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Abstract

We show that parallel search techniques derived from their sequential
counterparts can enable the solution of motion planning problems that
are computationally impractical on sequential machines. We present a
parallel version of a robot motion planning algorithm based on “quasi
best first” search with randomized escape from local minima and random
backtracking, and discuss its performance on a variety of problems and
architectures.

1. Introduction

Among the many skills autonomous entities require to support their activ-
ities is the ability to plan the paths they must take while conducting those
activities. Motion planning enables an object to move safely through its
environment while achieving specific goals.

Motion planning algorithms are of great theoretical interest, but are
rarely used in practice because of their computational complexity. In this
paper we show how the use of multicomputers and appropriate parallel
algorithms can substantially reduce the computation time required to syn-
thesize paths for robots with a large number of joints. This speedup in
computation enables the solution of motion planning problems that are,
for all practical purposes, computationally impractical on sequential com-
puters. Easier problems can be solved in a matter of seconds or less, thus
real-time motion planning is an achievable goal.
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and the University of Minnesota for the Army High Performance Computing Research
Center. Additional support was furnished by NSF/CDA-9022509, IST/SDIO grant No.
28408-MA-SDI, and the Center for Advanced Manufacturing, Design and Control of the
University of Minnesota.
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We have implemented a parallel version of a motion planning algorithm
based on “quasi best first” search with randomized escape from local min-
ima and random backtracking. We have analyzed its performance on a va-
riety of problems and architectures including the nCUBE2! multicomputer
(with up to 1024 processors), the CM-52, and a network of workstations.
The method delivers excellent speedup and appears very promising [5].

1.1. Related work

Research in the area of robot motion planning can be traced back to the late
sixties, but most of the work has been carried out more recently. Over the
last few years the theoretical and practical understanding of the issues has
increased rapidly, and a variety of solutions have been proposed. Latombe
[11] provides an extensive overview.

Motion planning algorithms usually formulate solutions to a given prob-
lem in a robot’s configuration space (C-space). We present a brief descrip-
tion of C-space here in order to clarify the discussion that follows. The
workspace of a robot is the world that it is capable of moving through; the
workspace usually includes objects or obstacles. A configuration of a robot
is the specification of the position and orientation of the robot with respect
to a fixed reference frame. The configuration space (C-Space) of a robot is
the set of all configurations that can be assigned to it.

The reason we concern ourselves with the space of possible configurations
is that in such a space the robot becomes a point. The free C-Space is the
set of configurations belonging to the robot’s C-Space in which the robot
is not in a state of collision with itself or any other object in its workspace.
The dimensionality of the C-Space is the number of parameters required to
fully specify a configuration of the robot. For example, a fixed base robot
arm with six degrees of freedom (i.e. six joints), such as the one pictured
in fig. 2, operates in a six dimensional C-Space.

Many motion planning algorithms decompose the search space into dis-
crete components called cells [11]. The motion planning problem then be-
comes one of computing a decomposition and searching through sequences
of contiguous cells to find a path through free space (i.e. a sequence of
configurations that involves no collisions with obstacles). Unfortunately,
as more degrees of freedom are added to the object most methods become
computationally impractical [16].

lnCUBE2 is a registered trademark of the nCUBE corporation

2CM-5 is a registered trademark of the Thinking Machines Corporation. The results
obtained on the CM-5 that are presented in this paper are based upon a beta version of
the software and, consequently, are not necessarily representative of the performance of
the full version of the software.
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Recently, Lozano-Perez [12] developed a parallel algorithm which com-
putes the discretized C-space for the first three links of a six degree of
freedom manipulator. The path for the gripper portion of the manipulator
is found by computing its free C-space in parallel at each arm configura-
tion considered by the sequential search algorithm. Although this method
works well, it is limited to relatively coarse C-space discretizations (it has a
maximum discretization level of 64) because of the lack of memory available
in which to store the precomputed C-space on the target architecture.

Other than the parallel scheme developed by Lozano-Perez described
above, we are not aware of other existing parallel methods capable of solving
instances of the motion planning problem involving higher dimensional C-
space. Fortunately a great deal of work has been done in developing parallel
search algorithms capable of solving similar problems [10, 9]. Many of the
algorithms developed deliver linear speedup with increasing problem and
processor size on various problems [2, 8]. It would seem that parallel motion
planning methods which use such parallel search schemes should be able to
deliver such performance as well. This is due to the following observation.

