A Parallel Formulation of Informed Randomized Search for Robot

Motion Planning Problems®

Daniel Challou Daniel Boley

Maria Gini Vipin Kumar

Department of Computer Science
University of Minnesota
Minneapolis, MN 55455

Abstract

We show how paths for articulated robots with many
degrees of freedom can be generated in a few seconds or
less using nonsystematic parallel search. We present
experimental results obtained on a multicomputer for
an accurate model of a 7-jointed manipulator arm op-
erating in realistic 3D workspaces. We then present
and discuss a fast method for smoothing the paths de-
livered by the parallel algorithm.

1 Introduction

Among the many skills robots require is the abil-
ity to plan the paths they must take while executing
their tasks. The intent of this paper is to provide ex-
perimental evidence that very fast path planning can
be performed using parallel algorithms. By very fast
we mean systems that produce solutions in fractions
of seconds or a few seconds for complex environments
and robots with over four degrees of freedom (dof).

We have developed a parallel formulation of the
Randomized Path Planner proposed by Barraquand
and Latombe [2]. Our parallel formulation has proved
extremely effective in solving variants of the robot mo-
tion planning problem that are computationally im-
practical on sequential machines [5]. Our formula-
tion has yielded excellent performance gains on virtu-
ally every problem we have tried, sometimes delivering
even superlinear speedup [6].

From networks of workstations to parallel proces-
sors on a single chip, a wide variety of cheap parallel
platforms will be available in the near future, making
our approach a viable option.

*This work was supported in part by Contract DAALO03-
89-C-0038 between the Army Research Office and the Univer-
sity of Minnesota for the Army High Performance Comput-
ing Research Center, NSF/CDA-9222922, NSF/CCR-9405380,
IST/SDIO 28408-MA-SDI, and the Center for Advanced Man-
ufacturing, Design and Control of the University of Minnesota.

2 Background and Related Work

Many algorithms have been developed for motion
planning [12], but most are never used in practice be-
cause of their computational complexity [8]). Since
the complexity increases with the number of dof, there
are very few algorithms capable of generating paths
in reasonable time frames (i.e., times on the order of
minutes) for robots with more than three dof.

Most motion planning methods decompose the
search space into discrete components called cells.
The motion planning problem then becomes one of
computing a decomposition and searching through se-
quences of contiguous cells to find a a sequence of con-
figurations that involves no collisions with obstacles.

To obtain acceptable performance, some methods
do a significant amount of preprocessing of the con-
figurations space (C-space) [9], or place landmarks in
C-space that are then used by a local planner [3, 7].
Other methods make assumptions on the type of robot
(for instance, [1] takes advantage of the symmetry of
the workspace with respect to the first axis of the
robot), or use a coarse discretization of C-Space. Real
time has been achieved in detection of imminent col-
lisions [15] but not for path planning.

In an effort to decrease the computation time, some
researchers have devised parallel methods. Lozano-
Perez [13] was the first to develop a parallel algo-
rithm to compute the discretized C-space for the first
three links of a six dof manipulator. This method
works well, but it is limited to relatively coarse C-
space discretizations due to memory limitations. A
genetic based approach has been implemented using
128 T800 transputers with impressive performance [3].
The method keeps placing landmarks in free space un-
til it is able to generate a path using local methods.

With our parallel formulation of the algorithm pro-
posed in [2] we are able to solve complex motion plan-
ning problems in a few seconds or less.

3 Search and Parallel Search

Langley [11] classified search methods as system-
atic and nonsystematic. Systematic search methods
enumerate each node in the search space. They pro-
duce each possible path only once, thus minimizing
the redundant work.

Nonsystematic (or randomized) search methods se-
lect a node at random at each choice point in the
search and record it as a step in the path. This pro-
cess is repeated until a solution is found or a depth
limit is reached. These methods do not retain a com-
plete memory of nodes previously visited, and thus
may generate the same paths more than once. They
are only probabilistically complete (and thus cannot
report that a problem has no solution with perfect cer-
tainty), but are capable of outperforming uninformed
systematic schemes. Nonsystematic search is particu-
larly effective on tasks whose solutions are many and
deep, and though purely randomized search methods
can be successful, they can often benefit from heuristic
knowledge [11].

