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Abstract

Traditional approaches to task planning as-
sume that the planner has access to all of
the world information needed to develop a
complete, correct plan which can then be ex-
ecuted in its entirety by an agent. Since this
assumption does not typically hold in realis-
tic domains, we have implemented a planner
which can plan to perform sensor operations
to allow an agent to gather the information
necessary to complete planning and achieve
its goals in the face of missing or uncertain
environmental information. Naturally this
approach requires some execution to be in-
terleaved with the planning process. In this
paper we present the results of a systematic
experimental study of this planner’s perfor-
mance under various conditions. The chief
difficulty arises when the agent performs ac-
tions which interfere with or, in the worst
case, preclude the possibility of the achieve-
ment of its later goals. We have found that
by making intelligent decisions about goal or-
dering, what to sense, and when to sense it,
the planner can significantly reduce the risk
of committing to premature action. We have
studied the problem both from the perspec-
tive of reversible and irreversible actions.

1 INTRODUCTION

The study described in this report constitutes part of
an ongoing research project in the area of task plan-
ning under uncertainty. Traditional approaches to task
planning assume that the planner has access to all of
the world information needed to develop a complete,
correct plan which can then be executed in its entirety
by an agent. Of course, for most complex domains,
having all of the necessary world information at plan
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time cannot be assumed. We have implemented a
planner, BUMP, which is capable of interleaving plan-
ning and execution. BUMP is able to defer portions of
the planning process which depend on unknown or un-
certain information until the information in question
can be obtained through sensors. In this case, BUMP
inserts sensor operations directly into the plan which
the agent executes to enable further planning.

Alternately, BUMP may choose to assume a default
value for the uncertain information rather than plan
to sense it. We call this distinction the defer/default
question, and it has played a central role in guiding
our recent research efforts.

Deferral and defaulting each have strengths and weak-
nesses. Deferral can be attractive with good sensors
because it reduces planner uncertainty, however, sens-
ing can become prohibitively expensive. In addition,
satisfying preconditions for sensor operations can in
itself be time-consuming, and as we will see, increases
the probability of performing premature actions.

Defaulting can be risky, but it allows the planner to
complete more of the plan before execution begins.
This allows the planner to see further into the plan
and detect problems which may lie beyond the horizon
of the deferral point. As domain uncertainty increases
however, further planning becomes increasingly arbi-
trary.

In general, it is difficult to know whether to defer and
sense a given uncertain value or simply choose a de-
fault value and face the risks. Deciding on the best
strategy for a given planning problem consists of com-
puting the tradeoffs of various strategies, but as we will
see, such a computation quickly becomes intractable
for even a modest degree of uncertainty, suggesting
the need for heuristic techniques.



2 PURPOSE OF STUDY

The experiments described here were designed to an-
swer general questions about factors that influence the
plan quality, and how to use those factors when decid-
ing on planning strategies. In this section we discuss
three types of planning strategies and three measures
of plan quality. It is useful to think of the quality mea-
sures as functions to minimize or maximize, and the
strategies as means to that end.

2.1 PLANNING FACTORS

We have identified the following as important factors
of task planning with sensors. Our studies have shown
that by intelligently controlling these factors, a plan-
ner can improve its performance, often dramatically.
Thus, we define an overall planning strategy as a set of
algorithms to determine each of the following param-
eters for a given problem instance.

Goal ordering: The initial goal ordering describes
the order in which Bump will attempt to con-
struct portions of the plan to satisfy each goal.
This ordering is fixed when planning commences
and does not change. It is important to note how-
ever, that this order is not necessarily the order
of execution. BUMP is fairly good at ordering and
reordering actions to exploit helpful goal interac-
tions and avoid harmful ones. Choosing an ini-
tial goal ordering to facilitate intelligent action
reordering is one way to improve BUMP’s perfor-
mance. We found it advantageous to carefully or-
der the planner’s initial goals based on the amount
and type of unknown information at the start of
planning. Thus, we varied and examined goal or-
ders to determine heuristics for a goal ordering
strategy.