Amdahl’s law states that if s is the serial fraction of an algorithm then,
no matter how many processors are used, speedup is bounded by 1/s [1].
Thus, if an algorithm spends 98 percent of its time computing a certain
function (say C-Space), and only that component can be computed in par-
allel, then the maximum speedup which can be obtained by the parallel
algorithm is 50 because it must still spend 2 percent of its time in its serial
component. Hence, parallelizing robot motion planning methods that rely
almost entirely on a totally parallelizable search process may yield bet-
ter speedup than parallelizing those approaches with even a small serial
component.

Deterministic parallel search schemes deliver good speedup only when
good heuristics are available to guide the search process. Unfortunately no
perfect hill climbing heuristics are known for the general motion planning
problem. Ertel [6] has shown that randomized parallel search can be ex-
tremely effective on theorem proving problems where no good heuristic is
available. More specifically Ertel showed that when purely random search
is applied to theorem proving applications, the lower bound for the parallel
run-time is equal to the shortest possible run time which can be delivered
by a single processor executing random search. Natarajan [15] has shown
that when n processors perform n identical tasks in order to solve the same
problem, such as n processors executing randomized search, the speedup
which can be obtained is 1/p where p is the probability of finding a solution
to the problem.

These last results imply that parallel random search may be effective for
solving problems with highly unstructured search spaces. We discuss some
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Step I: Compute the heuristics used to guide the search:

(i) Pick a “Control” point (or points) on the robot.

(it) Pick the desired goal location in the workspace for the point(s) des-
ignated in step 1.

(iii) BROADCAST THE WORKSPACE BITMAP AND DESIRED
GOAL LOCATION OF THE CONTROL POINT(S) TO ALL PRO-
CESSORS.

(iv) For each “Control Point”: starting from the desired goal location,
label each point in the workspace that is not an obstacle with the L1
(city block distance) from the goal location. For example, in a 2-D
workspace, the goal location gets the value 0, its four neighbors get
the value 1, etc.

Step II: Search using the heuristics computed in Step I to evaluate which new
configuration to expand. This is done by the algorithm below.

trials = 0
path = start configuration
repeat

path trials = 0
temp_path = end of path
repeat
quasi best first search until a local minimum is reached
if TERMINATION MESSAGE RECEIVED then exit
brownian motion to escape local minimum
if TERMINATION MESSAGE RECFEIVED then exit
if (path trials > threshold) then
randomly backtrack to a previous point in temp_path
until (path trials > max_better_path_trials
or temp_path with new minimum found)
if new minimum found then
append temp_path to path
until (solution found or trials > trial limit)
if SOLUTION FOUND then
BROADCAST TERMINATION MESSAGE TO ALL
OTHER PROCESSORS

Fig. 1. An outline of the parallel motion planning algorithm. The capitalized
statements highlight the additions we made to the sequential algorithm in order
to enable the it to run on an MIMD multicomputer.
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of the initial results delivered by our parallel implementation in the next
section.

2. A Parallel Motion Planning Algorithm for MIMD multicom-
puters

In this section we outline our parallel implementation of the randomized
method proposed in [3]. Barraquand and Latombe describe two algorithms.
The first algorithm utilizes best first search and is resolution complete?, but
becomes computationally impractical when the dimension of the configura-
tion space exceeds four. The second algorithm utilizes a randomized search
that is probabilistically complete*, and, in general, runs much faster than
the complete approach. Both algorithms utilize discrete representations of
the robot, the robot’s workspace, and its C-Space. Space is represented
with multiscale pyramids of bitmap arrays.

As discussed earlier, there are two different spaces associated with motion
planning algorithms: the workspace and the C-space. The workspace is the
world that the robot must move through, the C-space is the space in which
the search for a collision-free path is performed. Discrete (e.g. bitmap)
representations of the workspace are especially convenient when sensory
data are used to construct them [14]. Even though we are not constructing
the representation of the obstacles in the robot environment from sensors,
we are interested in working with a representation that can easily be used
in conjunction with a variety of range sensors.

Artificial numerical potential fields are used as the heuristic to guide
the search [3]. Since the search for a path is performed in C-space, one
would expect the heuristics to be computed in C-space. However the size
of the C-space grid increases exponentially with the degrees of freedom
of the robot. This makes it impossible to precompute and store the C-
space in advance for more than two or three degrees of freedom or for fine
discretization levels. Thus, the C-space is not stored, but is generated as
the search progresses.

