C-Nav: Implicit Coordination in Crowded Multi-Agent Navigation

Julio Godoy and Ioannis Karamouzas and Stephen J. Guy and Maria Gini
Department of Computer Science and Engineering
University of Minnesota
200 Union St SE, Minneapolis MN 55455
{godoy, ioannis, sjguy, gini} @cs.umn.edu

Abstract

In crowded multi-agent navigation, the motion of
the agents is significantly constrained by the motion
of the nearby agents. This makes planning paths
very difficult and leads to inefficient global mo-
tion. To address this problem, we recently proposed
a distributed approach to implicitly coordinate the
motions of agents in crowded environments. With
our approach, agents take into account the veloci-
ties and goals of their neighbors and optimize their
motion accordingly and in real-time. In this pa-
per, we extend our approach by performing a more
thorough theoretical analysis, and experimentally
demonstrate its robustness to different actions, dif-
ferent types of information broadcasted and a larger
variety of scenarios.

1 Introduction

Decentralized navigation of multiple agents in crowded en-
vironments has application in many domains such as swarm
robotics, traffic engineering and crowd simulation. This prob-
lem is challenging due to the conflicting constraints induced
by the other moving agents; as agents plan paths in a decen-
tralized manner, they often need to recompute their paths in
real-time to avoid colliding with the other agents and static
obstacles. The problem becomes even harder when the agents
need to reach their destinations in a timely manner while still
guaranteeing a collision-free motion.

A variety of approaches have been proposed to address this
problem. Recently, velocity-based approaches have gained
popularity due to their robustness and their ability to provide
collision-free guarantees about the agents’ motions. Such ap-
proaches allow each agent to directly choose a new collision-
free velocity at each cycle of a continuous sensing-acting
loop. However, in crowded environments, velocities that are
locally optimal for one agent are not necessarily optimal for
the entire group of agents. This can result in globally ineffi-
cient behavior, long travel times and in worst case, deadlocks.

Recently, in [Godoy er al., 20161, we showed that by ac-
counting for the intended motion of its neighbors, an agent
can choose a velocity that improves the time-efficiency of the
entire crowd, reducing the time when all agents reach their
goals (see Fig. 1).

(a) ORCA

(b) C-Nav

Figure 1: Two groups of 9 agents each move to the opposite
side of a narrow corridor. (a) ORCA agents get stuck in the
middle. (b) Using our C-Nav approach, agents create lanes in
a decentralized manner.

To that end, we proposed C-Nav (short for Coordinated
Navigation), a distributed approach where agents improve the
global motion of a crowd by implicitly coordinating their lo-
cal motions. This coordination is achieved using observations
of the nearby agents’ motion patterns and a limited one-way
communication, allowing C-Nav to scale up to 300 agents.
With our approach, agents choose velocities that help their
nearby agents to move to their goals, effectively improving
the time-efficiency of the entire crowd. In this paper, we ex-
tend the C-Nav work by introducing new features such as an
increased set of actions for the agents and different types of
one-way communication. We also perform additional experi-
ments and discuss some theoretical properties of C-Nav.

2 Related Work

Multi-Agent Navigation. In the last two decades, a num-
ber of models have been proposed to simulate the motion of
agents. At a broad level, these models can be classified into
flow-based and agent-based methods. Flow-based methods
focus on the behavior of the crowd as a whole and dynam-
ically compute vector-fields to guide its motion [Treuille ez
al., 2006; Narain et al., 2009]. Even though such approaches
can simulate interactions of dense crowds, due to their cen-
tralized nature, they are prohibitively expensive when there
are many agents with distinct goals. In contrast, agent-based
models are purely decentralized and plan for each agent in-
dependently. After the seminal work of Reynolds on boids
[1987], many agent-based approaches have been introduced,
including social forces [Helbing and Molnar, 1995], psycho-
logical models [Pelechano et al., 2007] as well as behavioral
and cognitive models [Shao and Terzopoulos, 2007]. How-

ever, the majority of such agent-based techniques do not ac-
count for the velocities of individual agents which leads to un-
realistic behaviors such as oscillations. These problems tend
to be exacerbated in densely packed, crowded environments.