Two types of parallel formulations of search meth-
ods have been developed: (1) communication-based
formulations that partition the search space among
the processors, and (2) formulations in which each
processor explores the entire search space randomly
with no interprocessor communication. In both for-
mulations the first processor to find a solution sends
a termination signal to the remaining processors, and
then reports its solution.

We can give a brief theoretical explanation for the
success of parallel randomized allocation schemes. Let
Py (t) be the probability that a single processor will
find a solution within time ¢, and let Py(¢) be the
probability that a k-processor parallel randomized al-
location scheme will find a solution within time ¢. Let
the random variable T} be the time it would take pro-
cessor p; to find a solution, if allowed to run to com-
pletion. Since this is equivalent to running multiple
trials on a single processor, the T}’s are independent
and identically distributed. The probability 1 — Py (%)
that the solution time on k processors will exceed t is
just the probability that none of the k processors will
find a solution within time t¢:

1-Py(t) = (1 - Pu(t)" (1)

To interpret this formula, suppose a single processor
has only a 10% probability that it can solve the prob-
lem within a given time t1g59,. Then a 32 processor
system has over a 96% probability of finding a solu-
tion within ¢19%. A 64 processor system has over a

99% chance of doing the same. Space does not permit
a more detailed analysis, which can be found in [4].

We define E[T;] as the average uniprocessor solu-
tion time; E[T%] as the average k processor solution
time, and speedup as:

_ E[Ti]
~ E[TW]

(2)

If E[Ty] is less than E[T}], then, on average, the k pro-
cessor randomized allocation formulation will deliver
speedup over the uniprocessor algorithm. If E[T}] is
less than % - E[T] then, on k processors, the parallel
randomized allocation formulation will yield, on aver-
age, superlinear speedup over the uniprocessor algo-
rithm. This is because on k processors the first pro-
cessor to find a solution stops all the others, so there
is no need to wait for solutions that take a long time.
On a single trial on a uniprocessor a bad choice made
early might significantly delay the completion of the
search. However, on k processors a bad choice made
by one processor does not prevent the other processors
from making a better choice.

4 Parallel Motion Planning

We have developed a parallel formulation of the
Randomized Path Planner [2] and implemented it on a
variety of architectures including the nCUBE2! (with
up to 1024 processors), the CM-52, and a network of
workstations.

An outline of the algorithm is shown below. The
“¥77s indicate points where the algorithm checks for
a termination message from other processors. Such a
termination message terminates the computation.

Step I: Compute the heuristics used to guide the search.
Step II: Search using the heuristics :

Gradient Descent until local minimum *
repeat until goal reached or global time-out
repeat K times or until improvement found
Random Walk to escape local minimum *
Gradient Descent until a local minimum *
if no improvement
then Randomly Backtrack
if improvement found
then append new path to previous path
if goal found
then broadcast termination message

registered trademark of the nCUBE Corporation

?registered trademark of the Thinking Machines Corpora-
tion. The results obtained on the CM-5 presented here are
based upon a beta version of the software and, consequently,
are not necessarily representative of the performance of the full
version of the software.

No. Processors 1 32 64 128 256
Avg Search Time | 57.28 | 7.05 | 4.69 | 3.50 | 2.55
Std Dev 59.96 | 3.96 | 2.35 1.48 | 0.91
Avg Path Length | 11892 | 6335 | 4638 | 3543 | 2412
Std Dev 4925 | 3635 | 2725 | 1905 | 1141

| Avg Speedup

[1.00 [812 [12.21 | 16.37 | 2246 |

Figure 1: Start and Goal Configurations for a 7 dof arm operating in a 128° cell workspace. The robot is reaching
from the dark table behind it, through on opening in the wall on his left, to the light table with the hole on it.
The table shows data for at least 64 runs on a CM-5 multicomputer. All times are in seconds.

