Sustainable Multi-Robot Patrol of an Open Polyline

Elizabeth Jensen, Michael Franklin, Sara Lahr, and Maria Gi

Abstract— We present an algorithm that maintains coverage of the algorithms, both with physical experiments and sim-
of an open polyline patrolled by a team of robots. While ylations. The remainder of this paper is structured as fol-
previous work has focused on the uniformity of patrolling, |q\ys: Section Il reviews relevant previous work; Sectioh I
we focus on ensuring the longevity of the system in the . . . ;
face of robot failures. A central control tower monitors the describes our ang-term .multl-robot patrol; vye then prese_n
battery levels of the robots’ and recalls them when they are resu|tS Of eXperImentS W|th real I’ObOtS and n S|mu|at|0n n

low on power replacing them with fully charged robots. We Sections IV and V; and we conclude in Section VI.
compare two methods for replacement, both of which aim to
keep coverage interruptions to a minimum. We present resuft Il. BACKGROUND AND RELATED WORK

obtained through physical experiments and simulations. Coverage by a team of robots is a common task. Choset

provides a detailed summary of different techniques [6].
Coverage generally seeks to visit every point only once

The purpose of a patrol is to continuously travel in an aret-9-, [7], [8]), while patrol requires that every point be
to protect or supervise it. Common goals are uniform frevisited as often as possible [9] or repeated times but with
quency coverage [1], [2], [3] and detection of adversadgs [SOme randomness [10]. Some algorithms explore the envi-
[5]. Frequency-based patrol systems are usually desigied fonment as they cover it, while other create paths based
surveillance, but are also useful in tasks such as cleanir@) the communication capabilities of the robots (e.g., J11]
garbage collection, and monitoring. Multi-robot teams ar&ur robots know how to reach the line they have to patrol
often used for such tasks, as they can improve performanggd have limited communication channels, so our algorithm
by reducing the area covered by each robot and increasifgsigns each robot a segment to patrol on start-up, but the
the frequency of visits of each point [3]. robots are dynamically reallocated as needed thereafter.

In previous work, algorithms have focused on the different Frequency-based patrolling attempts to achieve uniform
types of routes that need to be covered. With a circular patfiequency of point visits. In [2] this is achieved by gengrat
any point can be reached from any other point, which makesclosed path that covers the entire area and distributiag th
uniformity of coverage trivial to achieve: simply space thgobots uniformly along this path. When cyclical behavior
robots evenly and set them to all move along the path in tH& an option, the cyclical path has been shown to be opti-
same direction and at the same velocity. When the path f8al [12]. However, there are tasks for which a cyclical path
be patrolled is not a closed tour, but rather an open polyling&nnot be created, as shown in [1].
providing frequency guarantees becomes more difficult [3]. Patrolling a line with uniform frequency requires a more

A detail that is often overlooked is the fact that robots hav€omPplex patrolling algorithm than patrolling a circulartipa
limited power sources and must be recharged. In the cadée to the end segments that cannot be visited with the
of a multi-robot patrol system, where we wish to provid&s@Mme frequency. The overlapping patrol algorithm presente
a frequency of visit guarantee for the entire patrol route, & [3] uses an overlap factos, which is set to some positive
robot running out of power would violate those guarantee§lt€ger (see Alg. 1). Each of the robots patrols across its
We present here algorithms that take this limitation int®Wn Ségment, and then continues to patrel1 segments to
account, with the primary goal being the longevity of thdhe right, stopping if it reaches the end of the patrol route.
system in the face of robot failures. We go beyond théhe robots pause at the end of each segment to synchro_nlze
frequency-based patrol algorithms that have been preyioud€fore proceeding to the next segment. The overlapping
presented, and extend them to adapt so that a replacem@@ol improves the average frequency of point visits in
can be sent in when a robot runs low on power. This is madB€ middle segments, and attenuates the negative impact on
more complex because we focus on open polylines. uniformity caused by t_he end segments because there are