To address these issues, velocity-based algorithms [Fior-
ini and Shiller, 1998] have been proposed that compute
collision-free velocities for the agents using either sampling
[Ondfej et al., 2010; Karamouzas and Overmars, 2012] or
optimization-based techniques [van den Berg et al., 2011;
Guy et al., 2009]. In particular, the Optimal Reciprocal Colli-
sion Avoidance navigation framework, ORCA [van den Berg
et al., 2011], plans provably collision-free velocities for the
agents and has been successfully applied to simulate high-
density crowds [Curtis et al., 2011]. However, ORCA and
its variants are not sufficient on their own to generate time-
efficient agent behaviors, as computing locally optimal ve-
locities does not always lead to globally efficient motions.
As such, we build on the ORCA framework while allowing
agents to implicitly coordinate their motions in order to im-
prove the global time-efficiency of the crowd.

Coordination in Multi-Agent Navigation. Many ap-
proaches have been proposed to allow agents to coordinate
their motions while moving to their goals. In [Jansen and
Sturtevant, 2008], each agent moves along neighbors with a
similar goal, adjusting its path cost based on the agents’ rel-
ative velocities. This idea is extended to account for conges-
tion in [Pentheny, 2015]. Other approaches consider the gen-
eration of bounded suboptimal paths for multiple agents [Co-
hen et al., 2015] and the kinematic constraints that emerge
when dealing with embodied agents [Honig er al., 2016].
However, in all these approaches, the degree of coordination
depends on the chosen resolution of the grid. In our approach,
agents move in a continuous 2D environment. User-driven
coordination has been studied in continuous 2D environment
in [Patil ef al., 2011], where agents can be guided to their
goals to avoid congestion. Our approach does not need ex-
ternal guidance and automatically generates coordinated goal
paths for the agents.

When simulating the motion of pedestrians, coordination
can be achieved through social norms [Fehr and Fischbacher,
2004], which can be embedded in the system [Koh and Zhou,
2011] or can emerge through the interactions between the
agents [Yu er al., 2013]. Other works such as [Fridman
and Kaminka, 2010] assume similar behavior between the
agents and use cognitive models of social comparison. Sim-
ilarly, our work allows agents to compare motion features,
but no socio-psychological theory is used. Another approach
for achieving coordinated navigation is by explicitly form-
ing groups of agents, and have the groups follow specific di-
rections while maintaining cohesiveness among their mem-
bers [Karamouzas and Overmars, 2012; Karamouzas and
Guy, 2015]. A recent work addresses emergent group for-
mation of different sizes based on proxemics, but it cannot
simulate merging or splitting of the groups [He et al., 2016].

Multi-agent coordination can also be achieved using learn-
ing methods, such as in [Melo and Veloso, 2011], which learn
the value of joint actions when coordination is required, and
use Q-learning when it is not. The approach in of [Martinez-
Gil et al., 2014] uses reinforcement learning for simulating

pedestrian navigation, allowing the agents to learn policies
offline that can then be applied to specific scenarios. To
the contrary, Godoy et al. [2015] use online learning where
agents adapt their motions with no communication or need
for offline training. However, all these approaches consider
only up to 40 agents, while we aim at having up to 300 agents,
as in the method we present here.

3 Problem Formulation

In our problem setting, there are n independent agents
Aj ... A, , each with an individual start and goal position.
For simplicity, we assume that the agents move on a 2D plane
where there can be static obstacles O, approximated as line
segments. We model each agent A; as a disc with a fixed
radius 7;. At timestep ¢, the agent A; has a position p; and
moves with velocity v; that is subject to a maximum speed
v"**. Furthermore, A; has a set of 9 empirically defined pre-

ferred velocities vP™' (see Fig. 2a) that indicate the agent’s

K3
desired direction and speed of motion at a given timestep. A;
also has a goal velocity vfoal directed toward the agent’s goal
g; with a magnitude equal to v;"**. In the absence of any
other agents and static obstacles, the preferred velocity of A;,
vP™l s equal to its goal velocity vE°*'. We assume that an
agent can sense the radii, positions and velocities of a subset
of the agents, N, composed by at most |A| agents within a
limited fixed sensing range. We further assume that agents
are capable of limited one-way communication. Specifically,
each agent uses this capability to broadcast its unique ID and

its intended velocity to its neighbors.

Definition 1. Intended Velocity: A design choice, this veloc-
ity can correspond either to the agent’s (1) preferred velocity,
or to (2) its goal-oriented velocity, based on its short term
and long term desired motion, respectively.

This type of communication scales well, as it is not affected
by the size of the agent’s neighborhood.