When to sense: A critical decision when interleav-
ing planning and execution is when to switch from
one to the other. In related research, Olawsky
and Gini [1990] identified two general strategies to
manage the transfer of control between the plan-
ning and execution modules (i.e., control strate-
gies). In each strategy, if the planner discovers
that it requires unknown information it inserts a
sensor operation into the plan to obtain the infor-
mation. It then plans to satisfy any preconditions
of this sensor operation.

In the first strategy, known as Stop and Exe-
cute (SE), when the planner encounters a goal
whose achievement depends on information it has
planned to sense, control is transferred to the ex-
ecution module. The sensor process and all pro-
cesses ordered before it in the current partial plan
are executed. Control then returns to the planner.

In the second strategy, Continue Elsewhere (CE),
goals whose achievement depends on information

to be sensed are deferred. Planning continues else-
where. Only when all goals are either planned
to completion or deferred does execution initially
commence. Execution halts after each sensor op-
eration to allow completion of a deferred goal. In
general, CE allows much more planning, albeit
less informed planning, to occur ahead of the first
execution phase.

We believe these two strategies to be of particular
interest because they seem to be the only truly
domain independent control strategies which we
have found useful. Any other strategies we have
considered are not general-purpose, and are only
useful under rather specific circumstances.

What to sense: Finally, there is the question of
which uncertain quantities to sense and which
to default. We will refer to this as the deferral
strategy. Choosing a reasonable deferral strategy
requires careful consideration of domain-specific
factors such as default reliabilities, sensor relia-
bilities, planning costs, execution costs, and the
cost of human intervention.

2.2 PLAN QUALITY CRITERIA

Before discussing the strategies above, we must be
clear as to the objectives they are intended to serve.
We call these objectives plan quality criteria, and we
have identified and gathered data on a number of
them, each of which could stand alone, or be used in
conjunction with other criteria as a measure of plan
quality.

Success Rate: For this measure of planner perfor-
mance, we computed the percentage of problemsin
which BUMP was able to construct plans in which
no processes needed to be undone as a result of
being executed prematurely. One of the major
challenges in interleaving planning and execution
is to keep the robot from performing actions which
may interfere with goals not yet considered. The
most common example of this in our experiments
occurred when the robot bolted closed a tool box
only to discover that it contained a wrench (or
bolt) needed to accomplish a later goal. Under
this criterion we considered such plans failures, in
effect assuming the agent was unable to recover
from such premature action.

Execution Cost: For this criterion we measured the
cost of all actions to be performed in the final plan
when the planner is allowed to recover from pre-
mature action (i.e. undo and redo these actions).
This provided us with some indication of how in-
efficient the inferior solutions were to previously
unsuccessful problems. For these experiments, we
simply counted each instantiated process (action)
in the plan as having unit cost, although it would
be trivial to assign varying costs to various types



of actions.

Planning Cost: Finally, in some experiments we
tracked the amount of planning work done by the
planner. Since BUMP is an agenda-based planner,
a reasonably accurate indication of planning work
is the number of items it placed on its agenda.

When the quality criterion is the success rate, we as-
sume there are no deadlines which must be met by the
planner in order to succeed. In domains in which such
deadlines are important, execution and planning cost
should be used as quality criteria.

3 EXPERIMENTS IN THE TOOL
BOX WORLD

Each experiment consisted of running BUMP on a care-
fully controlled set of problems. We attempted to se-
lect subsets of problems which were especially prone
to premature action, and study BumMP’s performance
in solving each of them. In the near future we plan to
conduct a study in which subsets are randomly con-
structed to examine BUMP’s average case performance
as well.