Consider the search starting at the start robot con-
figuration. The gradient descent forces the search in
the direction of the goal node that appears closest. If
the heuristic is misleading then, at some point, every
successor is worse than the current node. When this
occurs, random search with a randomly chosen depth
bound is executed. We call this step a random walk.

Gradient descent resumes from the state at which
the random walk terminates. The sequences composed
of a random walk followed by gradient descent search
are repeated for a predetermined number (K) of tri-
als or until a better node is found. If, after K trials,
no better node has been found, then backtracking is
performed to a randomly picked point in the current
path. The cycle of random walks followed by gradi-
ent descent is then resumed. When a better node is
found the new part of the path found is appended to
the previous path and the process resumes.

The idea behind the random walks and randomized
backtracking is to find a place in a different region of
the search space where the heuristic is more reliable.
In that event the gradient descent search can quickly
descend toward a goal configuration. Successors of a
node are generated in a random manner until a suc-
cessor is found that has a better heuristic value than
the current configuration. Thus, the first legal succes-
sor with a better value than its parent is adopted as

the next step in the path.

The randomization in the state generation process,
random walks, and randomized backtracking are the
means by which the search space is allocated to each
processor. Within each processor, the randomized
search is controlled by a random number generator
with an initial seed guaranteed to be unique among
all the processors. Each processor is assigned a dis-
joint range of initial seed values, and a specific value
within this range is selected using the processor clock.
This probabilistically ensures each processor searches
a different part of the search space.

The performance of this scheme varies significantly
from run to run. For many problems the method deliv-
ers a solution in a few seconds or minutes on one run,
but on other runs no solution is delivered for minutes,
hours, or even days [4]. This is because on some runs
the random walks help escape from dead ends in the
search space more effectively than on other runs.

There are many reasons for our selection of the al-
gorithm to parallelize. First, parallel formulations of
randomized search can easily be developed using ran-
domized allocation schemes. Second, the grid-based
representation of the workspace is especially conve-
nient when sensors are used to construct it, as shown
n [14], [10].

No. Processors 1 32 64 128 256
Avg Search Time | 83.02 2.23 1.28 0.81 0.62
Std Dev 104.13 | 2.41 1.39 0.53 0.14
Avg Path Length | 6211 896 583 302 235
Std Dev 6049 1871 | 1322 187 134

| Avg Speedup

[1.00 [37-23] 64.86 | 102.49 | 133.90 |

Figure 2: Start and Goal Configurations for a 7 dof arm operating in a 1282 cell workspace. The robot is reaching
down into the small box in front of it. The table shows data for at least 64 runs on a CM-5 multicomputer. All

times are in seconds.

5 Discussion of Results

This section presents results for an accurate scale
model of a 7-jointed Robotics Research arm. In these
examples, we discretize the C-space into 1287 cells,
so that each joint has 128 discrete positions, each
2.8125° = 360°/128 apart. The workspace is dis-
cretized into a 128 x 128 x 128 array of cells. Each
cell in the workspace represents a volume of 2.1 cm?.

Figure 1 shows the start and goal configurations
for a test case. The table indicates the benefits of
parallelizing the planner. For this problem just 32
processors cut the average solution an order of mag-
nitude to under ten seconds, and 128 processors cut
the average solution time to under five seconds. For
the problem shown in Figure 2, 128 processors cut the
average solution time to under a second.

In addition to delivering paths in shorter time
frames, the parallel algorithm produces better solu-
tions when executed with a larger number of proces-
sors by generating shorter paths. In the example in
Figure 1, 32 processors yield a solution path length
about one half as long as the average solution path
length delivered by one processor. In the example in
Figure 2, 64 processors are sufficient to reduce the
length more than an order of magnitude.

The variance in time to solution behaves similarly,

that is, it falls off as the number of processors in-
creases.

As the number of processors increases, we reach a
point where the performance falls off and the average
time to solve the problem moves toward a constant
value. This is because the probability that the random
component of the algorithm will ensure that different
processors explore different parts of the search space
decreases with the number of processors.

