] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. 2017. Markov Chains and
Mixing Times. Vol. 107. American Mathematical Soc., Providence, RI.

[48] Yanhua Li and Zhi-Li Zhang. 2012. Digraph Laplacian and the degree of asym-
metry. Internet Mathematics 8, 4 (2012), 381–401.

[49] László Lovász. 1993. Random walks on graphs. Combinatorics 2, 1-46 (1993), 4.
[50] Qi Lu, G Matthew Fricke, John C Ericksen, and Melanie E Moses. 2020. Swarm

foraging review: Closing the gap between proof and practice. Current Robotics
Reports 1 (2020), 1–11.

[51] Saran Ishika Maiti and Jyotirmoy Sarkar. 2019. Symmetric walks on paths and
cycles. Mathematics Magazine 92, 4 (2019), 252–268.

[52] Fredy Martinez, Edwar Jacinto, and Diego Acero. 2012. Brownian motion as
exploration strategy for autonomous swarm robots. In 2012 IEEE Int’l Conf. on
Robotics and Biomimetics (ROBIO). IEEE, New York City, NY, 2375–2380.

[53] Naoki Masuda, Mason A Porter, and Renaud Lambiotte. 2017. Random walks
and diffusion on networks. Physics reports 716 (2017), 1–58.

[54] Ronald B Morgan. 2002. GMRES with deflated restarting. SIAM J Sci Comput 24,
1 (2002), 20–37.

[55] RB Nain and Kanwar Sen. 1980. Transition probability matrices for correlated
random walks. Journal of Applied Probability 17, 1 (1980), 253–258.

[56] Shunhao Oh, Dana Randall, and Andréa W. Richa. 2022. Foraging in Particle
Systems via Self-Induced Phase Changes. https://arxiv.org/abs/2208.10720. ,
51:1-51:3 pages.

[57] Bao Pang, Yong Song, Chengjin Zhang, HonglingWang, and Runtao Yang. 2019. A
swarm robotic exploration strategy based on an improved random walk method.
Journal of Robotics 2019, Article ID 6914212 (2019), 9.

[58] Bao Pang, Yong Song, Chengjin Zhang, and Runtao Yang. 2021. Effect of random
walk methods on searching efficiency in swarm robots for area exploration.
Applied Intelligence 51, 7 (2021), 5189–5199.

[59] Rushabh Patel, Andrea Carron, and Francesco Bullo. 2016. The hitting time of
multiple random walks. SIAM J. Matrix Anal. Appl. 37, 3 (2016), 933–954.

[60] Clifford S. Patlak. 1953. Random Walk with Persistence and External Bias: A
Mathematical Contribution to the Study of Orientation of Organisms. University
of Chicago, Committee on Mathematical Biology.

[61] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy,
Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di Caro, Frederick
Ducatelle, et al. 2011. ARGoS: a modular, multi-engine simulator for heteroge-
neous swarm robotics. In IEEE/RSJ Intel Conf Intelligent Robots and Systems. IEEE,
New York City, 5027–5034.

[62] Jacob Richey. 2018. Collisions of random walks and related diffusions.
https://arxiv.org/abs/1003.3255.

[63] Nicolás Rivera, Thomas Sauerwald, and John Sylvester. 2020. Multiple random
walks on graphs: mixing few to cover many. arXiv preprint arXiv:2011.07893.

[64] Madhumita Sardar, Deepanwita Das, and Srabani Mukhopadhyaya. 2022. Grid
exploration by a swarm of autonomous robots with minimum repetitions. Theo-
retical Computer Science 933 (2022), 67–87.

[65] Jambo Shi and Jitendra Malik. 2000. Normalised cuts and image segmentation.
IEEE Trans. Pattern Analysis and Machine Intelligence 22, 8 (2000), 888–905.

[66] Ulrike von Luxburg. 2007. A Tutorial on spectral clustering. Statistics and
Computing 17, 4 (December 2007), 395–416. Max Planck Institute for Biological
Cybernetics. Technical Report No. TR-149.

[67] Israel Wagner, Yaniv Altshuler, Vladimir Yanovski, and Alfred Bruckstein. 2008.
Cooperative cleaners: A study in ant robotics. The International Journal of Robotics
Research (IJRR) 27, 1 (2008), 127–151.

[68] Yi Zhang, Daniel Boley, John Harwell, and Maria Gini. 2022. A correlated random
walk model to rapidly approximate hitting time distributions in multi-robot sys-
tems. In Intelligent Autonomous Systems 17, Proc. 17th Int’l Conf IAS-17. Springer,
Berlin/Heidelberg, Germany, 724–736.

[69] Yi Zhang, Daniel Boley, John Harwell, and Maria Gini. 2022. A Correlated
Random Walk Model to Rapidly Approximate Hitting Time Distributions in
Multi-Robot Systems. In Intelligent Autonomous Systems 17, Proc. 17th Int’l Conf
(IAS-17). Springer, 724–736.

[70] Zhongzhi Zhang, Alafate Julaiti, Baoyu Hou, Hongjuan Zhang, and Guanrong
Chen. 2011. Mean first-passage time for random walks on undirected networks.
The European Physical Journal B 84, 4 (2011), 691–697.

[71] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. 2005. Learning from
labeled and unlabeled data on a directed graph. In Proc. 22nd Int’l Conf. Machine
Learning. ACM, New York City, NY, 1041–1048.

[72] Nikola Zlatanov and Ljupco Kocarev. 2009. Random walks on networks: Cumu-
lative distribution of cover time. Physical Review E 80, 4 (2009), 041102.

https://doi.org/10.1016/j.procs.2013.09.242

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Computation of HT Mean and Variance
	3.2 Hitting Times for Different Targets
	3.3 Fast Solution of Linear Systems
	3.4 Peripheral Nodes
	3.5 Distribution from Moments

	4 Computational Example
	4.1 Multiple Robots

	5 Conclusions and Future Work
	References

