
Using the AIBOs in a CS1 course∗

John Chilton and Maria Gini
Department of Computer Science and Engineering, University of Minnesota

200 Union St SE, Minneapolis, MN 55455
{chilton,gini}@cs.umn.edu

Abstract

We describe an experiment that we have conducted in
our CS1 course, where we used the robot dogs AIBO for
a laboratory assignment. We briefly outline the course
objectives, motivate the choice of using robotics and, in
particular, of using the AIBOs in the course, and pro-
vide details on the software we developed for the lab
assignment.

Introduction
Robotics is often used in undergraduate education to teach
specific robotics and AI concepts (Doddset al. 2006), but
also as a way of engaging the students with hands-on ex-
perience, and of attracting students to study computer sci-
ence (Gini, Pearce, & Sutherland 2006).

What we believe is unique about our experiment is that
(1) we used as robots the Sony robot dogs AIBO, (2) we
did the experiment in our CS1 course, (3) our CS1 course
is based on Scheme, and (4) we used a combination of co-
operation and competition to build teamwork while chal-
lenging the teams to compete. AIBOs are used by others
for teaching, but they are used in advanced courses (for in-
stance, (Velosoet al. 2006)) often designed for teams play-
ing in RoboCup (RoboCupFederation ), and typically not
with Scheme. Scheme or Lisp are rarely used with robotics
(but see, for instance, (Klassner 2006) for an exception).

In the rest of the paper we briefly outline the course objec-
tives, motivate the choice of using robotics and, in particular,
of using the AIBOs in the course, and provide details on the
software we developed for the AIBO lab assignment.

Description of our CS1 course
Our CS1 course, the first course required for the Computer
Science and Computer Engineering majors, is modeled after
the MIT 6.001 entry-level computing course.

Our students are expected to take this course in their fresh-
man year, but some take it in the sophomore year. The

∗Work supported in part by a Bush grant on Innovative Teaching
and Technology Strategies at the University of Minnesota and by
the National Science Foundation grant DUE-0511304
Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

course is offered with a single section per semester. The stu-
dents are divided into smaller groups (30-34 students each)
for a 2 hours/week lab, where they work on programming
assignments with the help of the TAs. The course enrolls
100-150 students per term.

The course offers an introduction to the fundamental
principles of programming and to different programming
paradigms, with emphasis on the design of abstract data
types and recursive algorithms. The course teaches how
to think as a computer scientist, by teaching the process of
decomposing problems into simpler problems, and of con-
trolling the complexity by using abstractions that hide im-
plementation details. Although students may not use in the
course much of the material covered in calculus, they need
solid reasoning skills and the willingness to use mathematics
as a tool for analyzing and solving problems.

The course does not assume any programming knowl-
edge. Students come to the class with very different back-
grounds. Some have never programmed, some have signifi-
cant programming experience, but they have rarely gone be-
yond the mechanical understanding of how to write a pro-
gram to reach an understanding of how to organize their
thinking process.

The language taught in the course, Scheme, is concise, has
a clean and consistent semantics, and it is perfect to teach the
students how to think. An additional reason for the choice of
Scheme it that it is a language unknown to most of the stu-
dents taking the course. This provides a more even starting
point for all the students in the course. However, the students
are often reluctant to put a significant effort into understand-
ing the material, since they do not see how knowledge of
Scheme will increase their short term marketability.

We want to maintain the rigor of the course and its con-
tents, but find ways of engaging the students more in the
learning process. Two years ago we were selected as one
of the twelve teams at the University of Minnesota which
participate in a campus-wide project on “Promoting Student
Learning in Large Classes. ” As part of the project we have
experimented a variety of active learning techniques, rang-
ing from different small group activities in class, to placing
a strong emphasis on problem-based learning,

In problem-based learning, relevant problems are intro-
duced at the beginning of the instruction and are used to pro-
vide the context and motivation for learning. As described



in (Prince 2004), “While no evidence proves that problem-
based learning enhances academic achievement as measured
by exams, there is evidence to suggest that PBL “works” for
achieving other important learning outcomes. Studies sug-
gest PBL develops more positive student attitudes, fostersa
deeper approach to learning and helps students retain knowl-
edge longer than traditional instruction.” (p. 229)

Why use the AIBO in a CS1 course?
Making the students excited about their first computing
course by including creative contents and building bridges
to other disciplines is recommended (Klawe Dec 1 2005) as
a way to encourage students to consider majoring in CS.