An artificial potential field map is computed in workspace for each control
point. A control point is a point on the robot whose desired goal location
is specified in the workspace. Each cell in the numerical potential field map
corresponds to a cell in the workspace. The value placed in a particular cell
in the numerical potential field map depends on the location of obstacles
and that cell’s distance from the goal location in the workspace. Larger

3An algorithm is resolution complete if it is guaranteed to find a solution whenever
one exists at the level of resolution used to represent the problem

4An algorithm is probabilistically complete when the probability of finding a path
when one exists converges to 1 as the search time increases without bound.



6 Daniel J. Challou, Maria Gini, and Vipin Kumar

Fig. 2 Start and Goal Configurations for Six Degree of Freedom Robot
operating in a 256 x 256 cell workspace. Each C-space axis (joint) has 256
possible discrete positions. The base of the robot is fixed in the bottom-
center in each frame of the picture.

No. Proc. 1 2 4 8 16 32 64 128 | 256 | 512
nCUBE2 | 8959 | 5002 | 1247 | 1103 | 397 | 204 59 39 32 27
CM-5 3543 | 1208 315 334 | 232 39 32 29 19 14
NWS 3088 793 567 247 180 | NA | NA | NA | NA | NA

Fig. 3 Average solution times in seconds to solve the problem shown in fig.
2.

cell values indicate positions further away from the desired goal position.

The workspace potential field maps of each of the control points are then
combined to produce the heuristics used to guide the search through C-
space. The idea is to move through successively smaller artificial potential
field values until a goal position is reached. If the value of a configura-
tion is better than the value associated with its parent configuration, the
configuration is checked for collisions, and added to the path. Otherwise
another sibling of the current configuration is investigated.

Figure 1 outlines the algorithm. The capitalized statements in the al-
gorithm highlight the additions we made to the sequential algorithm in
order to enable it to run on an multiple instruction multiple data (MIMD)
multicomputer. Each processor runs the same basic program. The only in-
terprocessor communication done is a broadcast of the workspace bitmap
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and desired goal location(s) of the control point(s) in the workspace to all
processors in Step I, and checks for a message indicating that another
processor has found a solution in Step II.

The search step described in Step II of fig. 1is “quasi best first” because
instead of generating all possible successors, we generate the successors
randomly, evaluate them heuristically using the artificial potential field,
and pursue them only if they have a better heuristic value than their parent
configuration. If enough successors are generated in each iteration of the
quasi best first phase, then the method approximates best first search.

A local minimum occurs when the configurations that succeed the cur-
rent configuration are no closer to the desired goal position than the current
configuration. When a local minimum is reached, a brownian motion (ran-
dom walk) is executed and then quasi best first search is resumed. The
search and random walk steps are repeated until a solution is found in the
quasi best first search phase, or the time limit in which the solution must
be found is exceeded. The “quasi best first” search and random walks are
the means by which the search-space is partitioned, as they insure that
each different processor searches different parts of C-Space.

2.1. Discussion of Results

The table in fig. 3 documents results delivered by the parallel planner
on the problem instance pictured in fig. 2. The table summarizes the
data for ten runs of the Quasi Best First/ Random Planner on up to 512
processors on an nCUBE2, 512 processors of a CM-5, and a Network of 16
Sun Workstations. The table shows the average time to find a solution on
each of the different hardware platforms for the problem instance involving
the six degree of freedom fixed-base robot arm operating in a 256 x 256 cell
workspace pictured in fig. 2. Each C-space axis has 256 possible discrete
positions. Entries labelled NA indicate that timings are not yet available
for that number of processors. All times are in seconds.

At first one might be surprised that such a straight forward parallel
algorithm fares as well as it does, reducing the average computation time
on the CM-5 from almost 1 hour on one processor to an average of 14
seconds on 512 processors, and from almost 1 hour to 3 minutes on a
network of 16 workstations.

In this example, the average time taken to solve the problem decreases
and levels off as we increase the number of processors because we hit a
point where the number of processors required to insure that one processor
will find a solution in the minimum amount of time possible for the algo-
rithm is near optimal or optimal. This is because the probability that the
random component of the algorithm will ensure that different processors
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are exploring different parts of the search space decreases as we add more
processors. When we reach that point, then adding more processors to the
problem will just result in more processors doing redundant work (in the
average case).