Our task is to steer the agents to their goals without collid-
ing with each other and with the environment, while reach-
ing their goals as fast as possible. More formally, we seek
to minimize the arrival time of the last agent or equivalently
the maximum travel time of the agents while guaranteeing
collision-free motions. This objective is similar to minimiz-
ing the makespan of the travel time of all agents. Since the
agents navigate independently with only limited communi-
cation, this task has to be solved in a decentralized manner.
Therefore, at each timestep ¢, we seek to find for each agent a
new velocity that respects its geometric and kinematics con-
straints while progressing the agent towards its goal.

To obtain a collision-free velocity, we use the ORCA nav-
igation framework [van den Berg er al, 2011]. In each
timestep, ORCA takes as input a preferred velocity vP™f and
returns a new velocity v™°" that is collision-free and as close
as possible to vP™f, by solving a low dimensional linear pro-
gram. While ORCA guarantees a locally optimal behavior
for each agent, it does not account for the aggregate behav-
ior of all the agents. As ORCA agents typically have only
a goal-oriented vP*f, they may get stuck in local minima,
which leads to large travel times and, subsequently, globally
inefficient motions.

(b)

Figure 2: The two sets of actions in C-Nav, where the dotted
lines indicate the projection of the corresponding preferred
velocities. (a) Agent-based actions: moving at 1.5 m/s with
different angles with respect to the goal: 0°, 5, —f, 90°,
—90°, 180°, 180° 4 3, 180° — B and complete stop. In our
implementation, 5 = 45° (b) Following actions: follow a
specific neighbor agent at maximum speed.

To address the aforementioned issues we propose C-Nav,
an implicit coordination approach that allows each agent to
choose from two sets of preferred velocities at each timestep
(Fig. 2), with the objective of optimizing both its own goal
progress as well as the progress of its neighbors.

4 The C-Nav Approach

In C-Nav, the agents use information about the intended mo-
tion of their neighbors to make better decisions on how to
move and implicitly coordinate with each other. This reduces
the travel time of all the agents.

Agents using C-Nav can select from a set of actions (i.e.,
preferred velocities) to decide how to move in order to reduce
the travel time of all agents. We classify these actions into (1)
individual agent-based actions (Fig. 2a) and (2) following ac-
tions (Fig. 2b). Throughout this work, we use the term action
and preferred velocity interchangeably.

Algorithm 1 outlines C-Nav. For each agent that has
not reached its goal, a new action is computed every few
timesteps, on average every 0.1 seconds (line 3). In each new
update, the agent computes which of its neighbors move in a
similar manner as itself (line 4) and which neighbors are most
constrained in their motions (line 5), and uses this informa-
tion to evaluate all of its actions (line 7). After this evalua-
tion, the best action is selected (line 9). Finally, its intended
velocity vi" is broadcasted to the agent’s neighbors (line 10)
and its preferred velocity is mapped to a collision-free veloc-
ity vV via the ORCA framework (line 12) which is used to
update the agent’s position (line 13) and the cycle repeats.

4.1 Agent neighborhood information

With information obtained by sensing (radii, positions and
velocities) and via one-way communication (IDs and in-
tended velocity) from all the neighbors within the sensing
range, each agent estimates the most similar nearby agents
and the most constrained ones.

Motion similarity

Each agent evaluates the similarity between the motion of its
neighbors and its own (see Algorithm 2), identifying those
neighbors that are moving faster than itself and in a similar

Algorithm 1: The C-Nav framework for an agent

1: start the navigation
2: while not at the goal do

3: if UpdateAction(t) then

4: compute most similar agents

5: compute most constrained agents

6: for all « € Actions do

7 Ra < SimMotion(a)

8: end for

9: vpref < arg MaXqe Actions Rll
10: broadcast ID and vi™ to nearby agents
11: endif

12: vV « Collision Avoidance(vPe!)
13: p'p vV At
14: end while

direction. By following such neighbors, the time-efficiency
of all agents can be increased.

To evaluate this similarity, the agents follows a two-step
process (Algorithm 2). Firstly, each agent filters those neigh-
bors whose intended velocity is not in the direction of the
agent’s goal (line 4). Secondly, the agent determines which
of its neighbors with similar intended motions are moving
faster than the agent to its goal (line 5), by projecting the
neighbor’s observed velocity to the agent’s goal oriented vec-
tor. The similarity value for each neighbor j, SimV al;, mea-
sures how closely related are the agent’s goal vector and the
neighbor’s current observed velocity. Finally, these similarity
values are sorted in descending order (line 8) and the corre-
sponding list of the neighbors’ indices is returned.