The Sony AIBO comes with a rich set of sensors (cam-
era, proximity, touch, microphones), a complex body (with
20 degrees of freedom), and preloaded software that allows
it to interact with humans via voice and vision without the
need for any programming. We believe they are specially
suited for beginner courses because of their simple and in-
tuitive use, but, at the same time, they will allow students to
grow with them. As students become more knowledgeable,
they will reprogram the AIBOs and make them do more in-
teresting movements and interactions.

The AIBOs are not intimidating and are intuitive to use,
yet they will allow us to show students how to use the pro-
gramming language they learned in the course for a sophis-
ticated and exciting application.

Currently, many college-level robotics courses require
group robot building projects using Lego robots with Handy-
board controllers or the like. Many students are not drawn to
soldering, shrink wrapping or low level programming in C.
To the contrary, the AIBO is designed and built to be used
by a broad population. Everything is enclosed so that the
robot need not be checked for loose wires or incorrect con-
nections each time it is run. This will allow the students to
go further since they won’t have to spend a lot of time on
finding sensors that work and tracking down faulty wires.

A unique feature of the AIBO is its autonomy. AIBO can
be controlled using wireless commands, but they can also
be programmed to explore their environment and to make
autonomous decisions. We believe this is an important fea-
ture, which will enable the students to appreciate the power
of computing by understanding what it takes to make au-
tonomous decisions, in the face of a complex and unknown
real-world that can only be partially observed via sensors.

Recent studies with adults (Friedman, Kahn, & Hagman
2003) and with children (Melsonet al. 2005) show that the
majority of them views the AIBO as having mental states,
life-like essence, and social communication skills. To the
best of our knowledge, this is the first robot for which people
have shown the type of psychological, cognitive, and emo-
tional reactions they tend to have with pets (Beck & Katcher
1996). With the AIBO no one will get scared by the com-
plexity but, at the same time, no one will get bored.

Educational Objectives
Felder (Felder, Felder, & Dietz 2002) reports a study of
the effect of personality types on engineering student per-

formance. Although it is known that in order to be suc-
cessful in an engineering career, a student should experi-
ence learning styles other than only the one they prefer,
Felder states “severe mismatches commonly occur between
the teaching style of instructors and the learning style of
their students.” The study shows a positive correlation be-
tween students who do not learn well in a lecture-based en-
vironment and both women and first generation college stu-
dents. Many engineering courses are lecture-based, so it is
important to adopt different teaching styles and to make the
students more active participants.

The project we describe addresses specifically some of the
major issues that affect recruiting and retention of students
in Computer Science:

1. Increase confidence by hands-on programming expe-
rience. Beyer et al. (Beyeret al. 2003) state that one
of the reasons for poor self-image around computing is
that women are less playful than men with computers.
Robotics programming, by nature, is playful. Through
the class experience we hope to give students experiences
that “boost their self-confidence” (Beyeret al. 2003) and
that improve their self-perceptions about computer sci-
ence and career goals.
Furthermore, it is common wisdom that students gain
confidence by hands-on manipulation, and by seeing con-
crete effects of their work. It is our experience that robot
programming teaches and reinforces a variety of skills,
and that most students enjoy using robots. Our goal is not
to create robotics experts but to give students an opportu-
nity to use their newly acquired programming skills in an
environment that gives quick and concrete feedback, and
which is also fun.