The main contributions in this paper are (1) algorithms thdfSually many more middle segments than end segments.
successfully maintain a multi-robot polyline patrol syste OUr work extends this algorithm by removing the need to
with frequency guarantees, and (2) experimental validatic®y"chronize the robots at the end of each segment and by

maintaining coverage when robots leave the segment they

E. Jensen, M. Franklin, and M. Gini are with the Departmentare patrolling to be recharged.
of Computer Science and Engineering, University of Mint&so

|I. INTRODUCTION

Twin Cities ej ensen@s. um. edu, frank511@m. edu, [1l. L ONG-TERM OPEN POLYLINE PATROL
gi ni @s. um. edu High-f . inable if th b
S. Lahr is with the Division of Science and Mathematics, rsity of igh-frequency coverage Is unsustainable It the robots

Minnesota—Morrisl ahr x019@ror ri s. umm. edu cannot be replaced to allow for recharging/refueling. Our

Algorithm 1 Frequency-based Overlapping Patrol Algo-Algorithm 2 Base Algorithm

rithm [3] 1: Assign and deploy a robot to each patrol segment
1: repeat 2: repeat
2: Patrolo segments, or until edge segment is reached 3. if Battery level is greater than threshdlten

3: Turn and synchronize with other robots 4: Complete one patrol lap

4. if located in right-most segmettten 5. else

5: Wait for left neighbor to move over one segment ¢: Send low battery message

6: endif 7 Leave segment

7: Turn and synchronize with other robots 8: Locate and return to tower using camera
8: until Stop command issued 9: end if

10 Check messages from other robots
11: if a segment is emptthen

main objective in this research is to keep interruptions it for all active robots- do

coverage to a minimum by taking advantage of the robustness’ if r is patrolling a segment between empty seg-
inherent in multi-robot systems. In this section, we specif ment and towethen

the problem and our approach. We then present the algd® Move r out one segment

rithms we developed, and discuss performance criteria. i:: engdi]fUSt segment number of

We start with a team of robots and a line split inta
segments of equal lengthwheres < r. At the center of the
line, there is a control tower where extra robots are queuejcis
until they are needed (see Fig. 1). We assume that the length ce_ntral control tower
and number of segments is commensurate with the amoutit e_nd i i
of power needed for the robots to move. 20: until All robots have failed

17 end for
Deploy reinforcement robot from idle queue at

—e —a —a —f— — — —— On system start-up, all robots are located at the control
tower’'s queue, and the tower initiates communication with
each robot. Robots also start communication channels with
each other, so that they can reorganize as needed (see Alg. 2)

Once communications are initialized, robots are deploged t
each segment in the polyline until all segments are covered.

Any remaining robots wait in the queue until needed.

We define a lap as the patrol of a segment in both In the base algorithm once deployed each robot au-

directions (forward and back) amtT” is the time it takes the tonomously patrols its assigned segment until it eithesrun

slowest robot to complete a lap (worst-case lap completiolﬂw on power or it receives a message that indicates it needs

time). Lap times remain consistent until the battery powio move to a different location. Once a robot reports that it i

Fig. 1. The layout, withs/2 segments on each side of the control tower.

drops below a certain level, at which point the robot i ow on power, It leaves its aSSIQHEd segment and returns to

recalled. That threshold, is set to ensure that the robots arehe control tower. Each robot patrolling between the tosrer

able to return to the control tower under their own powergueue and the_ r.10w.empty segment will jump to the next
egment out, filling in all but the segment closest to the