Algorithm 2: Compute most similar neighbors of ¢

1: Input: list of neighbors A/ (7)
2: Output: Sim,;,k, list of indices of the most similar
neighbors

3: for all j € N (i) do

. s int | _&i—Pi
4 if v Te—pil > 0 then

. . . new , 8i—Pi
5: SimVal; < vy T2 —pa
6: endif
7: end for
8

: Simyank < Sort(SimVal)

Following actions. Once an agent knows how similar is the
motion of its neighbors, it can choose a velocity at maximum
speed towards one of them (Fig. 2b). As such, agents can
follow each other, leading to the emergent formation of lanes
that allow them to efficiently move to their goals (Fig. 1b).

Constrained neighborhood motion

Agents can also use the intended velocities of their neighbors
to evaluate how constrained is their motion and, thus, deter-
mine neighbors that are more likely to slow down the overall
progress of the crowd. By reducing the constraints of these
neighbors, the time-efficiency of the system increases.

Algorithm 3: Compute most constrained neighbors of ¢

1: Input: list of neighbors N (%)
2: Output: C, ., list of indices of the most constrained
neighbors

3: forall j € N(i) do

4 if g — p;ll <llg: — pil then
5: Cj [vt —viev||

6: endif

7: end for

8:

Crank + Sort(C)

Algorithm 3 evaluates how constrained is the motion of
each neighbor. To do this, each agent compares a neigh-
bor’s intended motion with its observed velocity (line 5). The
larger the difference, the more likely it is that its motion is im-
peded. To avoid circular dependencies which can give rise to
deadlocks, each agent only considers neighbors that are closer
than itself to its goal (line 4). This ensures that no two agents
with the same goal will simultaneously defer to each other.
The agent keeps a list C' which quantifies the constraints of
each neighbor. After all neighbors have been evaluated, C' is
sorted in descending order, and a list C,.,,,; of the indices of
the sorted neighbors is returned (line 8).

Once the agent computes a ranking of the most similar
and most constrained neighbors, it can use this information to
bias the action selection towards velocities that, on one hand,
move the agent closer to its goal in an efficient manner while,
on the other, help nearby agents to move according to their
intended motions.

5 Action Evaluation and Selection

Agents can choose a preferred velocity from the two sets
of actions shown in Figure 2. The first set allows agents to
choose velocities that are uniformly distributed in the space
of directions. The second set, on the other hand, allows
agents to execute the following behaviors, described in Sec-
tion 4.1, with up to s neighbors (0 < s < |[N]). To evaluate
each action, an agent simulates its execution for a number
of timesteps and evaluates two metrics: its potential progress
towards its goal and its effect in the motion of its k¥ most con-
strained neighbors (0 < k < |A]). This procedure corre-
sponds to SimMotion(a) in Algorithm 1 (line 7).

5.1 Motion simulation

As a first step, an agent simulates the changes in its neigh-
borhood, updating the velocities and positions of itself and
its neighbors for each timestep within a fixed time horizon 7',
for each action. Note that in very crowded areas, agents of-
ten have no control over their own motions, as they are being
pushed by other agents to avoid collisions. Hence, simulat-
ing the dynamics of all the agent’s neighbors often results in
the same velocity for all simulated actions. This prevents the
agent from selecting a velocity that improves the motion of
its most constrained neighbors. In C-Nav the agent considers
in its simulation only the neighbors that are closer to its goal
than itself, ‘ignoring’ the agents that are behind it. Even if the

best valued action is not currently allowed, we expect that the
neighboring agents will eventually try to relax the constraints
that they impose on the agent.

5.2 Motion evaluation

To decide what motion to perform, the agent aims at minimiz-
ing the amount of constraints imposed to its neighbors, while
also ensuring progress towards its goal. Our reward function
balances these two objectives, by taking a linear combination
of a goal-oriented, and a constrained-reduction component
(Eq. 1). Each component has an upper bound of 1 and a lower
bound of -1 and is weighted by the coordination-factor .

