
Sustainable Multi-Robot Patrol of an Open Polyline

Elizabeth Jensen, Michael Franklin, Sara Lahr, and Maria Gini

Abstract— We present an algorithm that maintains coverage
of an open polyline patrolled by a team of robots. While
previous work has focused on the uniformity of patrolling,
we focus on ensuring the longevity of the system in the
face of robot failures. A central control tower monitors the
battery levels of the robots, and recalls them when they are
low on power replacing them with fully charged robots. We
compare two methods for replacement, both of which aim to
keep coverage interruptions to a minimum. We present results
obtained through physical experiments and simulations.

I. I NTRODUCTION

The purpose of a patrol is to continuously travel in an area
to protect or supervise it. Common goals are uniform fre-
quency coverage [1], [2], [3] and detection of adversaries [4],
[5]. Frequency-based patrol systems are usually designed for
surveillance, but are also useful in tasks such as cleaning,
garbage collection, and monitoring. Multi-robot teams are
often used for such tasks, as they can improve performance
by reducing the area covered by each robot and increasing
the frequency of visits of each point [3].

In previous work, algorithms have focused on the different
types of routes that need to be covered. With a circular path,
any point can be reached from any other point, which makes
uniformity of coverage trivial to achieve: simply space the
robots evenly and set them to all move along the path in the
same direction and at the same velocity. When the path to
be patrolled is not a closed tour, but rather an open polyline,
providing frequency guarantees becomes more difficult [3].

A detail that is often overlooked is the fact that robots have
limited power sources and must be recharged. In the case
of a multi-robot patrol system, where we wish to provide
a frequency of visit guarantee for the entire patrol route, a
robot running out of power would violate those guarantees.
We present here algorithms that take this limitation into
account, with the primary goal being the longevity of the
system in the face of robot failures. We go beyond the
frequency-based patrol algorithms that have been previously
presented, and extend them to adapt so that a replacement
can be sent in when a robot runs low on power. This is made
more complex because we focus on open polylines.

The main contributions in this paper are (1) algorithms that
successfully maintain a multi-robot polyline patrol system
with frequency guarantees, and (2) experimental validation

E. Jensen, M. Franklin, and M. Gini are with the Department
of Computer Science and Engineering, University of Minnesota–
Twin Cities ejensen@cs.umn.edu, frank511@umn.edu,
gini@cs.umn.edu

S. Lahr is with the Division of Science and Mathematics, University of
Minnesota–Morrislahrx019@morris.umn.edu

of the algorithms, both with physical experiments and sim-
ulations. The remainder of this paper is structured as fol-
lows: Section II reviews relevant previous work; Section III
describes our long-term multi-robot patrol; we then present
results of experiments with real robots and in simulation in
Sections IV and V; and we conclude in Section VI.

II. BACKGROUND AND RELATED WORK

Coverage by a team of robots is a common task. Choset
provides a detailed summary of different techniques [6].
Coverage generally seeks to visit every point only once
(e.g., [7], [8]), while patrol requires that every point be
visited as often as possible [9] or repeated times but with
some randomness [10]. Some algorithms explore the envi-
ronment as they cover it, while other create paths based
on the communication capabilities of the robots (e.g., [11]).
Our robots know how to reach the line they have to patrol
and have limited communication channels, so our algorithm
assigns each robot a segment to patrol on start-up, but the
robots are dynamically reallocated as needed thereafter.

Frequency-based patrolling attempts to achieve uniform
frequency of point visits. In [2] this is achieved by generating
a closed path that covers the entire area and distributing the
robots uniformly along this path. When cyclical behavior
is an option, the cyclical path has been shown to be opti-
mal [12]. However, there are tasks for which a cyclical path
cannot be created, as shown in [1].

Patrolling a line with uniform frequency requires a more
complex patrolling algorithm than patrolling a circular path
due to the end segments that cannot be visited with the
same frequency. The overlapping patrol algorithm presented
in [3] uses an overlap factor,o, which is set to some positive
integer (see Alg. 1). Each of the robots patrols across its
own segment, and then continues to patrolo−1 segments to
the right, stopping if it reaches the end of the patrol route.
The robots pause at the end of each segment to synchronize
before proceeding to the next segment. The overlapping
patrol improves the average frequency of point visits in
the middle segments, and attenuates the negative impact on
uniformity caused by the end segments because there are
usually many more middle segments than end segments.
Our work extends this algorithm by removing the need to
synchronize the robots at the end of each segment and by
maintaining coverage when robots leave the segment they
are patrolling to be recharged.

