Automated Analysis of Auction Traces

Mark Hoogendoortt and Maria Gint*

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
mhoogen@s. vu. nl
2 University of Minnesota, Minneapolis, MN, USA
gi ni @s. um. edu

Abstract. When agents participate in an auction, either as buyerdlerset is
important to be able to verify compliance to auction prote@md correctness of
auction clearing. We propose a method for such a verificatioich is based on
analyzing execution traces of the auction. Our method hasitivantage that it
does not require access to the internal of the agents, heiscapplicable to any
auction, even auctions with human and agent participast®rg as the auction
trace is available. The approach is based on an expressipotal logic in which
properties for auction types and for agent strategies areiftgd. Examples of
trace analysis are used to illustrate the approach. Fjredfperimental results are
presented using synthetic data.

1 Introduction

Auctions are a popular means to distribute tasks or sellsteithin multi-agent envi-
ronments (see e.g. [17] and [14]). A variety of auction typesavailable, such as single
item first price, single item Vickrey auction [16], and comdiorial auctions [8]. Each
auction type has specific constraints which specify thesrgleverning the auction.

Analyzing whether agents comply to the specified rules, amd &ffective the
agents strategies are is essential for reliable and eféeatictioning systems. One
way of performing this analysis is to use model checkitgchniques (see e.g. [3]
and [10]). Unfortunately, model checking requires acceshe internal specifications
of the agents, which are generally unavailable, espedrallystems open to participa-
tion from multiple agents and/or humans.

We present a trace-based approach to analyze compliangemtsao auction pro-
tocols. A trace consists of all the communications that odmtween agents within
the auctioning system. Hence, only external informatia@xjsressed in a trace. The ap-
proach uses an expressive temporal language, called tahtfaae language (TTL) [5],
which enables expressing properties with time parametersnstance, that a bid is
submitted before a certain deadline). We use a checkingadaldéd TTL Checker, for
automated analysis of the properties against such trasisg this temporal logic, we
specify properties of compliance to auction protocols fwesal auction types.

* Partial support provided by the National Science Foundatitder grant 11S-0414466

3 To avoid confusion with our approach, in this paper we interphe term model checking
as checking all possible execution paths. In principle gapra@ach could be seen as model
checking for a single execution trace.



Our approach does not require the bidding to be done by agenksng as auction
traces are available. We envision incorporating traceyaigin a supervisor agent that
acts as the security and exchange commission, or in ageaitsetify compliance to
auction protocols in a auction testbed, such as e-bay. Nateotr approach can show
whether certain properties are satisfied for a given setagks, but cannot guarantee
these properties will be satisfied in all future auctions.

The paper is organized as follows. First, the temporal lagied throughout this
paper is introduced, followed by the ontology, propertay] examples of analysis of
traces for various types of auctions. This is followed byhssof checking properties
upon synthetic data, related work, conclusions and suiggessfor future work.

2 TheTTL Language

This Section introduces the temporal logic used to reptdéberiesired properties in the
auction. A temporal logic has been chosen because time péeessplay an essential
role within auctions; for instance, auctions often spewifien offers can be sent out, or
when the auction ends.

In TTL [5], ontologies for states are formalized as sets @hgls in sorted pred-
icate logic. For any ontolog®nt the ground atoms form the set of basic state prop-
erties BSATPROP(ONT). Basic state properties can be defined by nullary predicate
(or proposition symbols), such asiction, or by n-ary predicates (witm > 0), like
bid_deadline(item_1, 5). Thestate propertiebased on an ontology @ are formal-
ized by the propositions made from B& PROP(ONT) using conjunction&), negation
(), disjunction (), and implication {+) as connectors. They constitute the seAS
PROP(ONT).

In order to express dynamics in TTL, important conceptstagestime pointsand
traces A stateS is an indication of which basic state properties are truevarch are
false, i.e., a mapping S: B&TPROPONT) — {TRUE, FALSE}. The set of all possi-
ble states for ontology @r is denoted by SATES(ONT). A fixed time frameT is as-
sumed which is linearly ordered. Hence, a tracaver a state ontology &r and time
frame T is a mapping : T — STATES(ONT), i.e., a sequence of states(T € T) in
STATES(ONT). The set of all traces over ontologyN® is denoted by RACES(ONT).