Though all robots start at the same battery level, we havas

found that, in practice, it is rare for even two robots to falpentral tower. That last segment will be filled by_ a robot
below this threshold at the same time. deployed from the queue. We assume that there is a supply

of charged batteries at the control tower, and that the time
to replace batteries in a robot when it returns to base is
negligible in comparison to the time taken to deplete them.
We have based our algorithms on Alg. 1, using an overlap The proactive recall algorithm(see Alg. 3) aims to reduce
factor of o = 1, so each robot patrols only its assignedoth the communication requirements and the number of
segment. We removed the need for robots to synchronizebots returning at any given moment. This algorithm makes
amongst themselves at the end of each segment, as tise of a group leader for the team of robots, which we have
original algorithm required. By allowing our robots to pa-set as the control tower in our examples and implementation,
trol their own segment independently of other robots, wéhough it could be any of the robots instead. We use two
reduced communication costs, which are often one of thtareshold levels in this algorithnb; = b, the threshold at
largest drains on battery power, and the idle time caused lhich a robot must be recalled; angd = b; + e, wheree
variability in the robots’ movements. We also include in ouis some small constant (0.1 volts in our experiments) that
algorithms the initial deployment of the robots. We preserdcts as a warning level threshold. Every ten laps, the robots
here three algorithms: the base algorithm, the proactis@lre send the leader a message with their battery level. Thelleade
algorithm, and the leap-frog algorithm. maintains a sorted list of robot battery levels, which itsise

A. Algorithms.

Algorithm 3 Proactive Recall Algorithm
1: Sort robots by increasing value of battery levels
2: Let by, b, bs be respectively the battery levels of the first
three robots

3: if by is below threshold,; then

4: Recall first robot

5: else if b; is below threshold,, then

6: Check battery leveb, of next robot

7. if ba < b1 +¢/2 then

8: if b3 < b2+ /2 then

9: Recall second robot

10: else

11: Recall the first robot -
12: end if Fig. 2. Two Scribbler robots with attached Flukes.
13: end if

14: end if

Determining the maximal average of visits is more difficult
when a robot returns to base and other robots fill in for it.
to determine when a robot needs to be recalled. For a short time, the interval between visits to each point is
The leap-frog algorithmimproves upon the deploymentincreased, because one segment is not being covered. When
of replacement robots. In our base algorithm, the robot witthe robot,ry, patrolling segmens,, runs low on power, the
the most battery power remaining always ends up nearest ttabot to its left,; must fill in. In the best case;; will
control tower, while the robots with less power end up furthebe just arriving at the point betweenn and s, and can
away. We hypothesized that this would be sub-optimal, asmply jump over tosg, in which case it will take onlyl’
those robots would then have to go further to get back tw return to the normal visit frequency for segmegt(r;
the control tower, so they would need to be recalled soonerust reach the far end af, for this to happen, which will
than if they had stayed in their original places. In the leapiake T'). In the worst casey; just turned back to return to
frog algorithm, the replacement robot makes its way to ththe opposite end of;, a process which we do not wish
segment that was vacated, rather than simply filling in at th® disrupt for two reasons. First, we do not want to leave
segment closest to the control tower. To do this, we relaxahy point uncovered for too long, and completing the lap
the constraint that only one robot may be on a segment atasures that we can make guarantees about the frequency
time, which we accomplished by adding a second segmeat visit; and second, because of odometry errgramight
parallel to each existing segment to act as a passing laneget lost, which would be detrimental to the system’s overall
o performance. Allowingr; to complete its current lap leads
B. Performance Criteria. to a 37 delay befores, will be patrolled with an average
We use the performance criteria proposed in [3hifor- interval of T' again. This process must be repeated for every
mity refers to the frequency with which each point on thexther segment between the vacated segment and the control
route is visited. We would like to reduce the variance in thisower, however robots can be jumping simultaneously, and
frequencyMaximal averageaefers to the average frequencythe new robot is deployed as soon as the near segment is
of visits to each point. We want to maximize this, so that eactleared, so it will still only take3T' to return to normal.
point is visited as often as possible, on average. The main
goal here is to make sure that no point is left unvisited for to
long. Maximal minimum frequendg the minimal frequency In the physical experiments, we were most interested in
of visit for any point, which we want also to maximize. Thisshowing that our algorithm worked properly in a real world
is accomplished trivially by setting the overlap facto= 1. implementation. We wanted to ensure the algorithm would
When no robots are low on power, our patrol systemwvork with the physical robots first, and use the results of the
has the same properties as that of [3]. As in the originaxperiments to build our simulation, so that the simulation
algorithm, the frequency of visits is uniform only at thewould be an accurate representation of the real world.
center of each segment, and the difference in visit fregesnc .
grows larger as points are closer to the end of the segmefi. EXperimental Setup.
The endpoints will be visited twice in a row, so the time We used the Scribbler robots augmented with the Fluke
interval between visits is 0, but it will take an entire lap(see Fig. 2), which has a camera and Bluetooth capability.
before the endpoint is visited again, which will averagd'to We used the line-following IR sensors located underneath
between visits. At the center point of a segment, the robdhe Scribbler, which provide a binary response distinguish
will move to the end and then back to the center, which takesg light from dark, and the camera, which provides blob
T time to complete. For all other points the two intervaldollowing. The Scribblers have limited capabilities, so we
vary, but the average time interval between visits is §till had to adjust our base algorithm to work within those