III. L ONG-TERM OPEN POLYLINE PATROL

High-frequency coverage is unsustainable if the robots
cannot be replaced to allow for recharging/refueling. Our



Algorithm 1 Frequency-based Overlapping Patrol Algo-
rithm [3]

1: repeat
2: Patrolo segments, or until edge segment is reached
3: Turn and synchronize with other robots
4: if located in right-most segmentthen
5: Wait for left neighbor to move over one segment
6: end if
7: Turn and synchronize with other robots
8: until Stop command issued

main objective in this research is to keep interruptions in
coverage to a minimum by taking advantage of the robustness
inherent in multi-robot systems. In this section, we specify
the problem and our approach. We then present the algo-
rithms we developed, and discuss performance criteria.

We start with a team ofr robots and a line split intos
segments of equal lengthl, wheres ≤ r. At the center of the
line, there is a control tower where extra robots are queued
until they are needed (see Fig. 1). We assume that the length
and number of segments is commensurate with the amount
of power needed for the robots to move.

Fig. 1. The layout, withs/2 segments on each side of the control tower.

We define a lap as the patrol of a segment in both
directions (forward and back) and2T is the time it takes the
slowest robot to complete a lap (worst-case lap completion
time). Lap times remain consistent until the battery power
drops below a certain level, at which point the robot is
recalled. That threshold,b, is set to ensure that the robots are
able to return to the control tower under their own power.
Though all robots start at the same battery level, we have
found that, in practice, it is rare for even two robots to fall
below this threshold at the same time.

A. Algorithms.

We have based our algorithms on Alg. 1, using an overlap
factor of o = 1, so each robot patrols only its assigned
segment. We removed the need for robots to synchronize
amongst themselves at the end of each segment, as the
original algorithm required. By allowing our robots to pa-
trol their own segment independently of other robots, we
reduced communication costs, which are often one of the
largest drains on battery power, and the idle time caused by
variability in the robots’ movements. We also include in our
algorithms the initial deployment of the robots. We present
here three algorithms: the base algorithm, the proactive recall
algorithm, and the leap-frog algorithm.

Algorithm 2 Base Algorithm
1: Assign and deploy a robot to each patrol segment
2: repeat
3: if Battery level is greater than thresholdthen
4: Complete one patrol lap
5: else
6: Send low battery message
7: Leave segment
8: Locate and return to tower using camera
9: end if

10: Check messages from other robots
11: if a segment is emptythen
12: for all active robotsr do
13: if r is patrolling a segment between empty seg-

ment and towerthen
14: Move r out one segment
15: Adjust segment number ofr
16: end if
17: end for
18: Deploy reinforcement robot from idle queue at

central control tower
19: end if
20: until All robots have failed

On system start-up, all robots are located at the control
tower’s queue, and the tower initiates communication with
each robot. Robots also start communication channels with
each other, so that they can reorganize as needed (see Alg. 2).
Once communications are initialized, robots are deployed to
each segment in the polyline until all segments are covered.
Any remaining robots wait in the queue until needed.

In the base algorithm, once deployed each robot au-
tonomously patrols its assigned segment until it either runs
low on power or it receives a message that indicates it needs
to move to a different location. Once a robot reports that it is
low on power, it leaves its assigned segment and returns to
the control tower. Each robot patrolling between the tower’s
queue and the now empty segment will jump to the next
segment out, filling in all but the segment closest to the
central tower. That last segment will be filled by a robot
deployed from the queue. We assume that there is a supply
of charged batteries at the control tower, and that the time
to replace batteries in a robot when it returns to base is
negligible in comparison to the time taken to deplete them.

Theproactive recall algorithm(see Alg. 3) aims to reduce
both the communication requirements and the number of
robots returning at any given moment. This algorithm makes
use of a group leader for the team of robots, which we have
set as the control tower in our examples and implementation,
though it could be any of the robots instead. We use two
threshold levels in this algorithm,bl = b, the threshold at
which a robot must be recalled; andbu = bi + e, wheree
is some small constant (0.1 volts in our experiments) that
acts as a warning level threshold. Every ten laps, the robots
send the leader a message with their battery level. The leader
maintains a sorted list of robot battery levels, which it uses