2. Solve real world problems.
We believe that focusing on solving real world problems,
rather than just learning how to write programs, will in-
crease student interest in the course. It has been shown
that female retention in CS improves when the focus is
not simply on the computer itself, but on the connections
between computer science and other areas (Margolis &
Fisher 2002). Robotics forces the students to deal with
the real world. Robots do not always act as expected,
and making the AIBOs to dance while keeping their bal-
ance proved to be harder than anticipated by the students.
However, seeing the robot performance provided imme-
diate feedback, which in turn helped the students in the
process of debugging and improving their program.

3. Work in groups.
Work by Carol Gilligan (Gilligan 1982) suggested that
women score differently on Piaget’s scale of moral de-
velopment because they do not think in the same terms
as men. In particular, Gilligan claimed that women are
more oriented toward cooperation than competition. Re-
cent studies indicate that “pair programming” (Williams
& Kessler 2000) is an effective tool for increasing the re-
tention of women in computer science classes (Werneret
al. 2005).
In our CS1 course the students work in pairs for all their



weekly lab assignments. We developed a lab assignment
centered on the use of the AIBO. Because of logistic for
the AIBO lab we used larger groups, as explained later,
and we made the lab assignment more open ended than
any other lab assignment. We measured success simply
by considering the participation in the process.

4. Combine collaboration with competition.
We know that many students respond positively to com-
petition. Competition tends to provide students with mo-
tivation and focus, while cooperation has been shown to
improve student learning outcomes. To combine the two,
in the AIBO lab students cooperate within their group and
compete between groups. The students were divided in
large groups (6-7 students per group). Each group had
to write a program to make the AIBO to dance and had to
compete with the other groups for the best dance. The best
dance from each of the lab sections was then presented to
the entire class, and competed for having the best dance
of the course.

We believe this approach has the potential to maximize
the benefits of each kind of structure. In particular, we
have seen how the competition invigorated the group as-
signment and prodded students who tended not to work
well in groups to enjoy working collaboratively. This
combined the best of cooperative learning and the mo-
tivational energy of academic competition.

Details on the lab assignment
The constraints on the kind of assignment utilizing the AI-
BOs that could be given were as follows. There were four
lab sections, all on the same day, with roughly 30 students
per lab section. This was many more students per lab than
AIBOs available, so the assignment needed to be able to be
completed by relatively large groups of students. Also, the
labs were only two hours long and allowing 120 students to
work on this project outside of the designated lab time was
not practical. Hence, the assigned task needed to allow the
students to experiment with the AIBO and the provided pro-
cedures for controlling it, write up a program, and test it in
less than two hours.

The lab assignment that was devised to satisfy these cri-
teria was to have the students program the AIBOs to dance.
In each lab session, the students were divided into groups of
roughly eight people and each group was given a little under
two hours to make up a dance and program the AIBO to per-
form it. Each group was given one computer and one AIBO.
The students were told the dance performances should be
around 30 seconds long.

Given the time constraints the students had, it was decided
their lab grade would be determined solely by attendance.
To motivate the students, extra credit points were awarded
to the top dance performance from each lab section. Shortly
before each lab period was finished, the students were gath-
ered together and each group demonstrated their dance for
the other groups of section. As a group, each lab session
voted for a lab section winner. During the large lecture ses-
sion on the day after lab, an AIBO was brought to class, and

the best dances from each lab section were performed for the
whole class.

Instead of the students programming their dances as a lin-
ear sequence of commands, they were instructed to make
use of a specialized priority queue data structure, described
in the course textbook (Abelson & Sussman 1996), called an
agenda. An agenda is a table of times sorted in increasing or-
der with associated events, where events are “thunks” stored
in a queue and executed when their time comes. The text-
book introduces agendas as an approach for discrete event
simulation.

The students used a modified version of this data struc-
ture that would insert actual time delays between the discrete
times. This allowed the students to control what events hap-
pened when easily. Making use of the agenda data structure
this way, we were able to accomplish all of those things we
hoped to with the AIBOs that is not accomplished by our
more typical labs, while still reinforcing the course material
like any other lab.