Ra=(1=7)Ri+7-R; M
The goal-oriented component RY computes, for each
timestep in the time horizon, the scalar product of the
collision-free velocity v™" of the agent with the normalized
vector which points from the position p of the agent to its
goal g. This component encourages preferred velocities that
lead the agent as quickly as possible to its goal. Formally:

T—1
= (v pEmy)
RI — 1=0 L)
a T. U;_“nax
The constrained-reduction component R averages the
amount of constraints introduced in the agent’s k£ most con-
strained neighbors. This component promotes preferred ve-
locities that do not introduce constraints into these k agents.
More formally:

T—-1 .
T Ly, @ = v = vl
c =
Ro= (T —1) - k- vpmax

If an agent only aims at maximizing R¢, its behavior would
be selfish and it would not consider the effect that its actions
have on its neighbors. On the other hand, if the agent only
tries to maximize R¢, it might have no incentive to move
towards its goal, which means it might never reach it. There-
fore, by maximizing a combination of both components, the
agent implicitly coordinates its goal-oriented motion with that

of its neighbors, resulting in lower travel times for all agents.

3)

6 Theoretical Analysis

We focus our analysis on showing the conditions under which
C-Nav agents can avoid livelocks. A livelock corresponds to
executing a series of repeated motions that do not move the
agent to its goal. In C-Nav, a livelock would occur if two or
more agents repeatedly switch from goal-oriented motions to
deferent motions that move the agents away from their goals,
which would prevent the progress of the agents. We show
that the probability of livelocks occurring approaches 0 as the
value of v (Eq. 1) asymptotically approaches 1, in scenarios
where all agents share the same goal (e.g., the Congested sce-
nario in Fig. 3).

For the purpose of this analysis, assume that after an agent
reaches the goal, it is removed from the environment. Assume
also that A, corresponds to the agent that, at any given time,
is closest to the goal.

Lemma 1. Af any time, A, is able to choose an action that
maximizes its progress to the goal, without deferring to the
motion of other agents.

Proof: The proof follows from the fact that an agent only
accounts for neighbors that are closer than itself to the goal
for the evaluation of constraints and for motion simulation
purposes (Section 5). As A, ‘ignores’ agents coming from
behind, and there are no agents closer than A, to the goal,
then for all of its actions a, R{, = 0, which means that A, will
optimize only on the value of the action’s goal progress RY.
To ensure that A, has incentive to reach the goal, RJ must
be greater than zero for at least one of the actions. Hence, as
long as v < 1, A, will choose the action with the collision-
free velocity that maximizes its progress to the goal.]

Lemma 2. Any agent A; (where A; # A, and A, € N (i))
can choose an action a' that moves it backwards from its goal,
that does not introduce constraints into A,,.

Proof: To allow A, to maximize its progress to the goal, A;
should always choose an action a’ that does not introduce
constraints into A, (¢’ = argmax,c sciions o) Such an
action a’ always exists; in the worst case, a’ corresponds to
the preferred velocity backwards from the goal. As A; ‘ig-
nores’ agents coming from behind (Section 5), it assumes
it can freely move in this direction. This backwards ve-
locity moves A; away from A,, minimizing the difference
between A, ’s intended velocity and its collision-free veloc-
ity. For A; to choose this action, it must hold that ' =
arg MaX,e 4ctions - Although there is no single value of ~y
that guarantees this condition for all possible values of R,
and RY, the probability that A; will choose action a’ ap-
proaches 1 as v — 1 (see Eq. 1). As each agent A; chooses
a’, it will not introduce constraints into A,’s motion, which
will be able to move as if it was the only agent in the system,
and it will be able to reach the goal. Once this occurs, another
agent takes the role of A, until all agents reach the goal. m

From Lemmas 1 and 2, the following Theorem holds:

Theorem 1. The probability of livelocks occurring in C-Nav,
in environments with a single goal, approaches 0 as v asymp-
totically approaches 1. Under these conditions, the probabil-
ity that all agents reach the goal approaches 1.

7 Experiments

We evaluated C-Nav on five scenarios (see Fig. 3 for their
layout) using a varying number of agents. Each result cor-
responds to the average over 30 simulations (see http://
motion.cs.umn.edu/r/CNAV/ for videos), as ORCA
introduces randomness in the preferred velocities. The sce-
narios are as follows:

o Bidirectional: 18 agents are clustered in two groups that
move to the opposite side of a narrow corridor formed by
two walls.

e Circle: 128 agents are placed along the circumference
of a circle and must reach their antipodal positions.

e Crowd: 300 agents are randomly placed in a densely
populated area and are given random goals.