Algorithm 3 Proactive Recall Algorithm
1: Sort robots by increasing value of battery levels
2: Let b1, b2, b3 be respectively the battery levels of the first

three robots
3: if b1 is below thresholdbl then
4: Recall first robot
5: else if b1 is below thresholdbu then
6: Check battery levelb2 of next robot
7: if b2 < b1 + e/2 then
8: if b3 < b2 + e/2 then
9: Recall second robot

10: else
11: Recall the first robot
12: end if
13: end if
14: end if

to determine when a robot needs to be recalled.
The leap-frog algorithmimproves upon the deployment

of replacement robots. In our base algorithm, the robot with
the most battery power remaining always ends up nearest the
control tower, while the robots with less power end up further
away. We hypothesized that this would be sub-optimal, as
those robots would then have to go further to get back to
the control tower, so they would need to be recalled sooner
than if they had stayed in their original places. In the leap-
frog algorithm, the replacement robot makes its way to the
segment that was vacated, rather than simply filling in at the
segment closest to the control tower. To do this, we relaxed
the constraint that only one robot may be on a segment at a
time, which we accomplished by adding a second segment
parallel to each existing segment to act as a passing lane.

B. Performance Criteria.

We use the performance criteria proposed in [3].Unifor-
mity refers to the frequency with which each point on the
route is visited. We would like to reduce the variance in this
frequency.Maximal averagerefers to the average frequency
of visits to each point. We want to maximize this, so that each
point is visited as often as possible, on average. The main
goal here is to make sure that no point is left unvisited for too
long. Maximal minimum frequencyis the minimal frequency
of visit for any point, which we want also to maximize. This
is accomplished trivially by setting the overlap factoro = 1.

When no robots are low on power, our patrol system
has the same properties as that of [3]. As in the original
algorithm, the frequency of visits is uniform only at the
center of each segment, and the difference in visit frequencies
grows larger as points are closer to the end of the segment.
The endpoints will be visited twice in a row, so the time
interval between visits is 0, but it will take an entire lap
before the endpoint is visited again, which will average toT
between visits. At the center point of a segment, the robot
will move to the end and then back to the center, which takes
T time to complete. For all other points the two intervals
vary, but the average time interval between visits is stillT .

Fig. 2. Two Scribbler robots with attached Flukes.

Determining the maximal average of visits is more difficult
when a robot returns to base and other robots fill in for it.
For a short time, the interval between visits to each point is
increased, because one segment is not being covered. When
the robot,r0, patrolling segments0, runs low on power, the
robot to its left, r1 must fill in. In the best case,r1 will
be just arriving at the point betweens1 and s0 and can
simply jump over tos0, in which case it will take onlyT
to return to the normal visit frequency for segments0 (r1

must reach the far end ofs0 for this to happen, which will
take T ). In the worst case,r1 just turned back to return to
the opposite end ofs1, a process which we do not wish
to disrupt for two reasons. First, we do not want to leave
any point uncovered for too long, and completing the lap
ensures that we can make guarantees about the frequency
of visit; and second, because of odometry errorsr1 might
get lost, which would be detrimental to the system’s overall
performance. Allowingr1 to complete its current lap leads
to a 3T delay befores0 will be patrolled with an average
interval ofT again. This process must be repeated for every
other segment between the vacated segment and the control
tower, however robots can be jumping simultaneously, and
the new robot is deployed as soon as the near segment is
cleared, so it will still only take3T to return to normal.

IV. PHYSICAL ROBOT EXPERIMENTS

In the physical experiments, we were most interested in
showing that our algorithm worked properly in a real world
implementation. We wanted to ensure the algorithm would
work with the physical robots first, and use the results of the
experiments to build our simulation, so that the simulation
would be an accurate representation of the real world.

A. Experimental Setup.

We used the Scribbler robots augmented with the Fluke
(see Fig. 2), which has a camera and Bluetooth capability.
We used the line-following IR sensors located underneath
the Scribbler, which provide a binary response distinguish-
ing light from dark, and the camera, which provides blob
following. The Scribblers have limited capabilities, so we
had to adjust our base algorithm to work within those



TABLE I

RESULTS FROM A SIX ROBOT, FOUR SEGMENT EXPERIMENT. TIMES ARE MEASURED IN SECONDS.

