Parallel Search Algorithms
for Robot Motion Planning

*

Maria Gini
Department of Computer Science

University of Minnesota
Minneapolis, MN 55455

Abstract

We show how paths for dexterous robots can be generated in a few seconds or less using parallel informed
randomized search on multicomputers. The experimental results we present have been obtained for a variety
of robots with siz or more joints operating in realistic 3D workspaces.

1 Introduction

Motion planning is the process of computing paths that will allow a robot to move to different positions in
its environment without hitting obstacles. Many algorithms have been developed [Latombe, 1991], but most
are never used in practice because of their computational complexity [Hwang and Ahuja, 1992].

The intent of this paper is to show that plans for multi-jointed dexterous robot arms which operate in re-
alistic environments can be synthesized very quickly by parallel algorithms. The ability to plan paths quickly
is important to make motion planning useful in application areas, such as industrial robotics, teleoperation
[Lumelsky and Cheng, 1993], control of redundant robots [Laliberte and Gosselin, 1994]. Real-time motion
planning coupled with real-time sensing will allow robots to adapt their planned paths to take into account
the uncertainties of the real world. Even more important, it will allow robots to react to unanticipated
events and to quickly replan their paths whenever needed.

2 Motion Planning

Research in the area of robot motion planning can be traced back to the late sixties, but most of the work
has been carried out more recently. Over the last few years the theoretical and practical understanding of
the issues has increased rapidly, and a variety of solutions have been proposed. Latombe [Latombe, 1991]
provides an extensive overview.

There are two different spaces associated with motion planning algorithms, the workspace and the config-
uration space (C-space). The workspace is the world that the robot must move through, the C-space is the
set of all robot configurations. The dimensionality of the C-Space is the number of parameters required to
fully specify a configuration of the robot. The search is done in C-space because the robot becomes a point
in C-space. The motion planning problem then becomes one of computing a decomposition of the C-space
and searching through sequences of cells to find a path that involves no collisions with obstacles.
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To obtain acceptable performance, some methods do a significant amount of preprocessing of the config-
uration space (C-space) [Kavraki, 1994], or place landmarks in C-space that are then used by a local planner
[Bessiere et al., 1993, Chen and Hwang, 1992]. Other methods make assumptions on the type of robot (for
instance, [Adolphs and Tolle, 1992] takes advantage of the symmetry of the workspace with respect to the
first axis of the robot), or use a coarse discretization of C-Space. Real time has been achieved in detection
of imminent collisions [Shaffer, 1992, Wikman et al., 1993], but not for path planning.

In an effort to decrease the computation time, some researchers have devised parallel methods. Lozano-
Perez [Lozano-Perez, 1991] was the first to develop a parallel algorithm to compute the discretized C-space
for the first three links of a six dof manipulator. This method works well, but it is limited to relatively coarse
C-space discretizations due to memory limitations. A genetic based approach has been implemented using
128 T800 transputers with excellent performance [Bessiere et al., 1993]. The method places landmarks in
free space until it is able to generate a path using local methods.

Our method is a parallel formulation of the Randomized Path Planner proposed by Barraquand and
Latombe [Barraquand and Latombe, 1991]. Space is represented with bitmap arrays. The configuration
space is discretized and searched using heuristic search with random walks to escape local minima. The
C-space is searched but not stored, because of memory reasons. For example, assume a robot arm with k
joints, where each degree of freedom is quantized into n discrete levels. Such an arm has a C-space consisting
of n* unique configurations. If we assume n = 90, an arm with four joints (k = 4) has over sixty five million
configurations, and an arm with six joints (k = 6) has over five hundred billion configurations. Even if it
were possible to compute all of the C-space, the amount of memory required to store it would be prohibitive.

There are many reasons for our selection of the algorithm to parallelize. First, parallel formulations of
randomized search can easily be developed using randomized allocation schemes. Second, the grid-based
representation of the workspace is especially convenient when sensors are used to construct it, as shown, for
instance, by [Moravec, 1988], [Laliberte and Gosselin, 1994].