The experiments consisted of problems in the tool box
world. In this world, the robot is in a room with n
tool boxes, each containing wrenches and bolts of var-
ious sizes. The robot knows the initial locations of the
wrenches and bolts. Bolts are identified by a unique
name, and wrenches are identified by size. The robot
has been instructed to close and bolt one or more tool
boxes with particular bolts. To perform each bolting
operation, the robot must use a wrench of a size that
matches the bolt. A sensor is available that can clas-
sify bolts by their size (e.g., a number from 1 to 10).
For simplicity, the bolt sizes are indicated along the
same scale as the wrench sizes. We also assume the
robot has a tool belt into which it can put an unlim-
ited number of bolts and wrenches.!

The test set for our experiments varied slightly from
one experiment to the next, but there are a number
of characteristics shared by most of them. More de-
tailed descriptions of the experiments can be found in
[Krebsbach et al., 1991]. The majority of the studies
deal with a three-box world. These boxes are called
S, T, and U, and they are to be bolted with bolts
bs, b; and by, respectively. Each of these three bolts
has a different size—bs has size 4, b; size 5, and b,
size 6. The bolts are initially in their respective boxes
(e.g., bs is in box S).2 All of the tool boxes are initially

!We are not concerned here with the arm-empty condi-
tions as used in typical definitions of the blocks world. Our
main goal in defining this domain is to study how sensor
use can be interleaved with planning.

2This canses the robot to see less of the world while
solving its early goals since it need not go anywhere to

Table 1: Summary of Experiments for Success Rates,
Execution Cost, and Planning Cost Criteria.

Control Goal Num of
Exp | Boxes | Quality | Strategy | Orders | Unknowns
1 3 success SE all all
2 3 success CE all all
3 3 e-cost SE all all
4 3 e-cost CE all all
5 3 p-cost SE all all
6 3 p-cost CE all all
7 4 e-cost SE 4 1
8 4 p-cost SE 4 1
9 4 e-cost SE 6 2
10 4 p-cost SE 6 2

open. In all of the experiments described in this paper
the robot begins at a neutral site (one unrelated to
any work that it must do). Since the planner’s goals
are strongly associated with particular tool boxes, this
assumption was meant to avoid any bias in our results.

Each experiment consists of hundreds or thousands of
planner runs using systematically defined sets of ini-
tial conditions, goal orderings and planning strategies.
The variables defining these test sets are the following:

Wrench Location: Each of the wrenches may ini-
tially be in any tool box. For three box exper-
iments this implies 27 possible wrench placement
scenarios.

Goal Ordering: We studied the effect of reordering
the initial goals on the performance of the planner.
For three box experiments, this involves 6 possible
orderings.

Control Strategy: SE versus CE.

Defer/Default Decisions: The size of each bolt is
either known or unknown at the start of the first
planning phase. For three bolts there are 8 com-
binations.

Table 1 provides a short summary of the ten experi-
ments conducted. Complete experimental data can be

found in [Krebsbach et al., 1991].

4 MAJOR RESULTS

In this section we will outline the major results of the
experiments, and principles and heuristics we devel-
oped based on the results. The results of experiments

get a bolt. While this may at first appear to simplify the
problem, in effect it tests the planner on a more difficult
set of problems than it would by chance. The more places
BUMP travels to to get bolts, the more of a chance it has
to gather other information, quite possibly information it
could use to make more informed action ordering decisions.
This in turn would decrease BUMP’s vulnerability to failures
due to premature action.



Table 2: Experiment 1 (3 Box, Stop and Execute, Suc-
cess Based).

456 | 45- 46 -56 | 4-- -5- -6 | ---
STU || 100 63 63 100 37 63 63 37
TSU || 100 63 100 63 63 37 63 37
TUS | 100 63 100 63 63 37 63 37
SUT | 100 63 63 100 37 63 63 37
UST || 100 | 100 63 63 63 63 37 37
UTS || 100 | 100 63 63 63 63 37 37
Avg 100 75 75 75 54 54 54 37

Table 3: Experiment 3 (3 Box, Stop and Execute, Ex-
ecution Cost Based).