To create the dance movements the students were in-
structed to use the agenda either simply by inserting events
with assigned time delays (the time delay is measured in mil-
liseconds) or in a more complex way by adding actions that
add other actions.

For instance, in this simple example the dog will move
forward for a second, then stop and wait a second, and then
look left and make a sniffing sound. This example also illus-
trates passing named and unnamed procedures to after-delay.

(after-delay 0
(lambda () (walk .7)))

(after-delay 1000 stop)
(after-delay 2000

(lambda () (look-left)
(sniff)))

A better approach is to break the dance into different re-
peating patterns and to create actions that insert each other
into the agenda. For instance, the AIBO can be made to nod
its head up and down repeatly by using two procedures. One
procedure moves the dog’s head up and adds the other pro-
cedure to the agenda. The other procedure moves the dog’s
head back down and adds the first procedure to the agenda
again. Since this will create an infinite sequence, the agenda
has to be reset at some point or a timeout to be added.

define (my-nod-down)
(nod-down) ; nods dogs head down
(after-delay 200 my-nod-up))

(define (my-nod-up)
(nod-up) ; nods dogs head up
(after-delay 200 my-nod-down))

; Put first call in the agenda, to get
; the process started
(after-delay 0 my-nod-up)
; Stop the loop after 20 seconds
(after-delay 20000 reset-the-agenda!)

Students were given a large variety of commands they
could use to control the movements of the AIBOs, to control



the LEDs on the AIBO’s face, to play music and produce
different sounds, and to control individual joints.

Description of the software
During the lab, each AIBO ran the server-side implemen-
tation of a framework for remote communication with the
AIBO we developed called A MOdular Remote AIBO Inter-
face (AMORAI). The computers that the students used for
this lab assignment were Linux PCs equipped with 802.11b
wireless cards to communicate with the AIBOs. The stu-
dents did all of the programming for this lab in Scheme us-
ing the Guile Scheme interpreter. Issuing commands to the
AIBO was done using a collection of procedures we wrote
that implement the client-side interface of AMORAI.

The AMORAI server framework is implemented as a
collection of Tekkotsu (Tira-Thompson 2004) behaviors,
each which listens on or writes to various ports, similar to
Tekkotsu’s own Tekkotsu Mon behaviors. AMORAI, unlike
Tekkotsu Mon, is not tied to the Tekkotsu remote Java GUI
and so remote applications can cleanly be written against it
in any desired programming environment and no extra soft-
ware or libraries are required by the client. Also, AMORAI
was designed from the ground up to maximize code reuse
and hide issues such as interfacing the wireless card and
socket programming from programmers of new server-side
behavior interfaces.

Each Tekkotsu behavior that comprises the AMORAI
server framework implements an interface for some specific
functionality. Some of the behaviors implemented at this
time include, among others, an interface for controlling the
3D motion of the AIBO, an interface that allows the pro-
grammer to control individual LEDs and joint positions, and
an interface allowing the programmer to play any of AIBO’s
on board sound files. Communication in the other direc-
tion is also implemented. An example of this is a behav-
ior which continuously sends the current joint positions and
sensor readings to the remote PC. Communication of this
kind was not required for this lab assignment, but it would
be necessary if more complicated tasks were assigned.

Any interface behavior the programmer sets up to use is
started when the AIBO boots up, and each of these cre-
ates a socket and sets it to listen on a given and distinct
port. Programming a client side application to interface with
AMORAI is then very simple. All the application needs to
do is use the AIBO’s IP address and the known port number
of the desired interface to connect another socket to the one
that is listening on the AIBO. We have implemented such a
client interface for Guile scheme, but little effort would be
required to develop analogous interfaces in Python, C, Ruby,
or any other programming language that allows for reading
and writing binary data to sockets.