The set ofdynamic propertieDYNPROP(ONT) is the set of temporal statements
that can be formulated with respect to traces based on ttee @téology ONT in the
following manner. Given a tracgover state ontology 9T, a certain state at time point
t is denoted bystate(v, t). States can be related to state properties via the formelly d
fined satisfaction relation, indicated by the infix predédat which is comparable to the
HoLbs-predicate in Situation Calculus. Thistate(v, t) = p denotes that state prop-
ertyp holds in tracey at timet. Likewise,state(y, t) |# p denotes that state propepy
does not hold in trace at timet. Based on these statements, dynamic properties can be
formulated using the usual logical connectives such,ds, |, = and the quantifiers,

3 (e.g., over traces, time and state properties).

Analysis of whether certain TTL properties are satisfiedaf@et of traces can be
done in an automated fashion using the TTL Checker. For metails on the formal
syntax and semantics of TTL and the TTL Checker softwareSke [



3 Singleltem First-Price Sealed-Bid Auction (SIFP)

The first auction type we describe is the single item firstgoeiuction with sealed bids.
In order to represent the interactions that take place, wethues sorts and predicates

specified in Table 1.

ITEM_ID x TIME

Sort Explanation

AGENT An agent within the system

TIME Sort representing time

ITEM_ID Identifier of an item to be sold

PrRICE Sort representing the price

Predicate Explanation

offer_item: An agent offers a specific item

AGENT x ITEM_ID

bid_deadline: The deadline for submitting bids for the item

earliest_consideration_time:
ITEM_ID x TIME

Time after which bids for the item are considered

earliest_bid_time:
ITEM_ID x TIME

The earliest time at which bids can be sent for the item

send_bid:
AGENT X ITEM_ID x PRICE

An agent sends a bid for the item with a certain price

send_bid_award:
AGENT X AGENT x ITEM_ID

The first agent awards a bid for the item to the second g

igent

payment:
AGENT x AGENT x ITEM_ID
x PRICE

The first agent pays the second agent the specified pri
the item

ce for

Table 1. Sorts and predicates for single item first-price auction

A number of properties can be specified using the ontologthimpaper we limit
our presentation to properties on compliance to protoqadssgproperty on the correct-
ness of the winner determination process.

3.1 Complianceto Protocol

We show three properties related to protocol compliancepétty P1 states that bids
cannot be submitted before the earliest offer time specibedhe item. Property P2
states that awards for bids cannot be sent before the speetidiest consideration
time. Property P3 states that the price offered for the bittwis awarded has to be

paid to the seller.

P1SIFP: Non-early Submitting of Bid

V~: TRACE, t1, t2:TIME, al:AGENT, i:I TEM_ID
[[state(r, t1) E offer_item(al, i) & state(y, t1) = earliest_bid_time(i, t2)]
= —3Jt"TIME<12, a2:AGENT, p:PRICE [state(v, t') = send_bid(a2, i, p)]]



P2SIFP: Non-early Awarding of Bid

V~:TRACE, t1, t2:TIME, al:AGENT, i:l TEM_ID
[[state(y, t1) | offer_item(al, i) & state(v, t1) = earliest_consideration_time(i, t2)]
= —Jt"TIME<12, a2:AGENT [state(y, t') = send_bid_award(al, a2, i)]]

P3SIFP: Payment of Offered Price
V~:TRACE, t1, t2, t3: TIME, al, a2:AGENT, i:I TEM_ID, p:PRICE
[[state(r, t1) E offer_item(al, i) & state(y, t2) = send_bid(a2, i, p) &
state(v, t3) | send_bid_award(al, a2, i)]
= Jt"TIME>t3 [state(, t') E payment(a2, al, i, p)]]

3.2 Correct Winner Deter mination

The correctness of winner determination is straightfodaara first-price sealed bid
auction: the highest price bid should be selected. Thisatedtin property P4: If a
certain item is offered, and a bid is awarded with pgde then there should not exist
an earlier time point at which a bid with a higher price wasrsiited. Note that this
property does not specify full compliance to the protocaj(@/hether awards are sent
at the appropriate time points).