456 | 45- 46 56| 4-- -5- --6| ---
STU || 20.5 [ 24.5 24.8 22.1(29.1 26.1 26.4 | 30.8
TSU || 20.5 | 24.5 22.1 24.8|26.1 29.1 26.4 |30.8
TUS || 20.5 | 24.8 221 24.5|26.4 29.1 26.1|30.8
SUT || 20.5 | 24.8 24.5 22.1|29.1 26.4 26.1|30.8
UST || 20.5 | 22.1 24.5 24.8|26.1 26.4 29.1|30.8
UTS || 20.5 | 22.1 24.8 245|264 26.1 29.1|30.8
Avg |[20.5|23.8 23.8 23.8|27.2 27.2 27.2]30.8

1 and 3 are provided in Tables 2 and 3 respectively.
In each table, the headings along the horizontal axis
indicate which of the three bolt sizes are known in
the order by, b;, and b, respectively. So, for instance,
4-6 indicates that bolt b, is of size 4, bolt b; is of un-
known size, and bolt b, is of size 6. Vertical lines
separate columns into groups with the same number
of unknowns. The labels along the vertical axis de-
note goal orderings. For example, an ordering of TSU
means the initial goal involving box T was attempted
first, followed in turn by the S and U goals.

One immediate observation from Tables 2 and 3 is that
more unknown information means decreased success
and increased cost. Certainly the planner will be more
likely to perform premature actions with less a priori
information. This general trend continued throughout
all of the experiments.

4.1 CHOOSING A GOAL ORDERING

One of the major results of this study was that
most sensing should come as early as possible in the
plan. The disadvantage of potentially premature ac-
tion caused by early sensing was, in most cases, out-
weighed by the advantage of constructing most of the
plan with more information.

4.1.1 Ordering To Maximize Success

Consider Table 2, in particular, experiments STU 45-
and STU --6. In the former, there is only one un-
known, b,. In the latter, there are two, bs and b;, how-

ever BUMP performs at the same 63% level for both.
Also, average success rates in columns with the same
number of unknowns are identical, however, the per-
centages in each column are distributed differently by
goal ordering. For instance, in each column with one
unknown there are two goal orderings which produce
100% success, and four which produce only 63% suc-
cess, but the goal orderings are different in each col-
umn. Both of these behaviors are the result of a single
underlying principle.

To understand this behavior, we consider an example
more closely. Note that 100% success can be achieved
in column 45- (of Table 2) by ordering the U-goal first
(either as UST or UTS). We hypothesized that in cases
where the size of b, was unknown, it was crucial to
BUMP’s success to know the size of b, early in the plan-
ning process. This could be accomplished by reorder-
ing goals so that the U-goal was attacked first. If this
was not done, the goal involving b,, would be one of the
last two BuMP would try to accomplish. Therefore, it
would not sense the size of b, until later, increasing the
chances that achieving it would involve undoing some
actions which had already been executed. Since plan-
ning and execution are interleaved, some execution is
very likely to have been performed by the time BuMP
encounters its later goals. If any of the executed ac-
tions involve bolting closed a box containing a needed
wrench for b, the plan will no longer be successful.3
Experiment 1 confirmed our suspicions that it is possi-
ble to improve average performance by controlling the
goal ordering based on which information is missing
for a given problem. The following heuristic describes
the optimal ordering:

Success-Based Ordering Heuristic: When there
are goals whose achievement depends only on
known information, and other goals which depend
on unknowns, order all goals involving unknowns
before those involving only knowns.*

The same general principle applies to Continue Else-
where.

?In general, more specialized strategies are probably
necessary to avoid such problems. We have performed some
experiments using a strategy called Sense Before Closing,
in which all sensor processes are ordered before all closing
operations. This solves the problem, but often introduces
severe costs of its own. In the worst case, each tool box
would have to be visited twice instead of once, so Sense
Before Closing trades bolting/unbolting operation costs
with transportation costs. Whether this is a good trade
of course depends on the domain.