Bidirectional 600000
OO O~ 0 <0 =0 07 & oo,
O»0O>O~ “0O <0 =0 o7 4 V0
O+ OO 0O +0O =0 s %
O+ 0O+> 0> -0 <0 <0 o °
O»>O>O> ~0-~0<0 S
o= -2
O O 00a L L0 2
p@?g\o? %3%?3? K X &
0" 807 o0 5 O Y 24 &
E) (; /OO/ ‘OO\O/ ?% N ()Oc’f)o;'occo(
Crowd % ?5 ?E) O\‘O% 2\3 5 Clircle
o, o Congested| |PerpCrossing
LE0GR 9999 00, 'R
0~ QKT PR P CreSrecrsSorses®
(Lm\l +~O+0+0+0+0<0O

Figure 3: Layout of the scenarios used to evaluate C-Nav. We
consider scenarios with up to 300 agents and, in some cases,
with static obstacles.

o Congested: 32 agents are placed very close to the nar-
row exit of an open hallway and must escape the hallway
through this exit.

e PerpCrossing: Two agents have orthogonally intersect-
ing paths with a crowd of 24 agents.

To evaluate our approach, we measure the time that the
agents spent in order to resolve interactions with each other
and the environment. We estimate this time by computing the
difference between the maximum travel time of the agents
and the hypothetical travel time if agents were able to just
follow their shortest paths to their goals at full speed:

shortest Path(A;))

max
v;

max(TimeToGoal(A;)) — max (

We call this metric interaction overhead. A theoretical prop-
erty of this metric is that an interaction overhead of O repre-
sents a lower bound on the optimal travel time for the agents,
and it is the best result that an optimal centralized approach
could potentially achieve.

Using the interaction overhead metric, we compared C-
Nav to vanilla ORCA and the ALAN approach of Godoy et
al. [2015]. In all our experiments, we used ORCA’s default
settings for the agent’s radii (0.5 m), sensing range (15 m) and
maximum number of agents sensed (|NV]=10). We set T'=2
timesteps and v™**=1.5 m/s. We empirically set v to 0.8
and both k and s=3, as they produced the best performance
overall. The timestep duration, At, was also empirically set
to 25 ms, as it provided each agent a fast reaction time to the
changes in the velocities of other agents. All simulations ran
in real time for all evaluated methods.

7.1 Results

Figure 4 shows the interaction overhead of the three meth-
ods in all scenarios, where, in C-Nav, agents only commu-
nicate their preferred velocities. The interaction overhead of
C-Nav is significantly lower than ORCA and ALAN in all
cases, which indicates that by considering information about
their neighborhood, agents can coordinate their motions and

120 l
“ORCA

“ALAN

=

o

s)
!

C-Nav

®
=]
!

Interaction Overhead (s)
S D
o o
L L
—_—
H
=]

I -

I

Bidirectional Circle Crowd

N
o
!

Congested PerpCrossing

Figure 4: Performance comparison between ORCA, ALAN
and the C-Nav approach. In all scenarios, agents using our
coordination approach have the lowest overhead times. The
error bars correspond to the standard error of the mean.

improve their time-efficiency. We observe emergent behavior
in the Bidirectional and Circle scenario, where agents going
in the same direction form lanes. Such lanes reduce the con-
straints in other agents leading to more efficient simulations.

It is worth noting that agents using ALAN outperform
ORCA agents in the Bidirectional, Congested and PerpCross-
ing scenarios. However, the unnecessary exploration per-
formed by ALAN agents prevents this method from scaling to
more than 100 agents (as in the Circle and Crowd scenarios),
where ALAN cannot outperform ORCA.

We also evaluated the interaction overhead of C-Nav agents
with different types of intended velocities v'™* (see Sec-
tion 4): the preferred velocity (vP™f) or the goal velocity
(veoaly, along with the case of no communication (None).
The results in Figure 5 show that, in all cases, the com-
munication of intended motions helps agents improve their
time-efficiency as compared to the absence of communica-
tion. Overall, using the preferred velocity as the intended
motion achieves the best performance. The only exception is
in the Congested scenario, where the goal path is constrained
by static obstacles, which means that deferring to the goal ve-
locity of the neighbors is more critical than in other scenarios.

80 7
70 & None

w

> 60 1 W vpref T

©

3

< 50 1 Vgoal T

[

>

O 40 1

s

E 30 I = =

8 -

[

£ 20 1 T = 1
S N B e, -

Bidirectional Circle Crowd Congested PerpCrossing

Figure 5: Performance comparison in C-Nav where agents
communicate: no information (None), only their preferred
velocities (vP*®f) or only their goal velocities (v&°2!).