IV. PHYSICAL ROBOT EXPERIMENTS

TABLE |
RESULTS FROM A SIX ROBOTFOUR SEGMENT EXPERIMENTTIMES ARE MEASURED IN SECONDS

Name Anders Caprica Hera Leoben Sharon Tory | Overall
Avg. Lap Time 16.11 20.89 25.21 16.28 28.15 26.29 19.60
Lap Time SD 3.02 3.60 2.52 2.99 2.06 392 4.80
Avg. Return Time 3.25 3.43 0 3.83 0 3.75% 3.48
Idle Time 66.72 1533.75 0 792.77 152.19 2598.3%143.82
% Idle 1.64% 37.57% 0.00% 19.58% 21.28% 68.71%24.82%

1.5 minutes to start-up (tower connecting with robots) and
3.5 minutes of initial deployment time, giving 70 minutes of
patrol time. The robots all started at the control tower, and
were deployed one by one. The results of this experiment
can be seen in Table I. The average lap time was 19.60s and
the average time spent idle was 24.82% of the total run time.
We also measured the rate of decrease in battery level in a
separate, 40 minute experiment. The battery level dealease
by 0.33 volts every hour, with an average lap time of 18.12s.

C. Discussion.

From these experiments, we observed that the lap times
were fairly consistent for each individual robot, but wepd n
_ _ _ _ uniform across robots. We also saw an increase in lap time
Fig. 3. The physical experimental setup. Two Scribblers aready hetween the four robot and six robot experiments, which was
patrolling segments, while a third stands by in the queue. . ’
caused by two robots being much slower than the other four.
We realized that the amount of idle time and active time

limitations. For example, the availability of only Bluetho depends greatly on the ratio of robots to segments, and is
communication, forced us to implement our algorithm in &€ry important to the overall longevity of the system. One
more centralized manner, with all messages going througfason for this is that too many robots in the queue results
the control tower. in more time spent idling, which is especially problematic
The physical environment setup can be seen in Fig. H the robots are also expending power during the idle time.
It consists of a straight line divided into six equal-lengthVe have seen a robot run out of power and fail while idling
segments. The tower is located in the middle with a quede the queue. Since we wanted the system as a whole to
leading to the main patrol line. Each segment is a blacl® as autonomous as possible, we did not want to have to
one inch wide and 33 inch long strip, with an eight-incHJU“d in an interval in which we would manually switch on a
approach region on the end nearest to the control towdPPot only when it was needed, so the idle robots always had
All segments are separated by a nine-inch white space @ be ready. With- robots ands segments to patrol, where
prevent collisions between robots on adjacent segments> s the fraction of the time the robots are idle on average
The following accommodations were made to attenuate i@ (r — s)/r. While we saw an idle time of only 24% of the
limitations of these particular robots. The approach negso total time in the second experiment, the reported times are
wider than the rest of the segment to allow for error whefnisleading, because one robot, Sharon, failed upon reyrni
the robots jump between segments. The Scribblers follof@ Pase, and so 3319 seconds of idle time are missing from
the segments using the two IR sensors underneath thetie totals. When this is accounted for, the percentage ef idl
Orange targets hung above the path mark the beginniﬁi e is 35%, which is closer to what we expected with 1/3
of the segments, and were used for additional alignmeRf the robots in the idle queue at all times.
functionality using the Fluke's camera. The camera is also Our base algorithm successfully maintained patrol of
used for locating and returning to the control tower, marke@very segment. However, there was no way to expand our
by a large green target. Obviously, for a real deployment wexperiments to a longer line or multiple towers due to
would use more sophisticated robots and different methoggace limitations in our lab. Time limitations were also a