We have shown that our parallel formulation is capable of generating plans in very short time frames on
various parallel architectures [Challou, 1995], including a 1024 processor nCUBE2!, a 512-processor CM52,
and a 16-processor network of Sun workstations.

One might argue that massively parallel machines are not a viable platform for path planning systems
due to their prohibitive cost. However, due to the continuing progress in VLSI design and economy of scale
resulting from their widespread use, the cost of the processors which massively parallel machines utilize
is expected to decrease. When this occurs, it will be feasible to build large scale parallel computers at
a relatively small cost. Hence, it is reasonable to believe that massively parallel machines will be readily
available within the next decade. Shared memory architectures with a few processors, and networks of
workstations are already widely available, even in industrial settings. Recent advances in networks will soon
make parallel computing on clusters of workstations a viable option for high performance computing.

3 Parallel Motion Planning

Many methods have been developed for searching a state-space graph or tree. We categorize them into the
two broad classes proposed by Langley [Langley, 1992] called systematic and nonsystematic search.

Systematic search methods enumerate each node in the search space according to a particular strat-
egy. Systematic search methods produce each possible path only once, thus they minimize the amount of
redundant work.

Nonsystematic search methods, often called randomized search methods, select a node at random at each
choice point in the search and record it as a step in the path. This process is repeated until a solution is
found or a depth limit is reached. Nonsystematic search methods do not retain a complete memory of states
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they have previously generated and expanded, and thus may generate the same paths more than once when
searching for a solution. Nonsystematic search methods are only probabilistically complete (and thus cannot
report that a problem has no solution with perfect certainty), but are capable of outperforming uninformed
systematic schemes, such as depth-first search, on certain problems. Nonsystematic searches are particularly
effective on tasks whose solutions are many and deep, and though purely randomized search methods can
be successful, they can often benefit from heuristic knowledge [Langley, 1992].

To date, most parallel implementations have focused on systematic search methods. Two types of parallel
formulations have been developed: (1) communication-based formulations that partition the search space
among the processors, and (2) formulations in which each processor explores the entire search space randomly
with no interprocessor communication. The latter formulations are commonly referred to as randomized
search methods. In both formulations the first processor to find a solution sends a termination signal to the
remaining processors, and then reports its solution. Randomized schemes have been shown to outperform
uninformed methods under certain criteria [Mehrotra and Gehringer, 1985]. Randomized search methods
can often benefit from heuristic knowledge [Langley, 1992].

To implement the randomized motion planning algorithm on parallel architectures, we broadcast the
workspace bitmap and desired goal location to all processors, and check for a message indicating that a
processor has found a solution. Each processor runs the same basic program. The only interprocessor
communication is the initial broadcast and the termination check. Randomized search and random walks
are the means by which the search-space is partitioned, as they probabilistically insure that each processor
searches different parts of C-space.

An outline of the algorithm is shown down here. The * at the end of some of the steps indicates a point
where the algorithm checks for a termination message from other processors. If a termination message has
been received, the algorithm terminates its computation.

Step I: Compute the heuristics used to guide the search.
Step II: Search using the heuristics :

repeat until goal found or global time-out
Gradient Descent until local minimum *
while no improvement or time-out
repeat K times or until improvement found
Random Walk to escape local minimum *
Gradient Descent until a local minimum *
if no improvement
then Randomly Backtrack
if improvement found
then append new path to previous path
if goal found
then broadcast termination message

Consider the search starting at the start robot configuration. The gradient descent forces the search in
the direction of the goal node that appears closest. If the heuristic is misleading then, at some point, every
successor is worse than the current node. When this occurs, random search with a randomly chosen depth
bound is executed. We call this step a random walk. Gradient descent resumes from the state at which the
random walk terminates. The sequences composed of a random walk followed by gradient descent search are
repeated for a fixed number (K) of trials or until a better node is found. If, after K trials, no better node
has been found, then backtracking is performed to a randomly picked point in the solution path. The cycle
of random walks followed by gradient descent is then resumed. When a better node is found the new part of
the path found is appended to the previous path and the process resumes with a new gradient descent step.