Effect of the coordination-factor (). We evaluated how the

=o=Bidirectional

=i=Circle

-
o
]

=>&Congested

@ ®
o o

IS
o

P

Interaction Overhead (s)

N
o

o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Coordination Factor (y)

o

Figure 6: Performance of C-Nav agents in the Bidirectional,
Circle and Congested scenarios, with different values of the
coordination-factor vy, where agents communicate their pre-
ferred velocities.

balance between the goal-oriented and the constraint reduc-
tion components of our reward function (Eq. 1) controlled by
the coordination-factor -, affects the performance of C-Nav
in three scenarios. We can observe in Figure 6 that using
values of v < 0.5 has a more negative impact on perfor-
mance as compared to larger values (v > 0.5). This indi-
cates that accounting for the neighbors’ intended velocities
improves the time-efficiency for all agents. In the Congested
scenario, higher values correlate with lower travel times,
which follows the result from Theorem 1. In the Circle and
Bidirectional scenarios, the best performance is achieved with
v =0.8, while larger values show slightly increase in the travel
time. Note that we do not include an evaluation for v = 1, as
in this case the agents have no incentive to reach their goals.
Overall, C-Nav shows good performance with v > 0.5.

8 Conclusions and Future Work

We have extended C-Nav, a recently proposed coordination
approach for large scale multi-agent systems. C-Nav agents
use their sensing input and a limited one-way communication
to implicitly coordinate their motions. In this paper, we intro-
duced an increased set of actions for the agents and different
types of one-way communication. We also performed addi-
tional experiments and discuss some theoretical properties of
C-Nav. We show that C-Nav performs well with different
types of intended motions communicated and is robust to a
wide variety of scenarios.

Our approach does not limit the acceleration of the agents,

which might produce non-smooth motions in simulations.
Further, we assume that agents can broadcast their intended
velocities. If this is not the case, results indicate high interac-
tion overhead times. To address this limitation, we would like
to explore methods to predict the agents’ preferred velocities
from a sequence of observed velocities, using, e.g., a hidden
Markov model.
Acknowledgment: Support for this work is gratefully ac-
knowledged from the University of Minnesota Informatics
Institute, and by the NSF through grants #CNS-1544887 and
#CHS-1526693.

References

[Cohen et al., 2015] Liron Cohen, Tansel Uras, and Sven
Koenig. Feasibility study: using highways for bounded-
suboptimal multi-agent path finding. In Eighth Annual
Symposium on Combinatorial Search, 2015.

[Curtis er al., 2011] Sean Curtis, Stephen J Guy, Basim Za-
far, and Dinesh Manocha. Virtual tawaf: A case study in
simulating the behavior of dense, heterogeneous crowds.
In Proc. Workshop at Int. Conf. on Computer Vision, pages
128-135, 2011.

[Fehr and Fischbacher, 2004] Ernst Fehr and Urs Fis-
chbacher. Social norms and human cooperation. Trends
in cognitive sciences, 8(4):185-190, 2004.

[Fiorini and Shiller, 1998] P. Fiorini and Z. Shiller. Motion
planning in dynamic environments using Velocity Obsta-
cles. Int. J. Robotics Research, 17:760-772, 1998.

[Fridman and Kaminka, 2010] Natalie Fridman and Gal A
Kaminka. Modeling pedestrian crowd behavior based on
a cognitive model of social comparison theory. Computa-
tional and Mathematical Organization Theory, 16(4):348—
372, 2010.

[Godoy et al., 2015] Julio Godoy, Ioannis Karamouzas,
Stephen J. Guy, and Maria Gini. Adaptive learning for
multi-agent navigation. In Proc. Int. Conf. on Autonomous
Agents and Multi-Agent Systems, pages 15771585, 2015.

[Godoy et al., 2016] Julio Godoy, Ioannis Karamouzas,
Stephen J. Guy, and Maria Gini. Implicit coordination in
crowded multi-agent navigation. In Proc. AAAI Confer-
ence on Artificial Intelligence, 2016.

[Guy et al., 2009] Stephen J Guy, Jatin Chhugani, Changkyu
Kim, Nadathur Satish, Ming Lin, Dinesh Manocha, and
Pradeep Dubey. Clearpath: highly parallel collision avoid-
ance for multi-agent simulation. In Proc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Anima-
tion, pages 177-187, 2009.