P4SIFP: Correct Winner Determination
V~:TRACE, t1, t2, t3:TIME, al, a2:AGENT, i:l TEM_ID, p1:PRICE
[[state(y, t1) | offer_item(al, i) & state(, t2) = send_bid(a2, i, p1) &
state(y, t3) | send_bid_award(al, a2, i)]
= -3t TIME<t3, a3:AGENT, p2:PRICE [state(, t') = send_bid(a3, i, p2) & p2 > p1]]

3.3 Exampleof Trace Analysis

We show now how the properties expressed earlier can be etexjainst empirical
traces. Figure 1 shows an example of such a trace. The leftsbiows the atoms ex-
pressed in the ontology introduced before, the right sidevsha time line where a dark
box indicates that the atom is true at that time point.

offer_item(seller_a, item_1)1
bid_deadline(item_1, 5)1
earliest_consider_time(item_1, 8)1

earliest_offer_time(item_1, 4)

send_bid(buyer_x, item_1, 5)1

send_bid(buyer_y, item_1, 6)1

send_bid_award(seller_a, buyer_y, item_1)1 I

payment(buyer_y, seller_a, item_1, 6)1

time

Fig. 1. A trace for first price sealed bid auction

The trace shows a seller, callsdller_a who offers a particular itemtém_1):
offer_item(seller_a, item_1)



Time parameters are set for the auction, namely the eatiliestat which bids can be
made, the deadline for bidding, and the earliest time at lwhids will be considered:
earliest_bid_time(item_1, 4)
bid_deadline(item_1, 5)
earliest_consideration_time(item_1, 8)
Two buyers respond. One bids a price of 5 for the item, whetessther bids 6:
send_bid(buyer_x, item_1, 5)
send_bid(buyer._y, item_1, 6)
The seller awards the bid to the buyer who bid a price of 6 feritim:
send_bid_award(seller_a, buyer_y, item_1)
Eventually, the buyer pays the money to the seller:
payment(buyer_y, seller_a, item_1, 6)
For this trace, properties P2SIFP-P4SIFP are satisfiedoroperty P1SIFP is not be-
causebuyer_x sends a bid before time point 4.

Figure 2 shows a similar trace, except here there is one name Broperty P1SIFP
is again not satisfied singiyer_x did not submit its bid after time point 4 (but between
3 and 4). Furthermore, property P3SIFP does not hold sirepdlyment is set to the
second highest bid, which is not according to the definitibiirst-price auction.

offer_item(seller_a, item_1)1
bid_deadline(item_1, 5)
earliest_consider_time(item_1, 8)1

earliest_offer_time(item_1, 4)1

send_bid(buyer_x, item_1, 5)1

send_bid(buyer_y, item_1, 7)1

send_bid_award(seller_a, buyer_y, item_1)1

payment(buyer_y, seller_a, item_1, 5)

time °© 1 2 3 4 5 6 7 8 9 10 1

Fig. 2. A trace for first price sealed bid auction which does not 8afisoperties P1 and P3

4 ReverseFirst Price Sealed-Bid Combinatorial Auction with
Time Windows (RCATW)

The second type of auction we consider in this paper is aricauof a combinatorial
type with explicit representation of time windows and p@ce constraints between
tasks. The auction is reverse since in this case the auetigméhe buyer, and is com-
binatorial since each bid can include multiple items. TheBMET system [7] is an
example of such an auction, which is used for task allocafitwe sorts and the ontol-
ogy used to express the occurrences in such an auction anéexpen Table 2.



BID_ID x TASK_ID

Sort Explanation

AGENT An agent within the system

RFQ.ID An identifier for a Request for Quotes (RFQ)

TIME Sort representing time

TASK_ID Identifier of a task

BiD_ID Identifier of a bid

PrRICE Sort representing the price

DURATION Sort representing the duration of a task

Predicate Explanation

send.rfq: An agent sends an RFQ

AGENT x RFQ.ID

rfq_bid_deadline: The deadline for submitting bids for the tasks in the RFQ
RFQ.ID x TIME

rfq_earliest_consideration_tim@:he time after which bids for the RFQ will be considered
RFQ.ID x TIME

rfq-earliest_bid_time: The earliest time at which bids for tasks in the RFQ cah be
RFQ.ID x TIME submitted