Name Anders Caprica Hera Leoben Sharon Tory Overall
Avg. Lap Time 16.11 20.89 25.21 16.28 28.15 26.29 19.60
Lap Time SD 3.02 3.60 2.52 2.99 2.06 3.92 4.80
Avg. Return Time 3.25 3.43 0 3.83 0 3.75 3.48
Idle Time 66.72 1533.75 0 792.77 152.19 2598.395143.82
% Idle 1.64% 37.57% 0.00% 19.58% 21.28% 68.71%24.82%

Fig. 3. The physical experimental setup. Two Scribblers arealready
patrolling segments, while a third stands by in the queue.

limitations. For example, the availability of only Bluetooth
communication, forced us to implement our algorithm in a
more centralized manner, with all messages going through
the control tower.

The physical environment setup can be seen in Fig. 3.
It consists of a straight line divided into six equal-length
segments. The tower is located in the middle with a queue
leading to the main patrol line. Each segment is a black,
one inch wide and 33 inch long strip, with an eight-inch
approach region on the end nearest to the control tower.
All segments are separated by a nine-inch white space to
prevent collisions between robots on adjacent segments.
The following accommodations were made to attenuate the
limitations of these particular robots. The approach region is
wider than the rest of the segment to allow for error when
the robots jump between segments. The Scribblers follow
the segments using the two IR sensors underneath them.
Orange targets hung above the path mark the beginning
of the segments, and were used for additional alignment
functionality using the Fluke’s camera. The camera is also
used for locating and returning to the control tower, marked
by a large green target. Obviously, for a real deployment we
would use more sophisticated robots and different methods
for tracking the segments to be patrolled.

B. Experiments and Results.

We tested the longevity of the system using six robots
and four segments, with two robots idle in the queue. The
robots were run for one 75 minute experiment, including

1.5 minutes to start-up (tower connecting with robots) and
3.5 minutes of initial deployment time, giving 70 minutes of
patrol time. The robots all started at the control tower, and
were deployed one by one. The results of this experiment
can be seen in Table I. The average lap time was 19.60s and
the average time spent idle was 24.82% of the total run time.
We also measured the rate of decrease in battery level in a
separate, 40 minute experiment. The battery level decreased
by 0.33 volts every hour, with an average lap time of 18.12s.

C. Discussion.

From these experiments, we observed that the lap times
were fairly consistent for each individual robot, but were not
uniform across robots. We also saw an increase in lap time
between the four robot and six robot experiments, which was
caused by two robots being much slower than the other four.

We realized that the amount of idle time and active time
depends greatly on the ratio of robots to segments, and is
very important to the overall longevity of the system. One
reason for this is that too many robots in the queue results
in more time spent idling, which is especially problematic
if the robots are also expending power during the idle time.
We have seen a robot run out of power and fail while idling
in the queue. Since we wanted the system as a whole to
be as autonomous as possible, we did not want to have to
build in an interval in which we would manually switch on a
robot only when it was needed, so the idle robots always had
to be ready. Withr robots ands segments to patrol, where
r > s, the fraction of the time the robots are idle on average
is (r − s)/r. While we saw an idle time of only 24% of the
total time in the second experiment, the reported times are
misleading, because one robot, Sharon, failed upon returning
to base, and so 3319 seconds of idle time are missing from
the totals. When this is accounted for, the percentage of idle
time is 35%, which is closer to what we expected with 1/3
of the robots in the idle queue at all times.

Our base algorithm successfully maintained patrol of
every segment. However, there was no way to expand our
experiments to a longer line or multiple towers due to
space limitations in our lab. Time limitations were also a
concern because we wanted to scale the system up, but
even the small experiments we conducted required constant
supervision, making larger scale experiments impractical. For
these reasons, we decided that a simulation, using the data
collected from the physical experiments as a model, would
be beneficial in further testing of our algorithm. A simulation



Fig. 4. Partial view of the simulation environment. The control tower is
designated as segment 3. The robot on the left is in the process of returning
to base. The “whiskers” on the round robots denote the field ofview of the
camera, which is used to track the tower and to avoid obstacles.

would allow us to test larger and more complicated scenarios,
and as well as allow us to do many more experimental runs.

V. SIMULATIONS

Our goal for the simulations was to run longer and
more complex experiments involving more robots. The main
problem we encountered with the physical experiments was
the sensor noise inherent in the environment. The line sensors
operated in the IR spectrum and finding a material that
would absorb IR and return the necessary values proved to be
difficult. Even with a suitable medium, inconsistencies such
as dirt, changes in lighting, and scuff marks from the robots’
wheels caused errors in the sensor readings. In our simulation
we wanted to increase the reliability of the sensor data, while
retaining the system’s non-deterministic properties.

