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Abstract

We show that paths for dexterous robots can be
generated in a few seconds or less using parallel in-
formed randomized search on multicomputers. The ex-
perimental results we present have been obtained for
a simulated 7-jointed arm operating in realistic 3D
workspaces. We also present a new method for pre-
dicting the solution times that our parallel formulation
can deliver on increasing numbers of processors.

1 Introduction

Motion planning is the process of computing paths
that will allow a robot to move to different positions
in its environment without hitting obstacles. Many
motion planning algorithms have been developed [13],
but most are never used in practice because of their
computational complexity [8].

The intent of this paper is to show that plans for
multi-jointed dexterous robot arms which operate in
realistic environments can be synthesized very quickly
by parallel algorithms, and to show how to estimate
the number of processors necessary to obtain results
in an acceptable time frame.

Figure 1 shows a simulated model of a Robotics
Research K-1207i 7-degree of freedom (dof) arm. We
expect to execute our planned paths on the real robot
shortly.

The ability to plan paths quickly is important to
make motion planning useful in application areas, such
as industrial robotics, teleoperation [15], control of re-
dundant robots [11]. Real-time motion planning cou-
pled with real-time sensing will allow robots to adapt
their planned paths to take into account the uncer-
tainties of the real world. Even more important, it
will allow robots to react to unanticipated events and
to quickly replan their paths whenever needed.
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for the Army High Performance Computing Research Cen-
ter. Additional support was furnished by NSF/CDA-9022509,
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2 Motion Planning

Research in the area of robot motion planning can
be traced back to the late sixties, but most of the
work has been carried out more recently. Over the last
few years the theoretical and practical understanding
of the issues has increased rapidly, and a variety of
solutions have been proposed. Latombe [13] provides
an extensive overview.

There are two different spaces associated with mo-
tion planning algorithms, the workspace and the con-
figuration space (C-space). The workspace is the
world that the robot must move through, the C-space
is the set of all robot configurations. The dimension-
ality of the C-Space is the number of parameters re-
quired to fully specify a configuration of the robot.
The search for a path is performed in C-space because
the robot becomes a point in C-space. The motion
planning problem then becomes one of computing a
decomposition of the C-space and searching through
sequences of cells to find a path that involves no col-
lisions with obstacles.

For example, assume we have a robot arm with &
joints, where each degree of freedom (joint) is quan-
tized into n discrete levels. Such an arm has a C-space
consisting of n* unique configurations. Now assume
that the planner allows each joint to be in any one
of 90 unique positions, so n = 90. Thus, an arm with
four joints (k = 4) has over sixty five million configura-
tions, and an arm with six joints (k = 6) has over five
hundred billion configurations. Consequently, even if
it were possible to compute all of the C-space, the
amount of primary memory required to store it would
be prohibitive.

To obtain acceptable performance, some methods
do a significant amount of preprocessing of the con-
figuration space (C-space) [10], or place landmarks in
C-space that are then used by a local planner [3, 6].
Other methods make assumptions on the type of robot
(for instance, [1] takes advantage of the symmetry of
the workspace with respect to the first axis of the
robot), or use a coarse discretization of C-Space. Real
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time has been achieved in detection of imminent col-
lisions [18, 19], but not for path planning.

In an effort to decrease the computation time, some
researchers have devised parallel methods. Lozano-
Perez [14] was the first to develop a parallel algo-
rithm to compute the discretized C-space for the first
three links of a six dof manipulator. This method
works well, but it is limited to relatively coarse C-
space discretizations due to memory limitations. A
genetic based approach has been implemented using
128 T800 transputers with excellent performance [3].
The method places landmarks in free space until it is
able to generate a path using local methods.

Our method is a parallel formulation of the Ran-
domized Path Planner proposed by Barraquand and
Latombe [2]. Space is represented with bitmap arrays.
The configuration space is discretized and searched us-
ing heuristic search with random walks to escape local
minima.

There are many reasons for our selection of the al-
gorithm to parallelize. First, parallel formulations of
randomized search can easily be developed using ran-
domized allocation schemes. Second, the grid-based
representation of the workspace is especially conve-
nient when sensors are used to construct it, as shown,
for instance, by [17], [11].

We have shown that our parallel formulation is ca-
pable of generating plans in very short time frames
on various parallel architectures [4], including a 1024
processor nCUBE2!, a 512-processor CM52, and a 16-
processor network of Sun workstations [5].

3 Parallel Motion Planning

In recent years parallel search algorithms have been
shown to be effective for solving combinatorially ex-
plosive problems.