in_rfq: Atask is part of an RFQ

RFQ.ID x TASK_ID

send_bid: An agent sends a bid for tasks in an RFQ

AGENT x BID_ID x RFQ.ID

bid_price: The price of a bid

BiD_ID x PRICE

in_bid: Atask is included in a bid

send_bid_award:
AGENT x BID_ID

A bid is awarded by an agent

rfq_precedence_constraint:
RFQID x TAsk.ID
TASK_ID

X

The first task must end before the second starts

rfq_task_earliest_start_time:
RFQ.D x TASK_ID x TIME

The earliest time in the RFQ when execution of a task
start

can

rfq_task_latest_start_time:
RFQ.D x TASK_ID x TIME

The latest time in the RFQ when execution of a task can

start

rfq_task_latest_end_time:
RFQ.D x TASK_ID x TIME

The latest time in the RFQ at which execution of a task
end

can

bid_task_earliest_start_time:
BID_ID x TASK_ID x TIME

The earliest time in a bid the execution of the task will s

art

bid_task_latest_start_time:
BID_ID x TASK_ID x TIME

The latest time in a bid the execution of the task will stal

—

bid_task_duration:
BID_ID x TASK_ID x DURA-
TION

The duration in a bid of the execution of the task

Table2. Predicates used in reverse first price sealed-bid combiabaniction with time wind

Oows



4.1 Complianceto Protocol

Below, we specify two properties related to protocol comuptie, which are the combi-
natorial auction variants of properties P1 and P2 for shitgie auctions.

P1C: Non-early Submitting of Bid

V~:TRACE, t1, t2:TIME, al:AGENT, NRFQ.ID
[[state(y, t1) |= send_rfq(a, r) & state(y, t1) = rfq-earliest_bid_time(r, t2)]
= -3t TIME < t2, a2:AGENT, b:BID_ID [state(y, t') | send_bid(a2, b)]]

P2C: Non-early Awarding of Bid

V~:TRACE, t1, t2:TIME, al:AGENT, NRFQ.ID
[[state(y, t1) |= send_rfq(a, r) & state(y, t1) = rfq_earliest_consideration_time(r, T2)]
= -3t TIME < t2, b:BID_ID [state(, t') = send_bid_award(a, b)]]

4.2 Correct Winner Deter mination

Assuming that all the tasks have to be done, in order for aluatian to be correct
the set of awarded bids must fully cover the items specifidiénRFQ (and no more
than that), and must be the cheapest set with such full cgeeFrst we specify the
combination of bids that has been awarded, which simplyassét of all bids awarded:

awardedcombination{: TRACE, t: TIME, 'RFQ.ID, a:AGENT, bc:BID_CoMB) =

vb:BID_ID
[[FtL:TIME > t, a2:AGENT
state(v, t1) | send_bid(a2, b, r) &
Jt2:TiME > t1 [state(y, t2) = send_bid_award(a, b)]]
= b € bc]
& [[Ft3:TIME > t, a2:AGENT
state(y, t3) = send_bid(a2, b, r) &
—3Jt4:TIME > t3 [state(y, t4) = send_bid_award(a, b)]]
= b ¢ bc]

Next we specify the price of the combination. Note that ¢hee(a, b, ¢) operator
works as follows: if conditior holds, it evaluates tb, and otherwise te.

combinationprice(y: TRACE, t: TIME, bc:BID_COMB, p:PRICE) =
(X b.BID_IDebe p2.PRICE 2. TiME >t CaSettate(y, t2) = bid_price(b, p2), p2, 0)
=p

To define a valid bid combination, first we define that a bid ighidthe execution
time points for all the tasks in the bid fit within the time winals specified in the RFQ.

valid_bid(y: TRACE, t: TIME, 'RFQ.ID, b:BID_ID) =

vtid: TASK_ID, t1: TIME
[state(, t1) | in_bid(b, t)
= Jt2-t6:TIME, d:DURATION
[state(y, t1) = bid_task_earliest_start_time(b, tid, t2) &



state(, t1) = bid_task_latest_start_time(b, tid, t3) &
state(, t1) = bid_task_duration(b, tid, d) &
state(y, t) = rfg-task_earliest_start_time(r, tid, t4) &
state(v, t) | rfg_task_latest_start_time(r, tid, t5) &
state(y, t) = rfg_task_latest_end_time(r, t6) &
(t2>1t4) & (13 <t5) & (16 > (t3 +d))]]