*This goal ordering heuristic depends critically on the
assumption that the planner can identify connections be-
tween its top-level goals and the unknown domain propo-
sitions in the problem. In these experiments there is a
one-to-one correspondence between goals and potential un-
knowns, so the issue is not addressed. Another related issue
not addressed here is what should be done when goals rely
on differing numbers of unknowns.



4.1.2 Ordering to Minimize Cost

Similar observations on goal ordering can be made
when cost is the quality criterion. From Table 3 we
can see that the highest cost occurs when a known
goal is considered first. However, looking at the 4--
column, cost is minimized when there is an unknown
first and an unknown last.®> The goal orderings TSU
and UST are both examples of this. We compared the
plans generated with the TSU and TUS goal orderings
to determine the cause of this behavior. As shown in
Table 2 there is no difference in the number of plans
involving premature actions for these two goal order-
ings. The slight difference in cost results from the way
in which SE breaks up the planning work into phases.
With the TSU goal ordering, BUMP plans the entire S-
goal as soon as it obtains the sensor reading for bolt b;.
In several problems this allows BUMP to do two things
while it is at S: to get wrench 5 and to close box S.
This allows it to complete its task with only one trip
to box S. When the TUS ordering is used, BUMP does
not plan the S-goal until it has already closed box T
and sensed bolt b,. If wrench 5 (the one needed to
close box T) is in box S, the robot must make one trip
to S to obtain wrench 5 and a second trip after sensing
b, to close box S. This extra goto operation accounts
for the increased cost.

To better understand this behavior we conducted ex-
periments 7 through 10 using 4 boxes (SE control
strategy only). Complete results of these experiments
are described in [Krebsbach et al., 1991]. These results
are summarized by the following heuristic:

Cost-Based Ordering Heuristic: When there are
goals whose achievement depends only on known
information, and other goals which depend on un-
knowns:

1. place one unknown in the first position,
2. place one in the final position (if possible),

3. place any other unknowns following the first
one,

4. place all knowns in the remaining positions.

4.2 CHOOSING A CONTROL STRATEGY

We found the CE strategy to be more susceptible to
small increases in uncertainty, performing better than
SE with one unknown, usually worse with two, and
markedly worse with three. CE’s sensitivity to un-
known information makes sense when one considers
CE’s main advantage and disadvantage. Its advantage
is that it performs more planning prior to the first
execution cycle. This reduces the risk of performing
premature actions if there are few unknowns, because
BUMP can see further into the plan and perform ac-
tion reordering to avoid conflicts it wouldn’t detect

“This ordering tied for best in the success-based case.

with SE until it’s too late. However, as uncertainty
increases this further planning becomes less informed,
and ordering decisions become more arbitrary, increas-
ing the probability of performing premature actions
which lead to failure or severe cost penalties. For in-
stance, in the case of 3 unknowns, BuMP using CE was
able to find successful plans in only 22% of the 3 box
problems, as compared with 37% for SE.

5 A SUCCESS-BASED OVERALL
STRATEGY

Let us now make a first attempt at our goal of finding
a good overall planning strategy. In addition to the or-
dering heuristic we must have a method for selecting a
control strategy and a deferral strategy. We will try to
maximize success through our selection of a strategy.
We will assume here that once a control strategy and
a deferral strategy have been selected, the top-level
goals are reordered to obtain the highest success rate
for the given number of unknowns.

As we have shown, we can always improve success rates
by having additional known information. Thus, if our
default information were 100% reliable, it would al-
ways make sense to use it and obtain a 100% success
rating (with either control strategy). Of course, de-
fault information is rarely, if ever, 100% reliable. (We
define reliability of a value to be the probability that
it is correct. No notion of amount of error or distance
from the correct value is considered.) If incorrect de-
fault information is used, the robot will most likely
encounter an execution time error. This will neces-
sitate some sort of execution time error recovery, and
the resulting execution will certainly be inefficient. We
consider this a failure. So, the increased success with
extra “known” information must be adjusted by the
reliability of that information. A similar point can be
made regarding sensor reliability.® The data in all of
our experiments assume that all sensor readings are
correct, and this is clearly fictional.