Two classes of parallel search algorithms have
been developed: (1) communication-based formula-
tions that partition the search space among the proces-
sors, and (2) randomized formulations in which each
processor explores the entire search space randomly
with no interprocessor communication. The latter for-
mulations are commonly referred to as randomized
search methods. Though purely randomized search
methods can be successful, they can often benefit from
heuristic knowledge [12].

InCUBE2 is a registered trademark of the nCUBE
corporation

2CM-5 is a registered trademark of the Thinking Machines
Corporation. The results obtained on the CM-5 that are pre-
sented in this paper are based upon a beta version of the soft-
ware and, consequently, are not necessarily representative of the
performance of the full version of the software.

To implement the randomized motion planning al-
gorithm on parallel architectures, we broadcast the
workspace bitmap and desired goal location to all pro-
cessors, and check for a message indicating that a pro-
cessor has found a solution. Each processor runs the
same basic program. The only interprocessor com-
munication is the initial broadcast and the termina-
tion check. Randomized search and random walks are
the means by which the search-space is partitioned,
as they probabilistically insure that each processor
searches different parts of C-space.

Our parallel formulation of randomized heuristic
search has proved extremely effective in solving mo-
tion planning problems, such as the example shown in
Figure 1. The formulation has yielded impressive per-
formance gains on every problem we have employed it
on, sometimes delivering superlinear speedup [4].

For the problem shown in Figure 1, just 16 proces-
sors are required to cut the average solution an order
of magnitude to under ten seconds, and 64 processors
cut the average solution time to under five seconds.

In addition to delivering paths in shorter time
frames, the parallel algorithm, when executed with a
larger number of processors, tends to produce better
solutions by producing shorter paths. We have ob-
served this behavior in all the experiments we have
performed to date. The variance in time to solution
behaves similarly, that is, it falls off as the number of
processors increases.

A brief theoretical explanation for the success of
parallel randomized allocation schemes is as follows.
Let Pi(t) be the probability that a single processor
will find a solution within time ¢, and let Py (t) be the
probability that a k-processor parallel randomized al-
location scheme will find a solution within time ¢. Let
the random variable T} be the time it would take pro-
cessor i to find a solution, if allowed to run to com-
pletion. Since this is equivalent to running multiple
trials on a single processor, the T}’s are independent
and identically distributed. The probability 1 — Py(t)
that the solution time on k processors will exceed ¢ is
just the probability that none of the k processors will
find a solution within time ¢:

1— Py(t) = (1 — P(t)) (1)

To interpret this formula, suppose a single processor
has only a 10% probability that it can solve the prob-
lem within a given time t1459;. Then a 32 processor
system has over a 96% probability of finding a solu-
tion within ¢1¢%, and a 64 processor system has over
a 99% chance of doing so. Space does not permit a
more detailed analysis, which can be found in [4].
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No Processors 1 4 8 16 32 64 128 256 512
Avg Search Time | 127.77 | 26.75 | 16.63 | 9.62 | 6.01 | 4.81 | 2.78 | 2.08 | 1.59
Std Dev 142.00 | 20.92 | 10.41 | 7.02 | 3.71 | 2.69 | 1.53 | 0.78 | 0.33
Avg Path Length | 8618 | 6211 | 5361 | 4550 | 2558 | 2776 | 1660 | 1179 | 722
Std Dev 5425 | 4487 | 4566 | 4189 | 2356 | 1989 | 1207 | 746 295

| Speedup | 1.00 | 4.78 | 7.68 | 13.28 [ 21.26 | 26.56 | 45.96 | 61.43 | 80.36 |

Figure 1: Start and Goal Configurations for a Robotics Research K-1207i 7—dof arm operating in a 1282 cell
workspace. The robot is reaching from the cabinet on the right into the cabinet on the left. The table shows data
for at least 64 runs on a CM-5 multicomputer. All times are in seconds, path lengths in number of steps.

We define speedup as:
_ ETn]
E[Ty]

2)

where E[T}] is the average uniprocessor solution time,
and E[Ty] the average k processor solution time. If
E[Ty] is less than E[Ti], then, on average, the k pro-
cessor randomized allocation formulation will deliver
speedup over the uniprocessor algorithm.

If E[Ty] is less than 7 - E[T1] then, on k proces-
sors, the parallel randomized allocation formulation
will yield, on average, superlinear speedup over the
uniprocessor algorithm. This is because on k proces-
sors the first processor to find a solution stops all the
others, so there is no need to wait for solutions that
take a long time. On a single trial on a uniproces-
sor a bad choice made early might significantly delay
the completion of the search. On k processors a bad
choice made by one processor does not prevent the
other processors from making a better choice.