A bid combination is considered valid if each bid has beert aed each bid is
valid. In addition, all tasks specified in the RFQ should beeced by the bids (i.e.
no free disposal), tasks should not occur multiple timesiwithe bid combination,
and the precedence constraints have to be met. Note that ¢harbe multiple valid
combinations of bids per auction.

valid_combination{:TRACE, t: TIME, 'RFQ.ID, bc:BID_CoMB) =

VYb:BID_ID € bc
[valid_bid(v, t, 1, b) &
Ja:AGENT, t2: TIME > t [state(y, t2) = send_bid(a, b)]] &
vtid: TASK_ID
[state(v, t) &= in_rfq(r, tid)
= [F3:TIME, b:BID € bc
state(, t3) = in_bid(b, tif) &
—Jt4:TIME, a2:AGENT, b2:BID # b
[b2 € bc & state(y, t2) = send_bid(a2, b2) &
state(y, t4) = in_bid(b2, tid)] &
Vtid2: TASK_ID # tid
[state(v, t) = precedence_constraint(r, tid, tid2)
= 315, t6, t7:TIME, d:DURATION, b3:BID_ID € bc
[state(y, t5) E in_bid(b3, tid2) &
state(y, t5) = bid_task_earliest_start_time(b3, tid2, t6) &
state(y, t3) = bid_task_latest start_time(b, tid, t7) &
state(, t3) = bid_task_duration(b, tid, d) &
t6 > (t7 + d)]]]]

Given the definitions above, we can now specify property RH8clvspecifies that
the winner determination is correct for the set of traceifaiwarded combination is
not valid and if there is no other valid combination with a Ewprice.

P3C: Correct Winner Determination

V~:TRACE t:TIME, a;:AGENT, bc:BiD_CowmB, r:'RFQ_ID, p:PRICE
[[state(y, t) = send_rfq(a, r) &
awarded_combination(v, t, r, a, bc) &
combination_price(vy, t, bc, p)] =
[valid_combination(y, t, 1, bc) &
—3dbc2:Bib_CoMB # bc, p2:PRICE
[valid_combination(y, t, r, bc2) & combination_price(y, t, bc2, p2) & p2 < p1]]]



4.3 Exampleof Trace Analysis

Figure 3 shows an example trace of a reverse first-price dddédiecombinatorial auc-
tion with time windows and precedence constraints. As casdan in the trace, the
following time window constraints are specified for the wskthe RFQ:

rfq_task_earliest_start_time(rfg_1, task_1, 10)

rfq_task_latest_start_time(rfg_1, task_1, 12)

rfq_task_latest_end_time(rfq_1, task_1, 15)

rfq_task_earliest_start_time(rfq_1, task_2, 14)

rfq_task_latest_start_time(rfg_1, task_2, 16)

rfq_task_latest_end_time(rfg_1, task_2, 18)
Furthermore, one precedence constraint is specified,atidgcthattask_1 should be
completed beforéask_2 can start:

rfq_precedence_constraint(rfq_1, task_1, task_2)

Several bids are received in response to the RF®idrl both tasks are included,
whereasdid_2 andbid_3 merely covettask_1 andtask_2 respectively. The time win-
dows included in the bid can be seen in the trdiid.2 andbid_3 are awarded for
a total price of 6, which is cheaper thard_1 which costs 7. Evaluation of the trace
reveals that P1C and P2C are satisfied but P3C is not. Althalligihe time windows
included in the bids do comply with the times specified in tHeQRthe precedence
constraint does not; the latest start time plus the expetiteation oftask_1 is later
than the earliest start time ftask_2. As a result, P3C is not satisfied.

5 Experiments

In order to investigate how scalable the approach is we hemergted numerous syn-
thetic traces and checked the properties specified in theguesections using these
traces. The two auction setting presented earlier are asiellenamely the single item
first-price sealed-bid auction, and the reverse sealed:mbinatorial auction with
time windows.

5.1 Singleltem First-Price Sealed-Bid Auction

The first auction type considered is the single item firstgosiealed bid auction. For this
case, traces have been generated with a varying number ef bggnts participating
in the auction. For each setting of the number of agents,@s@$ have been generated,
and the following number of agents have been testéds, 10, 25, 50, 75, 90 Hereby,
the agents bid a price which is generated from a random ldision. Furthermore,
the times at which they submit their bids, and receive awprdsisely comply to the
times communicated by the seller (which are fixed througlioeitruns). Finally, the
evaluation of the bids by the buyer is done by exhaustivecheaesulting in a correct
evaluation. Hence, the generated traces are traces in whiploperties are satisfied,
so these are worst case scenarios (when a counter examptasiiyn be found the
computation time severely drops). The results are showigiaré 4.