5.1 ANALYSIS

To make this discussion more concrete, let us analyze
the expected success rates given the reliability of our
default values and our sensors. Let rq, ro and r3 be the
reliabilities of our three defaults, dy, ds and ds and let
s1, 9 and s3 be the reliabilities of the associated sensor
readings. Also, assume ry > rq9 > r3. (di, da, and

SNote that the relative reliability of defaulted infor-
mation does not affect the optimal goal ordering from a
success-based perspective, since BUMP will fail if any of
the defaults are incorrect, regardless of when they are
used. The same applies to the relative reliabilities of sensed
information. To obtain an optimal goal ordering, it is
only important that the success-based ordering heuristic

be followed.



Table 4: Success-Based Strategies.

Take c=10 c=20.38 c=20.6
dy r1 > 055 | ry >0.44 | ry > .33
dyi,ds ro > 0.67 | 72 > 0.54 | ro > .40
di,ds, ds — r3 > 0.80 | r3 > .60

ds are in no particular order relative to the planning
process.) When a bolt size is known at the start of
planning, this corresponds to a default reliability of
100%. Let qo, q1, g2 and g3 be the maximum potential
success rates for cases with 0, 1, 2 and 3 unknowns
respectively. From our experiments, these values are
1.0, 1.0, 0.67 (with CE), and 0.37 (with SE).

We can now calculate the expected success rate taking
into account the default and sensor reliabilities. For
example, the success rate when taking default d; and
sensing the other unknowns is r1s2s3¢2. The best over-
all strategy in any particular instance of the three box
problem can be found by computing the maximum of
the following set of values:

{7'17‘27’3%, 1725341, 71827341, $1T273q1,

1528342, 517258342, $15273(2, 518253%}

Once the maximum is found, the associated deferral
strategy consists of the default/defer decisions indi-
cated.

It is interesting to examine the default reliabilities re-
quired in the three box domain. For simplicity, assume
that all sensor readings have the same reliability o.
Table 4 shows for various values of ¢ how reliable the
defaults must be to make them worth taking. Look-
ing at the column labeled ¢ = 1.0, we note that if
the best default has reliability > 0.55 it is better to
take that default than to use a 100% reliable sensor.
If i > rs > 0.67, it is better to take two defaults.
For more realistic values of o, we see that the defaults
need not be very reliable at all. This is due to the
reduction in premature actions that can be avoided by
having more knowledge early in the planning process.

6 A COST-BASED OVERALL
STRATEGY

When the robot is able to detect at some point that
a default value or a sensor reading was erroneous and
then take corrective actions, it makes more sense to
use cost as the quality criterion. As described earlier,
cost can be measured either in terms of execution cost
or planning effort. We will focus on execution cost
since we believe this is generally the more significant
aspect. A similar analysis could be developed for plan-

ning effort.”

6.1 ANALYSIS

The analysis in this case is a good deal more compli-
cated since many more options come into play. For
example, if a decision is made to try a default which
later turns out incorrect, the robot could then try to
recover by using a sensor. If the sensor reading also
turns out to be incorrect, it might still be possible
to recover with human intervention (presumably at a
very high cost).®

As before, let r; be the reliability of a default value
and s; the reliability of the sensor reading. In place
of the success rates ¢; that we used in our previous
analysis, we need the average execution costs under
various scenarios. We define the function C; to return
these costs when there are ¢ unknowns. C; takes i ar-
guments where each argument is a sequence of one,
two or three of the letters D, S and I. This sequence
reflects which of the resources — default, sense and in-
tervene — were used for the given unknown as well as
the order in which they were tried. It is assumed that
the last resource is always successful and that inter-
vention is always successful. For example, DS means
an incorrect default followed by a correct sensor oper-
ation. SDI means an incorrect sensor reading followed
by an incorrect default value followed by successful
human intervention. C1(SDI) would be the expected
execution cost under this scenario when there is one
unknown.