We implemented our own simulation environment (see
Fig. 4). Within the simulation environment, we assumed
that the robots have perfect sensor readings, but we added
noise–a random variable from a Gaussian distribution with
a mean of 0 and a standard deviation of 0.125–into the
robots’ linear and rotational velocities at each time step to
simulate environmental and hardware variances. This was
combined with the simulated sensors into a proxy that made
use of the same API used by the physical robots, allowing
us to switch between real robots and simulations with no
changes to the underlying patrol algorithms. We ran all three
algorithms in the simulations, continuing with the centralized
version in order to obtain meaningful comparisons between
the simulations and physical experiment results.

A. Experiments and Results.

As a test of the comparability of the simulation to the
physical experiments, we measured deployment time for
6 robots over 4 segments, just as we did in the physical
environment and found them to be very close (physical took
3.5 minutes, simulation took 3.25 minutes).

Since one of our main reasons for using simulation was
to increase the size of our experiments, we then ran a set of
simulations using eight robots patrolling six segments, with
the same setup and procedure as the physical experiments.
The simulation data was collected from multiple runs totaling
over 5 hours of patrol time. With 2 robots always idle, we
expected to see idle times around 25%. In the runs using
the base algorithm, the average lap time was 16.04s, and the

TABLE II

LAP TIMES (IN SECONDS) FOR EACH EXPERIMENT AND ALGORITHM.

Environment Algorithm Average St. Dev.
Physical Base Algorithm 19.60 4.84
Simulation Base Algorithm 19.22 1.27
Simulation Proactive Recall 18.90 3.53
Simulation Leap-Frog 18.65 1.44
Simulation Leap-Frog + Proactive 19.44 3.05

percentage of time spent idle was 34.18%. The simulations
using the proactive recall algorithm had an average lap time
of 18.90s and only 11.26% idle time. We determined that this
significant difference of idle time stemmed from the way we
had structured communication between the robots and the
tower in the proactive recall algorithm. We restructured the
communication for the base algorithm and found that we now
had 19.22s average lap times and 12.21% idle time, similar
to the proactive recall results.

In our final set of experiments, we ran the simulations with
10 robots patrolling six segments, and so expected at most
40% idle time. We ran three simulations for comparison,
one using the proactive recall algorithm, one using the leap-
frog algorithm, and one using a combination of the two
algorithms. For each setup, we collected 24 hours of data.
Again, the average lap times are similar to those in both the
original physical experiments and in our previous simulations
(see Table II for complete data). There was no significant
difference between any of the three algorithms (see Fig. 5).
We also recorded the time between visits to one of the
endpoints on each line segment (see Figure 6) for each of
the algorithms. We see that there are some fluctuations in
point visit intervals depending on the line segment, which
we believe is due to how often a segment is traversed on
the way to a further out segment. However, we see that the
leap-frog method has shorter intervals, because there can be
two robots on a segment for a short time, so the patrol is not
interrupted as much as in the base and proactive algorithms.

B. Discussion.

In comparing simulations to the physical experiments,
using just the base algorithm, there were some minor
differences, but overall the results were comparable. The
average lap time, in particular, was more consistent than we
had expected, though the perfect sensor data reduced the
variability of the lap times in the simulation.

We saw greater improvement than we had anticipated
after implementing the proactive recall algorithm. Further
analysis showed that most of the performance improvement
came from the manner in which we implemented the com-
munication between the control tower and the robots. The
proactive recall algorithm is still necessary for maintaining
maximal average frequency of point visits. In the physical
experiments, there were long intervals between returning
robots, so it was not apparent that the proactive recall
algorithm would be useful, let alone necessary. However, in



Fig. 5. Average percentage of time spent idle in simulationsby algorithm:
proactive recall, leap-frog, and leap-frog with proactiverecall. Error bars
show 1 standard deviation.

the simulation we saw all the robots return to the tower at the
same time. Not only did this increase the percentage of time
spent idle for the entire system, but it also greatly reducedthe
average frequency with which the segments were patrolled,
which is a significant issue when our objective is to maintain
a high frequency of coverage. The proactive recall algorithm
limits the number of robots that are returning at any given
time to maintain the maximal average frequency at the level
of our original algorithm.