As can be seen in the figure, properties P1 and P2 scale up \ahyliwear),
whereas properties P3 and P4 scale up in an exponentiabfastie fact that P3 and



10

send_rfq(customer_a, rfq_1)1
rfg_bid_deadline(rfg_1, 5)1
rfq_earliest_consider_time(rfq_1, 8)1

rfq_earliest_offer_time(rfq_1, 4)1

in_rfq(rfq_1, task_1)1
rfq_task_earliest_start_time(rfg_1, task_1, 10)
rfg_task_latest_start_time(rfq_1, task_1, 12)
rfq_task_latest_end_time(rfg_1, task_1, 15)
in_rfq(rfg_1, task_2)

rfq_task_earliest_start_time(rfg_1, task_2, 14)
rfg_task_latest_start_time(rfq_1, task_2, 16)
rfg_task_latest_end_time(rfq_1, task_2, 18)1

rfq_precedence_constraint(rfq_1, task_1, task_2)7

send_bid(supplier_x, bid_3, rfq_1)1
bid_price(bid_3, 3)1

in_bid(bid_3, task_2)1
bid_task_earliest_start_time(bid_3, task_2, 14)7
bid_task_latest_start_time(bid_3, task_2, 15)
bid_task_duration(bid_3, task_2, 2)1

send_bid(supplier_y, bid_1, rfq_1)- —
bid_price(bid_1, 7)
in_bid(bid_1, task_1)1 —
bid_task_earliest_start_time(bid_1, task_1, 10)1 —
bid_task_latest_start_time(bid_1, task_1, 12) —
bid_task_duration(bid_1, task_1, 3)- —
in_bid(bid_1, task_2)1
bid_task_earliest_start_time(bid_1, task_2, 15)7 —
bid_task_latest_start_time(bid_1, task_2, 16) —
=

bid_task_duration(bid_1, task_2, 2)1
send_bid(supplier_z, bid_2, rfq_1)1
bid_price(bid_2, 3)

in_bid(bid_2, task_1)1
bid_task_earliest_start_time(bid_2, task_1, 10)1
bid_task_latest_start_time(bid_2, task_1, 12)
bid_task_duration(bid_2, task_1, 3)1

send_bid_award(customer_a, bid_2)

send_bid_award(customer_a, bid_3)

time ° 1 2 3 4 5 6 7 8 9 1

Fig. 3. A trace of a combinatorial auction with time windows

P4 do not scale up well has to do with the number of variablaisate quantified in the
properties, which is significantly smaller in propertiesd?tl P2 than it is for properties
P3 and P4. But even for the maximum number of agents (90 ircttse) the compu-
tation only takes several milliseconds, which still makes approach useful for most
auctions being investigated.

5.2 Reverse Sealed-Bid Combinatorial Auction with Time Windows

The second set of experiments have been conducted uponviregeealed-bid com-
binatorial auction with time windows. In this setting, teeare multiple variations pos-
sible, namely vary the number of tasks, the number of bidded the average number



11

x10°

-~

P2
P3
P4

o
*

w IS o

Computation time (sec)

N

e S - !
0 20 40 60 80 100
Number of agents

0

Fig. 4. Computation time needed to verify correctness of diffegnperties for single item first
price sealed bid auctions with varying numbers of agentsuReshown are averages of 50 traces
for each setting.

of bids per bidder. In this case, we have decided to limit tmalper of variations to two
elements, namely the number of tasks, and the number of isiddach agent submits
one bid per trace. Hereby, one agent includes all the tasitseibid (to make sure at
least one combination of bids covers all tasks), and ther attpents randomly select the
tasks they bid upon (in this case they include a task in thdinith probability of 0.5).
Furthermore, the time windows included per task precisemmy to the constraints
specified in the RFQ. In Figure 5 and 6 we show the results fopgnty P1 and P2.
Hereby, the number of agents that bid have been varied betivaad 50, whereas the
number of tasks have been varied between 1 and 6. 50 runs baveplerformed for
each setting.