We have observed superlinear speedup when us-
ing a small number of processors in the majority of
our experiments. This shows that it pays to use our
parallel algorithm, even when only 4 or 8 processors
are available. The speedup decreases and eventually
becomes sublinear as the number of processors is in-
creased. Furthermore, the number of processors re-
quired to deliver good performance varies from prob-
lem to problem. Thus, the following question about

our parallel formulation keeps recurring: “How many
processors does the method need to deliver acceptable
performance?”

4 Performance Prediction

Performance prediction methods capable of deter-
mining the following two quantities are of particular
interest: the time needed by a parallel algorithm to
solve a problem given a fixed number of processors,
and the number of processors needed to deliver a so-
lution within a given time bound. The second of these
can be obtained from the first, so we will focus on the
first.

Many researchers have shown that, when the solu-
tion distribution is known, classic probabilistic meth-
ods are useful for predicting the performance that can
be delivered by randomized parallel search formula-
tions [16, 9]. Unfortunately, for any non trivial prob-
lem, the solution distribution is not known in advance.
Therefore, some experimental basis is necessary to ob-
tain an accurate prediction.

One possible method is to accurately estimate the
solution distribution by computing a large number of
solutions on a single processor and then use the distri-
bution on the single processor to estimate the perfor-
mance on larger numbers of processors. Ertel [7] has
shown that accurate estimates can be obtained when
a large number of solution times are used. We refer to
this method as the T estimation method. Ertel used
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the T estimation method to compute accurate predic-
tions of the performance of his uninformed randomized
parallel formulation on various theorem proving prob-
lems after obtaining a large sample (i.e., between 1000
and 10000 solutions) from the actual single processor
solution distribution.

We have developed a method, called the T}, estima-
tion method, capable of computing accurate estimates
of both the time needed by a parallel algorithm to
solve a particular problem and the number of proces-
sors needed to deliver a solution within a given time
bound. The method is based on experimentally es-
timating the probability distribution function of the
solution time on k-processor by successively execut-
ing randomized parallel search on a fixed number of
processors. This is done as follows.

Let T be a random variable which denotes the
time taken by uniprocessor randomized search to find
a solution. Assume that we obtain N samples from
Ti. To obtain each sample, we execute randomized
search until it finds a solution. Also assume that
the sequential solution times are labelled to,...,tn,
and that they are sorted in increasing order (i.e., tg
is the smallest, t,, is the largest). The estimated
probability associated with a particular solution time
t; is just the frequency of its appearance in the set
of N sequential solution times sampled. Then, for
each time t;, Py (t;) is estimated by using its definition
Py(t;) = P[Ty, < t;] = > o P[Tk = t;].

Having experimentally estimated Py (t), we can now
compute the probability distribution function P,,(t)
on m processors in the following manner. First we
solve equation 1 for P;(t). This yields:

Pi(t) =1—(1— P(t))/*. (3)

We can then derive the equation necessary for predict-
ing the probability distribution function Py, (t) by sub-
stituting equation 3 into equation 1. Doing so yields
the following result:

Pu(t) = 1—(1—(1—(1_Pk(t))1/k))m
= 1—(1=Py(t)™*. (4)

In most cases a relatively small number of solutions
is required to obtain an accurate estimate of Py(t).
This is because a small sample from the solution set
associated with T}, contains more information about
the solution distribution on a larger number of pro-
cessors than a small sample from 77 does. The reason
is that we get many large solution times when sam-
pling T7. However, as k increases, the probability that
a k-processor system will yield a large solution time
decreases exponentially with k.

Computed solution times

No Processors 1 32 64 128 256

Avg Search Time | 102.34 8.39 5.36 3.37 2.32

Std Dev 108.33 5.24 3.26 2.17 1.26

Predicted solution times

No Processors 1 32 64 128 256

E[T1] 128 runs 107.72 | 12.52 | 8.90 5.81 3.72

E[T1] 256 runs 102.34 | 11.04 | 7.42 4.56 2.94
E|T32 - 8.39 5.46 3.43 2.21
E[Tea - 7.45 5.36 | 3.54 2.38
E[T128 - 6.71 5.02 | 3.37 | 2.26
E|Ts6 - 6.30 4.99 3.48 | 2.32

Figure 2: Computed and predicted solution times for a prob-
lem instance. The actual average solution times are shown at
the top of the table and marked in bold font in the bottom part
of the table. The times were computed using 128 solutions and
256 solutions from 77, and 64 solutions from T}j. All times are

in seconds.