for tracking the segments to be patrolled. concern because we wanted to scale the system up, but
) even the small experiments we conducted required constant
B. Experiments and Results. supervision, making larger scale experiments impractitai

We tested the longevity of the system using six robotthese reasons, we decided that a simulation, using the data
and four segments, with two robots idle in the queue. Theollected from the physical experiments as a model, would
robots were run for one 75 minute experiment, includindpe beneficial in further testing of our algorithm. A simudati

TABLE Il

Segment 4 Control Tower Segment 2 Segment 1

— ° » [) LAP TIMES (IN SECONDS FOR EACH EXPERIMENT AND ALGORITHM
Environment Algorithm Average St. Dev.

Physical Base Algorithm 19.60 4.84

Simulation Base Algorithm 19.22 1.27

Simulation Proactive Recall 18.90 3.53

Q. Simulation Leap-Frog 18.65 1.44

Simulation Leap-Frog + Proactive 19.44 3.05

Fig. 4. Partial view of the simulation environment. The eohtower is
designated as segment 3. The robot on the left is in the ppadagturning
to base. The “whiskers” on the round robots denote the fieldest of the

camera, which is used to track the tower and to avoid obstacle percentage of time spent idle was 34.18%. The simulations
using the proactive recall algorithm had an average lap time
. . 0f 18.90s and only 11.26% idle time. We determined that this
would allow us to test larger and more compllcat_ed SCen’ar'oagnificant difference of idle time stemmed from the way we
and as well as allow us to do many more experimental ""Rad structured communication between the robots and the
V. SIMULATIONS tower in the proactive recall algorithm. We restructured th
Our qoal for the simulations was to run lonaer anqiommunication for the base algorithm and found that we now
9 . : . g had 19.22s average lap times and 12.21% idle time, similar
more complex experiments involving more robots. The malp

. . : Q the proactive recall results.
problem we encountered with the physical experiments was
In our final set of experiments, we ran the simulations with

the sensor noise inherent in the environment. The line sensq .)
operated in the IR spectrum and finding a material tha%o robots patrolling six segments, and so expected at most
o) . X X
would absorb IR and return the necessary values proved to & |d_Ie time. We ran three 5|mu_|at|ons for comparison,
difficult. Even with a suitable medium, inconsistenciestsuc2"€ YS9 the proactive recall algorithm, one using the-leap

as dirt, changes in lighting, and scuff marks from the ro’botgrlOg f';t\Lgorltth, andhonet using a <I:|omtb|(;1a2t|40rrl] of thef SN?
wheels caused errors in the sensor readings. In our simmlatid 90MtNMS. For each Setup, we collecte ours of data.

we wanted to increase the reliability of the sensor datal,eNhiAga_m’ Ithﬁ a_/er?ge Iap t|m(is ar((ej §|mllar to t_hose N bc&h the
retaining the system’s non-deterministic properties. origina pnysical experiments ancin our previous simoiasi

We implemented our own simulation environment (seés_ee Table Il for complete data). There was no S|gn|f|cant
ifference between any of the three algorithms (see Fig. 5).