[He et al., 2016] Liang He, Jia Pan, Wenping Wang, and Di-
nesh Manocha. Proxemic group behaviors using recipro-
cal multi-agent navigation. In Proc. IEEE Int. Conf. on
Robotics and Automation, 2016.

[Helbing and Molnar, 1995] Dirk Helbing and Peter Molnar.
Social force model for pedestrian dynamics. Physical re-
view E, 51(5):4282, 1995.

[Honig et al., 2016] Wolfgang Honig, TK Satish Kumar,
Liron Cohen, Hang Ma, Hong Xu, Nora Ayanian, and
Sven Koenig. Multi-agent path finding with kinematic
constraints. In International Conference on Automated
Planning and Scheduling, 2016.

[Jansen and Sturtevant, 2008] M.R. Jansen and N.R. Sturte-
vant. Direction maps for cooperative pathfinding. In Ar-
tificial Intelligence and Interactive Digital Entertainment

(AIIDE), pages 185-190, 2008.

[Karamouzas and Guy, 2015] Ioannis Karamouzas and
Stephen J Guy. Prioritized group navigation with for-
mation velocity obstacles. In Proc. IEEE Int. Conf. on
Robotics and Automation, pages 5983-5989, 2015.

[Karamouzas and Overmars, 2012] Toannis Karamouzas and
Mark Overmars. Simulating and evaluating the local be-
havior of small pedestrian groups. IEEE Trans. Vis. Com-
put. Graphics, 18(3):394-406, 2012.

[Koh and Zhou, 2011] Wee Lit Koh and Suiping Zhou. Mod-
eling and simulation of pedestrian behaviors in crowded
places. ACM Transactions on Modeling and Computer
Simulation (TOMACS), 21(3):20, 2011.

[Martinez-Gil et al., 2014] Francisco Martinez-Gil, Miguel
Lozano, and Fernando Fernandez. MARL-Ped: A multi-
agent reinforcement learning based framework to simu-

late pedestrian groups. Simulation Modelling Practice and
Theory, 47:259-275, 2014.

[Melo and Veloso, 2011] Francisco S Melo and Manuela
Veloso. Decentralized MDPs with sparse interactions. Ar-
tificial Intelligence, 175(11):1757-1789, 2011.

[Narain et al., 2009] Rahul Narain, Abhinav Golas, Sean
Curtis, and Ming C Lin. Aggregate dynamics for dense
crowd simulation. ACM Trans. Graphics, 28(5):122, 2009.

[Ondfej et al., 2010] Jan Ondfej, Julien Pettré, Anne-Hélene
Olivier, and Stéphane Donikian. A synthetic-vision based

steering approach for crowd simulation. ACM Trans.
Graphics, 29(4):123, 2010.

[Patil ef al., 2011] Sachin Patil, Jur Van den Berg, Sean Cur-
tis, Ming C Lin, and Dinesh Manocha. Directing crowd
simulations using navigation fields. IEEE Trans. Vis. Com-
put. Graphics, 17(2):244-254, 2011.

[Pelechano et al., 2007] N. Pelechano, J.M. Allbeck, and
N.I. Badler. Controlling individual agents in high-
density crowd simulation. In Proc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Anima-
tion, pages 99-108, 2007.

[Pentheny, 2015] Graham Pentheny. Advanced techniques
for robust, efficient crowds. Game Al Pro 2: Collected
Wisdom of Game Al Professionals, page 173, 2015.

[Reynolds, 1987] Craig W Reynolds. Flocks, herds and
schools: A distributed behavioral model. ACM Siggraph
Computer Graphics, 21(4):25-34, 1987.

[Shao and Terzopoulos, 2007] W. Shao and D. Terzopou-
los. Autonomous pedestrians. Graphical Models, 69(5-
6):246-274, 2007.

[Treuille ef al., 2006] Adrien Treuille, Seth Cooper, and Zo-
ran Popovi¢. Continuum crowds. ACM Trans. Graphics,
25(3):1160-1168, 2006.

[van den Berg er al., 2011] Jur van den Berg, Stephen J. Guy,
Ming Lin, and Dinesh Manocha. Reciprocal n-body col-
lision avoidance. In Proc. International Symposium of
Robotics Research, pages 3—19. Springer, 2011.

[Yu er al., 2013] Chao Yu, Minjie Zhang, Fenghui Ren, and
Xudong Luo. Emergence of social norms through collec-
tive learning in networked agent societies. In Proc. Int.
Conf. on Autonomous Agents and Multi-Agent Systems,
pages 475-482, 2013.