In other words, when sampling 77, a significant
amount of time is required to accumulate information
that yields minimal information about the average so-
lution time on a k-processor system for small to mod-
erately large values of k. Conversely, sample points
from T} tend to belong to the group of small solu-
tion times because each of them is the minimum time
of k independent runs. These smaller solution times
have a higher probability of occurring in the solution
time probability distribution of an m-processor sys-
tem, where m > k. Hence, most samples from T}
yield information about the distribution that is rele-
vant for computing P,,(t). Thus, sampling T} yields
better predictions for T,,, (m > k) with fewer solutions
than sampling 7.

There is a drawback to T} prediction method.
When we use equation 4 to predict performance on
a smaller number of processors (m < k), our method
will tend to yield optimistic predictions (i.e., predict
average solution times faster than actually available).
This will occur because the experimentally computed
P, (t) has little or no information about the larger solu-
tion times present in the solution time distribution on
a smaller number of processors, and these larger solu-
tion times are necessary to predict the performance on
smaller numbers of processors accurately. As a result,
downward predictions of solution times tend to be op-
timistic. Optimistic predictions then yield pessimistic
estimations of speedup.

So, if a large number of processors is used to pre-
dict performance on a smaller number of processors,
the T} approximation method yield little meaningful
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Rel ative Error vs No. of Processors for Upward Prediction
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Figure 3: Percent relative errors for predicted solution times
for the problem shown in Figure 2. The graphs compare the rel-
ative upward and downward prediction error delivered by the T}

and T}, methods. The first graph shows the relative error when
predicting performance upward, the second graph downward.

information. One way to avoid this situation is to use
a relatively small number of processors (e.g., 32 as in
our experiments), and increase the number of proces-
sors only if some of the solution times are unacceptably
large.

In Figure 2 we show the results obtained by the
T} method on one of the many problem instances we
examined. The table shows the experimentally com-
puted average solution times and the predicted aver-
age solution times for each group of processors. For
the 77 method we show the results obtained with 128
and 256 solutions. For the T} method we used 64 so-
lutions. The average solution times that we computed
experimentally are the diagonal entries in the table
and are marked in bold font. Entries in a row to the
left of the bold-font diagonal entry are the predicted

Relative Error per No Processors 32 ‘ 64 ‘ 128 ‘ 256

T, Predictions (128 runs) 49.2 | 66.0 | 72.4 | 60.3

T Predictions (256 runs) 31.5 | 38.4 | 35.3 | 26.7
Ty Upward Predictions - 1.8 5.0 4.7

Ty Downward Predictions 249 | 11.8 | 3.6 -

Figure 4: Percent relative errors for predicted solution times
for the T1 and T}, methods with different numbers of processors.

solution times required by fewer processors (downward
predictions), and entries in a row to the right of a di-
agonal entry are the predicted solution times required
by larger numbers of processors (upward predictions).
The number of processors for which a time is experi-
mentally estimated or predicted is determined by the
number of processors listed at the top of its column.

Graphs of the relative error delivered by the 77 and
T} prediction methods on increasing and decreasing
numbers of processors are shown in Figure 3. The
percent relative error is calculated using the following
formula:

|computed value — predicted value|
computed value

100 (5)

Each graph shows the percent relative error for T}
estimated with V = 128 and N = 256 solutions. The
first graph shows the percent relative error for upward
predictions (i.e., predictions for increasing numbers of
processors), the second for downward predictions (i.e.,
predictions for decreasing numbers of processors). We
show also the relative error for the T} predictions, and
for the T}, predictions for k = 32,64, and 128.

The table in Figure 4 shows the percent relative
error delivered by 77 estimated with 128 and 256 so-
lutions. The table also shows the highest and lowest
percent relative error delivered by the T} prediction
method for upward and downward predictions. The
highest and lowest percent relative error shown for
each group of processors is selected from all predic-
tions made for that group of processors. The data
from the table in Figure 2 are used to compute the
relative error.

5 Conclusions and Future Work

We have presented a fast performance prediction
method that can be used to predict the solution times
that our parallel motion planner can deliver on a larger
number of processors.

Although the motion planner presented is only
probabilistically complete, the experimental results we
have obtained with a large variety of robots and en-
vironments indicate that the method always finds a
solution.
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Given enough processors a solution is found in short
time frames. Coarser discretizations and the use of
currently available processors faster than those used
here would enable our system to deliver sub-second
performance even with a modest number of processors.

The number of different solution paths increases
dramatically with the number of dof of the robot. Be-
cause of the way the planner escapes local minima
and generates successors, this increased solution den-
sity enables the parallel planner to escape local min-
ima very effectively even in instances that would be
difficult for other methods.
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