Setting up and using AMORAI
To install the server-side AMORAI framework on
a Sony ERS-7 AIBO, one can simply download
a memory stick image from the AMORAI wiki
(http://www.cs.umn.edu/ chilton/amorai/),
copy this to an AIBO memory stick along with the ap-
propriate wireless configuration file, and boot the AIBO.

Statement Seldom Sometimes Often
1 5 30 62
2 3 31 63
3 1 17 79
4 2 15 80
5 6 44 47
6 5 41 51
7 4 37 56

Figure 1: The values indicate the number of students that se-
lected that response to that statement. The statements were:
(1) Contributed ideas, (2) Positively encouraged others in
my group, (3) Compromised and cooperated, (4) Was flex-
ible and willing to follow others, (5) Took initiative when
needed, (6) Helped to solve problems, (7) Did my share of
the workload/tasks.

After the AIBO produces a roar sound, it will be ready
to communicate with. Extending the AMORAI server
functionality requires a working Tekkotsu environment.
More information about extending AMORAI can be found
at the AMORAI wiki. AMORAI will not work as is with
AIBO models older than the ERS-7.

The file containing the Guile Scheme procedures that im-
plement the client side of the AMORAI interface and docu-
mentation can also be found at the AMORAI wiki. This file
contains a variable that indicates the IP address of the AIBO
to communicate with. This variable should be changed ac-
cordingly. If a wireless network is setup correctly, after
changing this IP address, all that one should need to do to
begin sending commands to an AIBO running the AMORAI
server framework is to start the Guile interpreter and load the
file.

Preliminary evaluation of the experiment
The experiment was a success. A questionnaire was given
to the students directly after the activity. In response to the
question, “Do you have any thoughts you would be willing
to share about the lab? Was it fun?”, a great majority (83
out of 97) of the students indicated they enjoyed the lab,
while 12 students did not answer the question and only two
students wrote that they disliked the lab.

These questionnaires were not anonymous. However,
shortly after the activity the students were asked to fill out
an anonymous course evaluation. In response to a similar
question, 52 out of 56 students indicated they enjoyed the
lab, two students did not respond, and again only two stu-
dents disliked the lab.

The questionnaire given directly after the lab also in-
cluded a series of multiple choice questions designed to en-
courage the students to reflect on how they functioned in
their groups. Figure 1 summarizes these results.

The following question was also included in the ques-
tionnaire to assess how the lab changed the students’ view
of Scheme, “Does it change your view of the scheme pro-
gramming language to know the client code used to com-
municate with the AIBOs was written 100% in Scheme?”.
Twenty-two respondents indicated they had more positive



view Scheme, 20 additional students had other positive com-
ments such as “The lab showed off Scheme well.”, and only
six students indicated that their views of Scheme were un-
changed.

The large size of the groups that worked on this lab did not
appear to be a problem. One reason for this could have been
that students with different strengths could all contribute. As
one would expect, the strongest programmers tended to be
the ones in front of the computer most of the time. However,
many students whom were not very engaged by the rest of
the labs were able and excited to contribute their ideas. The
noise and energy level of the lab was considerably higher
than any other lab that semester.

It also became clear that given the task decomposed it-
self in to subtasks that smaller groups could work on easily.
Without any instruction to do so, many groups formed sub-
groups that would work on different subtasks such as pro-
gramming the LEDs, sounds, or the movement pattern of
the AIBOs. These groups would divide their time on the
AIBOs, and while one team was testing their code or exper-
imenting, the other team would brainstorm, read through the
provided documentation, and write out small pieces of code
on paper or on their own laptops. Combining these separate
pieces of code was easily done because of the nature of the
agenda data structure that was used for program flow.

In addition to not requiring as much time to program or
test as say traversing a maze, programming the AIBOs to
dance was an inherently incremental task. Each group was
encouraged to program a simple dance first and if time al-
lowed and add more to it. Doing this, every group was able
to come up with at least a simple dance in the two hours
given, and many groups came up with dances that were more
sophisticated, creative, and entertaining than we could have
expected.