Fig. 4). Within the simulation environment, we assume@ev | ded the ti bet isits © £ th
that the robots have perfect sensor readings, but we add g, aiso recorde € time between visits 1o one ot the

noise—a random variable from a Gaussian distribution witt ndp?lntgtr?n eavcvh line stﬁg;nt?]nt (see Figure SI) ftor f.aCh .Of
a mean of 0 and a standard deviation of 0.125-into thet 2/90rthms. We See that there are some fluctuations in

robots’ linear and rotational velocities at each time stp tIOOint visit intervals depending on the line segment, which

. . . . e believe is due to how often a segment is traversed on
simulate environmental and hardware variances. This Wﬁ 9

combined with the simulated sensors into a proxy that ma € V\]/(ay to atLur(tjhEr outhsetgm_ertn. Hc;webver, we Stﬁe that ths
use of the same API used by the physical robots, allowin ap-1rog method has shorter interva’s, because here ean
o robots on a segment for a short time, so the patrol is not

us to switch between real robots and simulations with n i ted h as in the b q " laorith
changes to the underlying patrol algorithms. We ran allghrterUpted as much as in the base and proactive algoriinms.

algorithms in the simulations, continuing with the cerized . :
L . . . B. Discussion.
version in order to obtain meaningful comparisons between

the simulations and physical experiment results. In comparing simulations to the physical experiments,
_ using just the base algorithm, there were some minor
A. Experiments and Results. differences, but overall the results were comparable. The

As a test of the comparability of the simulation to theaverage lap time, in particular, was more consistent than we
physical experiments, we measured deployment time févad expected, though the perfect sensor data reduced the
6 robots over 4 segments, just as we did in the physicahriability of the lap times in the simulation.
environment and found them to be very close (physical took We saw greater improvement than we had anticipated
3.5 minutes, simulation took 3.25 minutes). after implementing the proactive recall algorithm. Furthe

Since one of our main reasons for using simulation waanalysis showed that most of the performance improvement
to increase the size of our experiments, we then ran a setadme from the manner in which we implemented the com-
simulations using eight robots patrolling six segmentshwi munication between the control tower and the robots. The
the same setup and procedure as the physical experimemiactive recall algorithm is still necessary for mainiagn
The simulation data was collected from multiple runs totgli maximal average frequency of point visits. In the physical
over 5 hours of patrol time. With 2 robots always idle, weexperiments, there were long intervals between returning
expected to see idle times around 25%. In the runs usimgbots, so it was not apparent that the proactive recall
the base algorithm, the average lap time was 16.04s, and #igorithm would be useful, let alone necessary. However, in

16% 16

g 14

= &

o 12% -[z 12

© [+1]

= £ —
% = 8 |
£ 8% =

g £

S g 4

% 4% 2

H 0

1 2 3 5 6 7 Avg.
0% T 1
Proactive Leap-Frog Proactive + Leap- Segment #

Frog
M Base Proactive M Leap-Frog M Proactive + Leap-Frog

Fig. 5. Average percentage of time spent idle in simulatiopglgorithm:
proactive recall, leap-frog, and leap-frog with proactieall. Error bars Fig. 6. Time between visits (in seconds) to a specific poineach line
show 1 standard deviation. segment in a 10 robot, 6 segment simulation.

the simulation we saw all the robots return to the tower at thg o continually move robots with lower power reserves
same time. Not only did this increase the percentage of timgyyards the tower to minimize replacement time. Our third
spentidle for the entire system, but it also greatly redubed |ine of inquiry is into paths composed of complex polylines,

average frequency with which the segments were patrollegiih curves and unequal segment lengths, in order to simulat
which is a significant issue when our objective is to mamta@1anges in terrain.

a high frequency of coverage. The proactive recall algorith

limits the number of robots that are returning at any given REFERENCES
time to maintain the maximal average frequency at the leveji] A. Ameida, G. Ramalho, H. Santana, P. Tedesco, T. Mesieze
of our original algorithm. V. Corruble, and Y. Chevaleyre, “Recent advances on mgkiha

- : _ : patrolling,” in Advances in Artificial Intelligence (SBIA 2004pril
The average return time with the leap-frog method is 2004, pp. 474483,

shorter than in our original recall method (47s and 65s2] v. Eimaliach, N. Agmon, and G. Kaminka, “Multi-robot arepatrol

respectively), due to the fact that the robots that are métgr UngEY frequency CO_?Séth\)intS," iﬁs[gc- gggE Intl Conf. on Robotics
[and Automation Apri 7, pp. 385-390.

are closer tc_) the control tower' This is because we are n Y. Elmaliach, A. Shiloni, and G. A. Kaminka, “A realistimodel of

longer pushing the robots with lower battery power out t0 "~ frequency-based multi-robot polyline patrolling,” Proc. Int| Conf.

the end (since the first robot to return is almost always an on Autonomous Agents and Multi-Agent Syste2088, pp. 63-70.