The average return time with the leap-frog method is
shorter than in our original recall method (47s and 65s,
respectively), due to the fact that the robots that are returning
are closer to the control tower. This is because we are no
longer pushing the robots with lower battery power out to
the end (since the first robot to return is almost always an
end robot), but are instead getting the fresh robot out there.
As an added benefit we have more time to recharge a robot
after it returns, which will reduce the number of backup
robots necessary to maintain the patrol. We expect that this
improvement would be even more noticeable if there were
more than 3 segments on each side of the tower.

VI. CONCLUSIONS ANDFUTURE WORK

We extended a previous algorithm for frequency-based
patrol on an open line, with a focus on maintaining the patrol
over the long-term. We achieved this by keeping some robots
in reserve, while the other robots patrol assigned segments.
A robot is removed from the line and replaced once its power
level drops below a threshold. We explored different ap-
proaches to the recall and replacement actions. We performed
both physical robot and simulation experiments.

We have begun work on creating a multi-tower scenario, in
which there are multiple control towers, each with their own
set of segments and robots. This extension paves the way
for a large scale implementation, with the added bonus that
neighboring towers will be able to lend or borrow robots if
necessary, making the system more robust to robot failures.
We are also exploring the best allocation of resources, so that
as few robots as possible are idle in the queue. One method

Fig. 6. Time between visits (in seconds) to a specific point oneach line
segment in a 10 robot, 6 segment simulation.

is to continually move robots with lower power reserves
towards the tower to minimize replacement time. Our third
line of inquiry is into paths composed of complex polylines,
with curves and unequal segment lengths, in order to simulate
changes in terrain.

REFERENCES

[1] A. Almeida, G. Ramalho, H. Santana, P. Tedesco, T. Menezes,
V. Corruble, and Y. Chevaleyre, “Recent advances on multi-agent
patrolling,” in Advances in Artificial Intelligence (SBIA 2004), April
2004, pp. 474–483.

[2] Y. Elmaliach, N. Agmon, and G. Kaminka, “Multi-robot area patrol
under frequency constraints,” inProc. IEEE Int’l Conf. on Robotics
and Automation, April 2007, pp. 385–390.

[3] Y. Elmaliach, A. Shiloni, and G. A. Kaminka, “A realisticmodel of
frequency-based multi-robot polyline patrolling,” inProc. Int’l Conf.
on Autonomous Agents and Multi-Agent Systems, 2008, pp. 63–70.

[4] N. Agmon, S. Kraus, and G. Kaminka, “Multi-robot perimeter patrol
in adversarial settings,” inProc. IEEE Int’l Conf. on Robotics and
Automation, May 2008, pp. 2339–2345.

[5] N. Basilico, N. Gatti, and F. Amigoni, “Leader-followerstrategies for
robotic patrolling in environments with arbitrary topologies,” in Proc.
Int’l Conf. on Autonomous Agents and Multi-Agent Systems, 2009, pp.
57–64.

[6] H. Choset, “Coverage for robotics – a survey of recent results,” Annals
of Mathematics and Artificial Intelligence, vol. 31, no. 1-4, pp. 113–
126, 2001.

[7] K. Williams and J. Burdick, “Multi-robot boundary coverage with plan
revision,” inProc. IEEE Int’l Conf. on Robotics and Automation, May.
2006, pp. 1716 –1723.

[8] P. Amstutz, N. Correll, and A. Martinoli, “Distributed boundary cover-
age with a team of networked miniature robots using a robust market-
based algorithm,”Annals of Mathematics and Artificial Intelligence,
no. 2-4, pp. 307–333, 2009.

[9] A. Machado, G. Ramalho, J.-D. Zucker, and A. Drogoul, “Multi-
agent patrolling: An empirical analysis of alternative architectures,” in
Multi-Agent-Based Simulation, Third International Workshop, 2002,
pp. 155–170.

[10] A. Marino, L. E. Parker, G. Antonelli, and F. Caccavale,“Behavioral
control for multi-robot perimeter patrol: A finite state automata ap-
proach,” inProc. IEEE Int’l Conf. on Robotics and Automation, 2009.

[11] I. Rekleitis, A. P. New, E. S. Rankin, and H. Choset, “Efficient
boustrophedon multi-robot coverage: an algorithmic approach,”Annals
of Mathematics and Artificial Intelligence, vol. 52, no. 2-4, pp. 109–
142, 2008.

[12] Y. Chevaleyre, F. Sempe, and G. Ramalho, “A theoreticalanalysis of
multi-agent patrolling strategies,” inProc. Int’l Conf. on Autonomous
Agents and Multi-Agent Systems, vol. 3, 2004, pp. 1524–1525.