The idea behind the random walks and randomized backtracking is to find a place in a different region of
the search space where the heuristic is more reliable. In that event the gradient descent search can quickly
descend toward a goal configuration. Successors of a node are generated in a random manner until a successor



is found that has a better heuristic value than the current configuration. Thus, the first legal successor with
a better value than its parent is adopted as the next step in the path.

A brief theoretical explanation for the success of parallel randomized allocation schemes is as follows.
Let P;(t) be the probability that a single processor will find a solution within time ¢, and let Py (t) be
the probability that a k-processor parallel randomized allocation scheme will find a solution within time ¢.
Let the random variable T} be the time it would take processor i to find a solution, if allowed to run to
completion. Since this is equivalent to running multiple trials on a single processor, the T}’s are independent
and identically distributed. The probability 1 — Py (¢) that the solution time on k processors will exceed ¢ is
just the probability that none of the k& processors will find a solution within time :

1— Pp(t) = (1 - P(t)F (1)

To interpret this formula, suppose a single processor has only a 10% probability that it can solve the problem
within a given time ¢,45%. Then a 32 processor system has over a 96% probability of finding a solution within
t10%, and a 64 processor system has over a 99% chance of doing so. Space does not permit a more detailed
analysis, which can be found in [Challou, 1995).
We define speedup as:
_ E[Tl]_ @)
E[Ty]

where E[T7] is the average uniprocessor solution time, and E[T}] the average k processor solution time. If
E[T}] is less than E[T}], then, on average, the k processor randomized allocation formulation will deliver
speedup over the uniprocessor algorithm.

If E[T}] is less than § - E[Ti] then, on k processors, the parallel randomized allocation formulation will
yield, on average, superlinear speedup over the uniprocessor algorithm. This is because on k processors the
first processor to find a solution stops all the others, so there is no need to wait for solutions that take a long
time. On a single trial on a uniprocessor a bad choice made early might significantly delay the completion
of the search. On k processors a bad choice made by one processor does not prevent the other processors
from making a better choice.

Our parallel formulation of randomized heuristic search has proved extremely effective in solving motion
planning problems. The formulation has yielded impressive performance gains on every problem we have
employed it on, sometimes delivering superlinear speedup [Challou, 1995].

We have observed superlinear speedup when using a small number of processors in the majority of our
experiments. This shows that it pays to use our parallel algorithm, even when only 4 or 8 processors are
available. The speedup decreases and eventually becomes sublinear as the number of processors is increased.

4 Experimental results

We have performed a variety of experiments with multiple robot arms, different configurations of obstacles,
and using different parallel architectures.

4.1 Experiments with a Robotics Research K-1207i arm

For the problem shown in Figure 1 just 16 processors are required to cut the average solution an order
of magnitude to under ten seconds, and 64 processors cut the average solution time to under five seconds
[Challou et al., 1995b).

In addition to delivering paths in shorter time frames, another important property of the parallel formu-
lation is that, when it is executed with a larger number of processors, it tends to produce better solutions.
In the example, 32 processors yield a solution path length about one fourth as long as the average solution
path length delivered by one processor, and 128 processors reduce the average solution path length by an
order of magnitude. The variance in time to solution behaves similarly, that is, it falls off as the number of
processors attempting to solve the problem increases.



No Processors 1 4 8 16 32 64 128 256 512
Avg Search Time | 127.77 | 26.75 | 16.63 | 9.62 | 6.01 | 4.81 | 2.78 | 2.08 | 1.59
Std Dev 142.00 | 20.92 | 10.41 | 7.02 | 3.71 | 2.69 | 1.53 | 0.78 | 0.33
Avg Path Length | 8618 | 6211 | 5361 | 4550 | 2558 | 2776 | 1660 | 1179 | 722
Std Dev 5425 | 4487 | 4566 | 4189 | 2356 | 1989 | 1207 | 746 295
Speedup 1.00 4.78 | 7.68 | 13.28 | 21.26 | 26.56 | 45.96 | 61.43 | 80.36
Efficiency 1.00 1.19 | 096 | 0.83 | 0.66 | 042 | 0.36 | 0.24 | 0.16

Figure 1: Start and Goal Configurations for a Robotics Research K-1207i 7-dof arm operating in a 128% cell
workspace. The robot is reaching from the cabinet on the right into the cabinet on the left. The table shows
data for at least 64 runs on a CM-5 multicomputer. All times are in seconds, path lengths in number of
steps.