: : 4] N. Agmon, S. Kraus, and G. Kaminka, “Multi-robot perireetpatrol
end rObOt)’ but are instead getting the fresh robot out theré in adversarial settings,” ifProc. IEEE Int'l Conf. on Robotics and

As an added benefit we have more time to recharge a robot automation May 2008, pp. 2339-2345.
after it returns, which will reduce the number of backupI[5] N. Basilico, N. Gatti, and F. Amigoni, “Leader-followestrategies for
robots necessary to maintain the patrol. We expect that this robotic patrolling in environments with arbitrary topoles,” in Proc.

. .) Int'l Conf. on Autonomous Agents and Multi-Agent Syste&2@69, pp.
improvement would be even more noticeable if there were 5764,

more than 3 segments on each side of the tower. [6] H. Choset, “Coverage for robotics — a survey of recentltes Annals
of Mathematics and Artificial Intelligencevol. 31, no. 1-4, pp. 113—
VI. CONCLUSIONS AND FUTURE WORK 126, 2001.

. . (57] K. Williams and J. Burdick, “Multi-robot boundary covage with plan
We extended a previous algorithm for frequency-base revision,” in Proc. IEEE Int'| Conf. on Robotics and Automatidviay.
patrol on an open line, with a focus on maintaining the patrol 2006, pp. 1716 —1723.

_ . . .] P. Amstutz, N. Correll, and A. Martinoli, “Distributeddundary cover-
over the long-term. We achieved this by keeping some robot age with a team of networked miniature robots using a robzsket-

in reserve, while the other robots patrol assigned segments based algorithm,"Annals of Mathematics and Avtificial Intelligence
A robot is removed from the line and replaced once its poweEQ] 20- '\i-4,hpg- 3%7-??331 2{:\09'3 b, Zuck dA D -

: | . achado, . amalno, J.-D. Zucker, an . rogoul, ‘IMu
level drops below a threshold. We eXplqred different ap agent patrolling: An empirical analysis of alternativehatectures,” in
proaches to the recall and replacement actions. We pertbrme Multi-Agent-Based Simulation, Third International Wdrkg, 2002,
both physical robot and simulation experiments. . KP-M155—17|(_)- E Parker. G. Antonelii and F. C ABehavioral

. . H . . Marino, L. E. Parker, . Antonelll, an . Caccavi ghavioral
We have begun quk on creating a multl-towe_r Scen?rlo’ 'H control for multi-robot perimeter patrol: A finite state amtata ap-
which there are multiple control towers, each with their own proach,” inProc. IEEE Intl Conf. on Robotics and Automatja2009.
set of segments and robots. This extension paves the wail L~ Retkleltr:Sh A. P Itl_\levr), tE S. Rankin, Iand_ﬂlj. _nga%A‘Eﬁr;t
. . . oustropnedon multi-robot coverage: an algorithmic nnals
for_ a Iarg_e scale |mplgmentat|on, with the added bonus that of Mathematics and Artificial Intelligencevol. 52, no. 2-4, pp. 109—
neighboring towers will be able to lend or borrow robots if 142, 200s.
necessary, making the system more robust to robot failurd$z] Y. Chevaleyre, F. Sempe, and G. Ramalho, "A theoretigilysis of
We are also exploring the best allocation of resources. &o th multi-agent patrolling strategies,” iRroc. Int'l Conf. on Autonomous

; . ’ Agents and Multi-Agent Systemml. 3, 2004, pp. 1524-1525.
as few robots as possible are idle in the queue. One method

