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ABSTRACT
We study the problem of achieving cooperation between two
self-interested agents that play a sequence of different ran-
domly generated normal form games. The agent learns how
much the opponent is willing to cooperate and reciprocates.
We present empirical results that show that both agents ben-
efit from cooperation and that a small number of games is
sufficient to learn the cooperation level of the opponent.
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1. INTRODUCTION
We extend the work in [2, 3] where two self-interested

players play a sequence of non-zero-sum normal form games,
each game played only once by the same two players. Since
each game is played only once, agents cannot rely on past
observations to predict the opponent’s behavior, but since
they play repeatedly against each other they can observe
each other and reciprocate past positive interactions.

Reciprocation is a strategy used successfully in nature, in
artificial environments such as iterated prisoner’s dilemma,
and by people [4]. Our agent decides how to reciprocate by
learning the level of cooperation of the opponent, which we
call the opponent’s attitude, and setting its own attitude to
be slightly higher than the attitude of its opponent.

As in [2], an attitude is a real number in the range [-1, 1].
An attitude of 1 means that the opponent’s payoff is valued
as highly as the agent’s own payoff. An attitude of 0 means
that the agent is indifferent to the opponent’s payoff. An
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attitude of -1 means the agent is only concerned with how
well it does compared to its opponent.

Given agents x and y with attitudes Ax and Ay, a modified

game is created with payoff functions P
′x
ij = P x

ij + AxP
y

ij

and P
′y

ij = P
y

ij + AyP x
ij , where P x

ij and P
y

ij are the payoffs
in the original game respectively for agent x and y when
they choose actions i and j. An agent selects its action in
the modified game, but receives its payoff according to the
original game. We have shown [2] empirically that when
both agents have a positive attitude, their payoffs in the
original game are higher than if they had both simply tried
to maximize their individual scores.

For simplicity, we assume that agents play a strategy
which is part of a Nash equilibrium. The Nash equilibrium
is computed by the agent in the modified game, where the
payoffs are changed to reflect its willingness to cooperate.
This is convenient since it limits the choices to a discrete set
(i.e. one among the Nash equilibria for each game). We do
not assume both agents use the same Nash equilibrium.

2. LEARNING AND RESULTS
An agent which uses this model to act needs 3 parame-

ters – an attitude value for itself, an attitude value for its
opponent, which we call belief, and a method of choosing a
Nash equilibrium from the modified game. In every round
the agent observes the payoff matrix of the game and the
action chosen by the opponent in that context. From that
information, it needs to learn a probability distribution over
the attitude, belief, and method of the opponent.

Due to the complex interactions between attitude, be-
lief, method, and the game being played, it is not possible
to analytically update a probability distribution over those
factors. However, given specific values for attitude, belief,
and method we can compute the probability that the agent
would select a particular action in a given game. This en-
ables the agent to use a regularized particle filter to track a
probability distribution over attitude, belief, and method.

A particle filter represents a probability distribution with
a number of samples drawn from it, instead of using a para-
metric representation. Each particle has a weight attached,
and the distribution represented by the particles is a discrete
distribution with probability of each particle proportional
to its weight. When an observation is made, each parti-
cle’s weight is updated by multiplying it by the probability
assigned to the observation by that particle.

For our experiments we use randomly generated normal
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Figure 1: Payoff against a random stationary oppo-
nent(top) and in self-play (bottom).

form games with 16 actions per player, and payoffs uniformly
distributed between 0 and 1. We have found empirically that
this number of actions provides opportunities for coopera-
tion without making cooperation the only rational choice.
We use the Lemke-Howson algorithm to calculate equilibria,
and use an initialization parameter passed to the algorithm
to distinguish the different methods.

We have measured the model accuracy, i.e. the Euclidean
distance between the estimates and the true values for atti-
tude and belief of the opponent, and the prediction accuracy,
i.e. the Jensen-Shannon divergence between the predicted
and the actual probability distribution the opponent used to
select an action. We have also measured the performance,
i.e. the payoff achieved by the agent.

Fig. 1 shows the payoff against a random stationary op-
ponent, where the agent learns to best respond to the op-
ponent’s predicted strategy, and in self-play, where each
agent reciprocates the opponent’s attitude with a bonus of
.1. Learning targets are drawn from a Gaussian distribution
with 0 mean, results are aggregated over 100 sequences of
100 games. Payoff without learning is what is achieved by
an agent which plays according to its prior distribution over
the opponent. Omniscient payoff is what would be achieved
by an agent aware of the true attitude, belief, and method
of the opponent. The payoff can exceed the optimal pay-
off because of noise in the randomly generated games. As
shown in Fig. 2, after 15-20 interactions the agent’s predic-
tions are very accurate for a random stationary opponent
or in self-play. Those are very small numbers compared to
the hundreds of games needed to learn in the simpler case
of repeated games [1].
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Figure 2: Prediction accuracy against a random sta-
tionary opponent (top) and in self-play (bottom).

3. CONCLUSIONS
We have presented a method for an agent to learn to co-

operate when playing a sequence of different normal form
games with the same opponent. We have shown that achiev-
ing cooperation is beneficial to both agents and that learn-
ing how to respond to the opponent is possible. The results
presented are against a random stationary opponent and in
self-play, but we have tested the algorithm in many other
situations and found that it is fairly robust and effective.
Next we will explore two related questions. First, we want
to extend our learning approach to handle agents which do
not play Nash equilibria. Second, we want to study how
an agent can learn about its opponent when playing against
other types of non-stationary opponents.
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