4.2 Experiments with a 7-degree of freedom arm

For the problem illustrated in Figure 2, just 32 processors are required to insure path synthesis in an average
time of under six tenths of a second, and, in our trials, only 128 processors are necessary to insure synthesis
of a solution path in under one second. As the number of processors looking for a solution path increases, the
average solution path length decreases as well. Only 32 processors are required to cut the average solution
path length by over a factor of ten, and 128 processors deliver an average solution path length more than
two orders of magnitude less than the average sequential solution path.

No Processors ‘ 1 ‘ 32 ‘ 128 ‘ 256 ‘ 512 ‘
Avg Search Time | 18.63 | 0.56 | 0.39 | 0.29 | 0.27
Std Dev 23.33 | 0.25 | 0.10 | 0.07 | 0.05
Avg Path Length | 1589 | 120 72 59 66
Std Dev 3653 | 86 14 21 25

Figure 2: Start and Goal Configurations for a 7 Degree of Freedom arm operating in a 128 x 128 x 128 cell
workspace. The robot is reaching from a table on the left down and through an opening in the table in front
of it. The table summarizes the data for at least ten runs of the random planner on up to 512 processors of
a CM-5 multicomputer. All times are in seconds.



For the problem illustrated in Figure 3, just 32 processors are required to cut the average solution time
to under ten seconds, and 128 processors deliver solutions ten times faster than the sequential version of the
system (on average) [Challou et al., 1995a). In our tests, 512 processors insured that the solution was found
in under three and one half seconds. Moreover, 32 processors cut the average solution path length by an
order of magnitude, and 128 processors cut the worst case solution path length by one order of magnitude
compared to the average sequential case.

No Processors 1 32 128 256 512
Avg Search Time | 60.94 | 8.20 | 4.05 | 3.73 | 2.47
Std Dev 36.36 | 3.90 | 1.63 | 1.34 | 0.74
Avg Path Length | 11427 | 7390 | 3409 | 3488 | 1937
Std Dev 5228 | 3360 | 1600 | 1551 | 950

Figure 3: Start and Goal Configurations for Seven Degree of Freedom Robotics Research Arm operating in
a 128 x 128 x 128 cell workspace. The robot is reaching from the table behind it, through an opening in the
wall on its left, and down to the table with the hole in it. The table summarizes the data for at least ten
runs on up to 512 processors of a CM-5 multicomputer. All times are in seconds.



For the problem illustrated in Figure 4, again just 32 processors are required to cut the average solution
time to under ten seconds. In our tests, 256 processors insured that the solution was found in under two
and one half seconds.

No Processors ‘ 1 ‘ 32 ‘ 64 ‘ 128 ‘ 256 ‘
Avg Search Time | 102.34 | 8.39 | 5.36 | 3.37 | 2.32
Std Dev 108.33 | 5.24 | 3.26 | 2.17 | 1.26
Avg Path Length | 4264 | 1178 | 1351 | 967 531
Std Dev 5196 | 1550 | 1942 | 1277 | 476

| Speedup | 1.00 [12.02]19.09 | 30.37 [ 44.11 |

Figure 4: Start and Goal Configurations for a 7 Degree of Freedom arm operating in a 1283 cell workspace.
The robot is reaching from the box in front of it, up and into the box on the left. The table show data for
at least 64 runs on a CM-5 multicomputer. All times are in seconds.