An interesting trend supported by the data in Fig-
ure 1 is that a significant gain in performance is de-
livered by a reasonably small number of processors.
Thus, the following question keeps recurring: “How
many processors does the method need to deliver ac-
ceptable performance?”

The following two quantities are of particular in-
terest: (1) the time needed by the parallel algorithm
to solve a particular problem given a fixed number of
processors, and (2) the number of processors needed
to deliver a solution within a given time bound.

Recently we developed a fast performance predic-
tion method that yields an accurate estimate of both
quantities using a small base of solution runs obtained
with a few processors [4]. Such a method enables a
user to quickly ascertain how many processors are nec-
essary to obtain a desired level of performance on a
particular problem.

6 Smoothing

In this section we discuss a smoothing technique
to be applied to the paths produced by the parallel
randomized planner. To aid in the illustration of this
technique, we use an example of a redundant manipu-
lator in 2D. Figure 3 shows the starting robot configu-
ration for our example with dashed line segments, the
final configuration with solid line segments, the path
from the parallel randomized planner with dots, and
the smoothed path with a solid curve. The remaining
rectangles are obstacles. In this example, we discretize
the C-space into 1286 cells and the workspace into 1282
cells.

120y

100}

80

60r

40r

20f

Ot

0 20 40 60 80 100

Figure 3: 2D example with 6 dof showing raw path
(dotted curve) and smoothed path (solid curve).

In order to ensure that progress is made at every
search step, the parallel randomized planner tends to
move every joint at every step. At the next search
step, a joint may end up moving back to its previous
position, where each such move is exactly 2.8125°. As
a result, in the path delivered by the parallel planner
joints can “jitter” between two or three neighboring
positions and the path is not very practical. Hence

there is a need to smooth the raw paths produced by
the parallel randomized planner.

Since the raw paths can easily have several thou-
sand points, we use a fast one-pass smoothing tech-
nique based on a gaussian kernel. The raw paths are
represented by sequences of joint angles, one for each
joint. The smoothing kernel is applied to each se-
quence of joint angles independently. Each joint angle
is replaced with a weighted average of all its neighbor-
ing joint angles in the same sequence, using gaussian
weights.

Specifically, if 0§k) denotes the j-th joint angle in
the sequence for the k-th joint and n denotes the
length of the path, then the smoothed joint angle 5](-k)
is computed by

~k 1 - .
07 = 3 Opmit e/ for =012 m

—s<i<+s

where s is a user-defined parameter specifying the
smoothing window size.

Figure 4 shows the typical result using joint 3. The
dots show the raw sequence of joint angles produced by
the parallel randomized planner, and the solid curve
shows the smoothed sequence of joint angles using s =
255. With this value of s, only the neighboring 83
joint angles have relative weights above 10~3, hence
an effective window size of 83 is more than sufficient
to smooth the joint angles with this value of s.

2

L9F 8
18
1.7 : .
16
15
14
13

12

11

10 160 260 360 460 560 660 760 860 960 1000
Figure 4: Joint angles for joint 3 for Figure 3: raw
(dotted curve) and smoothed (solid curve).

Of course, the smoothed path does not match the
raw path from the parallel randomized planner, and
only the raw path is guaranteed to be free of colli-
sions. We propose the following paradigm to ensure

that the smoothed path is free of collisions. We incor-
porate a safety margin into the parallel randomized
planner, so that the manipulator will keep away from
every obstacle by at least this safety margin in the raw
path. We then dynamically adjust the window size s
to keep the discrepancy between the smoothed path
and the raw path below this safety margin. One must
compute the discrepancy in the position of every link
of the manipulator resulting from the raw path and
the smoothed path, but it suffices to compute this
discrepancy just for the joints. Hence this is a fast
computation. By adjusting the window size s during
the smoothing process, one can keep the discrepancy
bounded while producing a smooth path for the robot
to follow.

Figures 3 and 4 show the results when using a fixed
window size s = 255, with reduced values near the
ends to enforce the true start and goal positions. The
resulting paths had 951 points each, and the maximum
discrepancy for any joint through the entire motion
was 6.96, well under the initial safety margin of 8.