It can be seen in the figures that the same patterns are pesssgen in Section 5.1.
The computation time scales up in a linear fashion as the puoflagents goes up. Fur-
thermore, the number of tasks does not influence the ovenalpatation time needed.

For properties P3 and P4 results are shown for smaller nuofbegents (1 to 5
bidders). Hereby, the number of tasks again does not infeuéime overall computa-
tion time needed, whereas an increase of the number of agamées an exponential
growth of the computation time. This is consistent with kmosomplexity results for
clearing combinatorial auctions that show there is no patgial-time solution, nor
even a polynomial-time bounded approximation [15]. Theseaits can however be im-
proved by for example performing pre-processing of thegttag splitting the trace up
into multiple parts, and running the checks in parallel.sTikipart of future work.

6 Redated Work

Analysis of compliance of agents to certain desired praggetas been studied exten-
sively. Typically however, such properties are not studiig@nalysing empirical traces



12

- R
°
o

o ¢
om

Computation time (sec.)

o
©

o ¢
oo

30

Number of items Number of agents Number of items Number of agents

Fig.5. Computation time needed for P1 in the Fig. 6. Computation time needed for P2 in the
RCATW RCATW

Computation time (sec.)
Computation time (sec.)

3

Number of items 11 Number of agents Number of items Number of agents

Fig. 7. Computation time needed for P3 in the Fig. 8. Computation time needed for P4 in the
RCATW RCATW

but by proving that given certain agent behaviors, somequéatr desired behaviors are
guaranteed. There is a large body of work on model checkimguifi-agent systems,
see e.g. [10] and [3], where typically model checking is useadtonformance testing,
i.e. to verify that the implementation of an agent respectatzstract protocol definition
for agent interactions. In [13] model checking is used tdfyergent systems imple-
mented using the logic-based AgentSpeak language. Aroaugystem is presented as
a case study to show how BDI auction specifications are satisind can be verified
using a model checker. However, in open systems knowledgleeointernals of the
agents is generally not available, so model checking cadmmapplied widely.

The specification of protocols using temporal logic has lsressed, e.g. in [9].
The verification of such properties upon auctioning traces fowever not been ad-
dressed before. In [2] a framework is introduced for the Bjgation of properties
for open systems, as well as reasoning and verification cktipeoperties. They use



13

the contract net protocol as a running example. They takermative systems view,
specifying social constraints, social roles, and socitest The approach focuses on
verification at an abstract organizational level, not orcgfmeempirical traces of agent
behavior.

A tool calledSOCS-Shimed at verifying compliance of agent interactions is pre-
sented in [1]. In their approachhastory managecomposes an event history which is
checked in thesocial compliance verifielSome example properties related to auctions
are presented, but the paper focuses on the verificatiomagipmore than on verifi-
cation of auctions. This method, as ours, does not requaesado the internals of the
agents, but checks compliance only by examining the inieraprotocols. In [4] prop-
erties are expressed for evaluating traces of human négatialso using TTL. The
scope of the paper is however limited to multi-issue negjotiawith a specific proto-
col, and not to specification of properties for auctions inagal, which is the aim of
this paper.

Current work to increase trust in auctions addresses almadtisively the issue
of verification of the identity of buyers and sellers (see,ifstance, [11] for a study
on trust and reputation on eBay). Alternatively, securdqarols are proposed (see, for
instance, [12, 6]) to ensure that communications betweeragfents and the auction-
eer are protected. There is an implicit assumption that tiei@n clearing houses act
properly. We believe that with the proliferation of auctioouses the need to verify the
correctness of their operations will increase. This co@dlbne using the approach we
present in this paper.

7 Conclusions

We introduced an approach to analyze auction traces. Weddngted an expressive
trace-based temporal logic (cf. [5]), which enables thecHjpation of desired proper-
ties that include specific time points. Using this tempoogiid¢, we presented ontolo-
gies that represent the specific interactions between thptaghat participate in the
auctions, properties of the auction protocols. All the mties are specified in a modu-
lar fashion, allowing re-usability. We have illustratee thnalysis process by means of
example traces. To automate the analysis, the propertiestigeen implemented in the
TTL Checker software (cf. [5]).

The approach presented analyzes traces of communicatiahsd¢curred during
auction sessions. The approach does not need any knowlédige mternals of the
agents, and is therefore suitable for open environmentd@anaixed humans/agents
auction systems. The assumption that execution tracesvailalde is not unrealistic
and could be added as a requirement to web based auctioncsitesfy rule compli-
ance.