4.3 A very difficult example

Figure 5 shows the start and goal configurations for one of our test cases involving a six degree of freedom
planar robot with one control point operating in a 256 x 256 cell workspace [Challou et al., 1993]. Each joint
has up to 256 discrete positions.

The algorithm reduces the average computation time from 34411 seconds (over 9 hours) on one processor
to an average of 180 seconds (3 minutes) on 1024 processors. Furthermore, from the average times calculated
in Table 5, it is apparent that the algorithm does not require a large number of processors to make significant
reductions in the time required to solve this problem instance - just 64 processors are required to solve the
problem in an average time of about 22 minutes.

) O O
| |
No Processors 1 2 4 8 16 32 64 128 256 512 1024
Avg Search Time 34411 16924 34886 | 12378 3397 6526 1370 1125 384 289 180
Max Search Time | 178824* | 164898* | 76426 | 23676 | 24601* | 12967 | 3050 1919 528 584 223
Min Search Time 28565 16924 10683 | 4083 716 2636 194 145 198 53 110
Speedup - - 4 11.27 41.07 21.38 | 101.85 | 124.03 | 363.39 | 482.85 | 775.24

Figure 5: Start and Goal Configurations for Six Degree of Freedom Robot operating in a 256 x 256 cell
workspace. Each C-space axis has 256 possible discrete positions. The table summarizes the data for five
runs of on up to 1024 processors on nCUBE2 multicomputer. A * indicates no solution was found on that
run. All times are in seconds.

The speedup is not calculated for the results up to and including four processors for the following reason.
For runs of the planner on up to four processors, the planner failed to find a solution on as many or more
runs than it found one on. If we had let the planner run long enough, it would have arrived at a solution
since it is probabilistically complete. However it might have taken a great deal more time than allowed by
the cutoff bound of about two days that we set Such cases would make the speedup appear a great deal




better than does assuming linear speedup on four processors. For our speedup calculation then, we used
four times the average time taken by four processors as the time on which speedup is based.

Given this conservative assumption then, it is interesting to note that speedup oscillates between slightly
sublinear and superlinear until it starts to fall off at about 512 processors. Moreover, the time variance
required to solve the problem decreases as the number of processors used to solve the problem increases.
For example, on sixteen processors, the maximum and minimum time to solve the problem varies by 23885
seconds (or over 6.6 hours), while on 256 processors and up the maximum time difference is 531 seconds (a
little less than 9 minutes). Moreover, the planner was unable to formulate a solution to the problem in its
worst case behavior on sixteen processors in the time it was allocated (24601 seconds or about 6.5 hours).

4.4 Comparison on different platforms

No Processors 1 2 4 8 16 32 64 | 128 | 256 | 512
nCUBE2 8959 | 5002 | 1247 | 1103 | 397 | 204 | 59 39 32 27
CM-5 3543 | 1208 | 315 334 | 232 | 39 32 29 19 14
NWS 3088 | 793 567 247 | 180 | NA | NA | NA | NA | NA

Figure 6: Start and Goal Configurations for Six Degree of Freedom Robot operating in a 256 x 256 cell
workspace. Each C-space axis (joint) has 256 possible discrete positions. The base of the robot is fixed
in the bottom-center in each frame of the picture. The table summarizes the data for runs on different
multicomputers. All times are in seconds.

The table 6 summarizes the data for ten runs on up to 512 processors on an nCUBE2, 512 processors of a
CM-5, and a Network of 16 Sun Workstations. The table shows the average time to find a solution on each of
the different hardware platforms for the problem instance involving the six degree of freedom fixed-base robot
arm operating in a 256 x 256 cell workspace pictured in fig. 6. Each C-space axis has 256 possible discrete
positions. Entries labelled NA indicate that timings are not yet available for that number of processors. All
times are in seconds.



At first one might be surprised that such a straight forward parallel algorithm fares as well as it does,
reducing the average computation time on the CM-5 from almost 1 hour on one processor to an average of
14 seconds on 512 processors, and from almost 1 hour to 3 minutes on a network of 16 workstations.
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