This approach has delivered similar results on more difficult problem in-
stances as well. On one particularly difficult problem instance discussed
in [5], this approach reduced the solution time from an average of over 14
hours on one processor to 3 minutes on 1024 processors, and delivered su-
perlinear speedup on on up to 256 nCUBE2 processors. On problems where
coarser levels of C-Space discretization are sufficient, such as the opposite
of the problem pictured in fig. 2, we have been able to obtain solutions
in an average time of 6.9 seconds using 256 CM-5 processors. Considering
that this last result was obtained with a C-Space discretization level of
128, and 128 is much finer than any other approach that we know of, we
believe it will be possible to generate motion plans in the sub-second time
frame by using even coarser levels of discretization and greater numbers of
processors.

Another important property of this approach is that when it is executed
with an increased number of processors, it tends to produce better solu-
tions. Figure 4 shows that as the number of processors performing random
search increases, the average solution path length constructed by the pro-
cessor finding a solution first tends to decrease. We have observed this
behavior in all the experiments we have performed to date. Moreover, the
variance in time to solution behaves similarly, that is, it decreases as the
number of processors attempting to solve the problem increases.

Technological advances have already increased the potential for this ap-
proach to formulate motion plans in real-time. Figures 3 and 5 show that
the CM-5 needs approximately one half the number of processors to deliver
about the same results as delivered by the nCUBE2. As more powerful mi-
croprocessors used to construct massively parallel machines become avail-
able, (such as Digital Equipment Corporation’s Alpha Chip, which is more
than twice as fast as the Sparc processors on the workstations we used), we
expect that the time required to solve problems using this approach will
continue to decrease accordingly.

One might argue that massively parallel machines are not a viable plat-
form for motion planning systems due to their prohibitive cost (and limited
availability). However, due to the continuing progress in VLSI design and
economy of scale resulting from their widespread use, the cost of processors
that massively parallel machines employ (such as the Sparc chip used by
the CM-5) is expected to decrease. When this occurs, it will be feasible to
build large scale parallel computers with substantial raw computing per-
formance at a relatively small cost. Hence it is not at all unreasonable to
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Average Solution Path Length for Problemin Figure 2
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Fig. 4. Average solution path length found per number of processors used to
solve the problem pictured in fig. 2 for the nCUBE2.

believe that the massively parallel machines we propose to use as the basis
of our system will be readily available in the next decade.

Moreover, as the results on a network of workstations illustrate, one does
not necessarily need a massively parallel machine to make significant re-
ductions in the time it takes to solve fairly difficult problems. Assuming
that a network of workstations continued to deliver results similar to those
delivered by CM-5, then only 32 workstations would be required to reduce
the computation time by two orders of magnitude. Currently, many com-
panies, universities, and research institutions have such resources available.

3. Future work

As figure 6 shows, we are currently experimenting with a 3D version of the
parallel planner on the CM-5. However, the randomized scheme we have
implemented does have its drawbacks.

In many cases the paths the planner found were clearly sub-optimal in
terms of length and their ability to be executed by any real robot. As
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Aver age Speedup for Problemin Figure 2
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Fig. 5. Speedup on the nCUBE2 and CM-5 for the problem instance pictured
in fig. 2.

Latombe et. al. have pointed out, in a substantial subset of such cases
post processing can help optimize such paths [3]. Our preliminary results
indicate that even simple post processing, such as averaging a series of
points in the path through C-space, can yield a more executable path.
However, more complex optimization techniques can be computationally
expensive and may not always yield shorter path.

On the other hand, modifying search-based motion planning methods so
they utilize parallel search schemes that keep track of the C-space which
they have visited may be effective for finding shorter, smoother paths than
those delivered by our current scheme. Such search schemes limit the
amount of redundant work performed because they generate each configu-
ration in C-space at most once. Existing implementations of such methods
run into difficulty because they cannot store the C-space they need to
solve difficult problems on a single processor. Relatively recent restricted
memory schemes such as MA*[4], MREC[17], and PRA*[7], as well as dis-
tributed memory schemes such as A* with probabilistic state distribution
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[13] appear promising.
4. Conclusion

In summary, we have devised and implemented a parallel robot motion
planning algorithm based on quasi best first search with randomized es-
cape from local minima and randomized backtracking on multiple hardware
platforms including a 1024 processor nCUBE2, a 544 processor CM-5, and
a network of 16 Sun workstations. The method delivers excellent speedup
on difficult problem instances, reducing the time required to solve them by
more than two orders of magnitude in many cases.
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Fig. 6 Accurate scale model of a Seven Degree of Freedom Robotics Re-
search robot operating in a 128 x 128 x 128 cell workspace. Each C-Space
axis (joint) has 128 discrete positions.