The scaling of the verification process itself is an impar&spect. The fact that
we do not use model checking techniques, but focus on trdaesgotiation behavior,
makes the approach more scalable compared to model ch@ekmgiques. The results
have shown that for simple properties, the approach scplesadinear fashion whereas
for the more complex cases the approach scales up expdheriaa these complex
traces however, it is possible to analyze subsets of suchdria parallel. Analyzing



14

the improvements of such parallel checking is future workn&al scalability of the
checking of properties against traces using TTL and therapanying software tool
has been described in [5]. Future work is to verify these eriigs on real auction data,
to investigate whether the protocol was always followed.

References

1. M. Alberti, M. Gavanelli, E. Lamma, F. Chesani, P. MellmdaP. Torroni. Compliance
verification of agent interaction: A logic-based softwarelt Applied Artificial Intelligence
20:133-157, 2006.

2. A. Artikis, J. Pitt, and M. Sergot. Animated specificaBoof computational societies. In
Proc. First Int'l Conf. on Autonomous Agents and Multi-Ag8ystemspages 1053-1062.
ACM, 2002.

3. R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldriddéodel checking Agentspeak. In
Proc. Second Int'l Conf. on Autonomous Agents and MultirA@ystemspages 409—416.
ACM, 2003.

4. T.Bosse, C. M. Jonker, and J. Treur. Experiments in humati-issue negotiation: Analysis
and support. IrProc. Third Int'l Conf. on Autonomous Agents and Multi-Ag&ystems
pages 672—679. IEEE Computer Society, 2004.

5. T. Bosse, C. M. Jonker, L. van der Meij, A. Sharpanskykld &nTreur. Specification and
verification of dynamics in cognitive agent models.HRroc. Sixth Int’'l Conf. on Intelligent
Agent Technology (IAT 2002)ages 247-254. IEEE Computer Society, 2006.

6. Y. F. Chunga, K. H. Huanga, H. H. Leeb, F. Laia, and T. S. CHgidder-anonymous en-
glish auction scheme with privacy and public verifiabilifpurnal of Systems and Software
81(1):113-119, January 2008.

7. J. Collins, W. Ketter, and M. Gini. A multi-agent negoiiat testbed for contracting tasks
with temporal and precedence constraints’l Journal of Electronic Commerger(1):35—
57, 2002.

8. P. Cramton, Y. Shoham, and R. Steinb&tgmbinatorial AuctionsMIT Press, 2006.

9. M. Fisher and M. Wooldridge. Specifying and executinggcols for cooperative action. In
Proc. Int'l Working Conf. on Cooperating Knowledge-Basgdt€ms1994.

10. F. Guerin and J. Pitt. Guaranteeing properties for enceroe systems. IAgent-Mediated
Electronic Commerce IV. Designing Mechanisms and Systeames 397—413. Springer Ver-
lag, 2002.

11. A. Hortacsu. Trust and reputation on ebay: Micro and mperspectives. Technical report,
Department of Economics, University of Chicago, 2005.

12. A. Jaiswal, Y. Kim, and M. Gini. Design and implementatiaf a secure multi-agent mar-
ketplace.Electronic Commerce Research and Applicati@(g):355-368, 2004.

13. R. Podorozhny, S. Khurshid, D. Perry, and S. Zhang. datifin of cooperative multi-agent
negotiation with Alloy. Technical Report TXSTATE-CS-TR@6-4, Texas State University,
San Marcos, TX, September 2006.

14. T. Sandholm. An implementation of the contract net moltdased on marginal cost cal-
culations. InProc. of the Eleventh Nat'l Conf. on Artificial Intelligencpages 256-262,
Washington, DC, 1993.

15. T. Sandholm. Algorithm for optimal winner determinatio combinatorial auctiongArtifi-
cial Intelligence 135:1-54, 2002.

16. W. Vickrey. Counterspeculation, auctions, and contipetsealed tendersJournal of Fi-
nance 16:8-37, 1961.

17. M. P. Wellman, W. E. Walsh, P. R. Wurman, and J. K. MacKiaslh. Auction protocols
for decentralized schedulingsgames and Economic Behavi@&5:271-303, 2001.