7 Conclusions and Future Work

In summary, we have devised and implemented a
parallel motion planning algorithm based on a com-
bination of informed and randomized search. The
method delivers excellent performance on realistic
problems using robots with many dof. Coarser dis-
cretizations and the use of currently available proces-
sors faster than those used here would enable our sys-
tem to deliver sub-second performance even with a
modest number of processors [4].

The ability to plan paths very rapidly will open up
new perspectives for path planning and will make it at-
tractive for many application areas, such as industrial
robotics, teleoperation, control of redundant robots.
Real-time path planning coupled with real-time sens-
ing will allow robots to adapt their planned paths to
take into account the uncertainties of the real world.
Even more important, this will allow robots to react to
unanticipated events and to quickly replan their paths
whenever needed.

8 Acknowledgements

We would like to sincerely acknowledge Mike Hennessey
and Max Donath for helping us model the Robotics Re-
search arm; Jean Claude Latombe at Stanford University
for providing access to implementations of the Random
Path Planner; David Strip and Robert Benner at Sandia
National Laboratories for providing access to the nCUBE2.

References

[1]

[10]

[11]

[12]

[13]

[14]

[15]

P. Adolphs and H. Tolle. Collision-free real-time
path-planning in time varying environment. In Proc.
IEEE/RSJ Int’l Conf. on Intelligent Robots and Sys-
tems, pages 445-452, 1992.

J. Barraquand and J. C. Latombe. Robot mo-
tion planning: A distributed representation approach.
Int’l J. of Robotics Research, 10(6):628-649, 1991.

P. Bessiere, J.-M. Ahuactzin, E.-G. Talbi, and
E. Mazer. The Ariadne’s Clew algorithm: Global
planning with local methods. In Proc. IEEE/RSJ Int’l
Conf. on Intelligent Robots and Systems, 1993.

D. Challou. Parallel Search Algorithms for Robot Mo-
tion Planning. PhD thesis, Univ. of Minnesota, 1995.

D. Challou, M. Gini, and V. Kumar. Parallel search
algorithms for robot motion planning. In Proc. IEEE
Int’l Conf. on Robotics and Automation, volume 2,
pages 46-51, 1993.

D. Challou, M. Gini, and V. Kumar. Toward real-
time motion planning. In H. Kitano, V. Kumar, and
C. B. Suttner, editors, Parallel Processing for Artifi-
cial Intelligence, 2. Elsevier, 1994.

P. C. Chen and Y. K. Hwang. SANDROS: a mo-
tion planner with performance proportional to task
difficulty. In Proc. IEEE Int’l Conf. on Robotics and
Automation, pages 2346-2353, 1992.

Y. Hwang and N. Ahuja. Gross motion planning —
a survey. ACM Computing Surveys, 24(3):219-291,
1992.

L. Kavraki. Randomized preprocessing of C-space for
fast path planning. In Proc. IEEE Int’l Conf. on
Robotics and Automation, pages 2138-2145, 1994.

T. Laliberte and C. Gosselin. Efficient algorithms
for the trajectory planning of redundant manipulators
with obstacle avoidance. In Proc. IEEE Int’l Conf. on
Robotics and Automation, pages 2044-2049, 1994.

P. Langley. Systematic and nonsystematic search
strategies. In Proc. Int’l Conf. on AI Planning Sys-
tems, pages 145-152, College Park, Md, 1992.

J. C. Latombe. Robot Motion Planning. Kluwer Aca-
demic Publ., Norwell, MA, 1991.

T. Lozano-Perez. Parallel robot motion planning. In
Proc. IEEE Int’l Conf. on Robotics and Automation,
pages 1000-1007, 1991.

H. P. Moravec. Sensor fusion in certainty grids for
mobile robots. AI Magazine, 9(2):61-74, 1988.

T. S. Wikman, M. Branicky, and W. S. Newman. Re-
flexive collision avoidance: a generalized approach. In
Proc. IEEE Int’l Conf. on Robotics and Automation,
volume 3, pages 31-36, 1993.