Conclusions and Future Work

We have presented preliminary results on an experiment
done in our CS1 course, where we used the AIBOs for one
of the lab assignments. The experiment showed that the stu-
dents were engaged by the robots and the novelty of the
assignment, and that they enjoyed the opportunity to see a
practical and fun use of the programming language Scheme
they were learning in the course. We plan on repeating the
experiment this year and to do a more systematic analysis of
the results once we have the additional data.

The fact that the AIBOs are no longer commercially avail-
able, will make continuing this activity and replicating it
elsewhere challenging. We are currently exploring options
for using different robots and we are considering using a
simulator instead of the real robots.

Acknowledgements

We would like to thank Paul Baepler and J. D. Walker from
the Bush program for providing support and ideas and for
helping us in experimenting with ways to increase student
participation.

References
Abelson, H., and Sussman, G. 1996.Structure and Inter-
pretation of Computer Programs - 2nd Edition. The MIT
Press.
Beck, A., and Katcher, A. 1996.Between pets and people.
Purdue University Press.
Beyer, S.; Rynes, K.; Perrault, J.; Hay, K.; and Haller, S.
2003. Gender differences in computer science students. In
Proc. of the 36th SIGCSE Technical Symposium on Com-
puter Science Education, 49–53.
Dodds, Z.; Greenwald, L.; Howard, A.; Tejada, S.; and
Weinberg, J. 2006. Components, curriculum, and commu-
nity: Robots and robotics in undergraduate ai education.AI
Magazine 27(1):11–22.
Felder, R.; Felder, G.; and Dietz, E. 2002. The Effects of
personality type on engineering student performance and
attitudes.Journal of Engineering Education 91(1):3–17.
Friedman, B.; Kahn, P. H. J.; and Hagman, J. 2003.
Hardware companions? what online AIBO discussion
forums reveal about the human-robotic relationship. In
SIGCHI Conference on Human Factors in Computing Sys-
tems, 273–280.
Gilligan, C. 1982.In a different voice: Psychological the-
ory and women’s development. Harvard University Press.
Gini, M.; Pearce, J.; and Sutherland, K. 2006. Using the
Sony AIBOs to increase diversity in undergraduate CS pro-
grams. InConf. on Intelligent Autonomous Systems (IAS),
1033–1040.
Klassner, F. 2006. Launching into AI’s october sky with
robotics and lisp.AI Magazine 27(1):51–66.
Klawe, M. Dec 1, 2005. Blue skies ahead for it jobs.CIO
Magazine.
Margolis, J., and Fisher, A. 2002.Unlocking the Club-
house: Women in Computing. MIT Press.
Melson, G. F.; Kahn, P. H.; Beck, A. M.; Friedman, B.;
Roberts, T.; and Garrett, E. 2005. Robots as dogs?: chil-
dren’s interactions with the robotic dog AIBO and a live
Australian shepherd. InSIGCHI Conference on Human
Factors in Computing Systems, 1649–1652.
Prince, M. 2004. Does active learning work? a review of
the research.Journal of Engineering Education 223–231.
RoboCupFederation. http://www.robocup.org/.
Tira-Thompson, E. 2004. Tekkotsu: A rapid development
framework for robotics. Master’s thesis, Carnegie Mellon
University.
Veloso, M. M.; Rybski, P. E.; Lenser, S.; Chernova, S.; and
Vail, D. 2006. CMRoboBits: Creating an intelligent AIBO
robot. AI Magazine 27(1):67–82.
Werner, L. L.; Hanks, B.; McDowell, C.; Bullock, H.; and
Fernald, J. 2005. Want to increase retention of your female
students?Computing Research News 17(2).
Williams, L., and Kessler, R. R. 2000. All I really need
to know about pair programming I learned in kindergarten.
Communications of the ACM.