Given this information we can develop formulas for the
expected costs of various attempted solutions. For ex-
ample, with one unknown the expected cost of default-
ing with sensing and intervention as backup actions is
expressed by the following weighted sum:

7”101(D)+(1—7”1)8101(1)5)—}—(1—7’1)(1—Sl)cl(DSI)

"The cost of recovering from incorrect information
(sensed or defaulted) depends on the state of the environ-
ment when the false information is discovered. Thus, the
optimal goal ordering from a cost-based perspective may
be influenced by the relative reliabilities of the information
in question. This is in contrast to our observations regard-
ing optimal success-based goal ordering. We are currently
investigating this question.

8Some other options that we do not consider in this
analysis are

1. to try a different sensor, or
2. to continue trying the same sensor.

If the sensor is working at all (i.e., there is a non-zero
probability of a correct reading), then with persistence the
second option should eventually produce a correct reading.
The probability of n readings all being incorrect goes to 0
as n — oo. This might also have a very high cost. The
same analysis technique could be used to characterize the
cost of both these options.



Table 5: Sample C; Values.

D 20 | S 22
DS 30| SD 30
DI 40 | SI 42
DSI 50 | SDI 50
I 35

Table 6: Expected Costs.

ry = 0.7 ry = 0.2

Strategy s1 =081 s, =028
default, sense, intervene 24.2 31.2
sense, default, intervene 24.8 26.8
sense, intervene 26.0 26.0
default, intervene 26.0 36.0
intervene 35.0 35.0

Assuming the Cy values shown in Table 5 and the re-
liabilities r1 = 0.7 and s; = 0.8 the expected cost is
24.2.

An alternative strategy would try sensing first followed
by defaulting and then intervention. The weighted
sum cost formula for this strategy is

8101(5)+(1 —sl)rlCl(SD)—i—(l —81)(1 —Tl)Cl(SDI)

There are three other strategies in which one or more
of the resources is not tried. The expected costs are

no default: s1C1(S) + (1 — 51)C1(SI)
no sensing: r1C1(D) + (1 — r1)Cy(DI)

neither default nor sense: C(7)

One of these strategies might be appropriate if sensing
or defaulting is particularly unreliable and the cost of
intervention is light.

Given the C; cost estimates and the reliabilities, we
can calculate the optimal strategy for one unknown
by evaluating the five above formulas and finding the
minimum. The expected costs under the five strate-
gies, assuming the costs in Table 5 and the reliabilities
r1 = 0.7 and s; = 0.8, are shown in the second column
of Table 6. In this case, the best strategy is default,
sense then intervene. If on the other hand the relia-
bility of the default is 0.2 we get the costs shown in
column 3. Here, the best strategy is to sense then
intervene. Note that it is better in this case to ask
immediately for intervention than to try a default and
then request help if there is a problem. The default
is not reliable enough to risk the extra cost associated
with an incorrect guess and the cost of intervention is
small.

Let us next consider the formulas for expected cost
with two unknowns. One scenario would try both

defaults first, backed up by sensing and intervention.
The resulting formula is

7‘17’202(D,D) +
(1 = r1)res1C2(DS, D) +
7”1(1 — TQ)SQCQ(D, DS) +
(1 — 7“1)(1 - 7’2)818202(DS, DS) +
(1 - 7“1)7’2(1 - Sl)CQ(DSI, D) +
7“1(1 - 7“2)(1 - SQ)CQ(D, DSI) +
(1 — 7“1)(1 - T’g)(l - Sl)SQCQ(DSI, DS) +
(1 — 7“1)(1 - 7’2)51(1 - SQ)CQ(DS, DSI) +
(1 — 7“1)(1 - 7’2)(1 - 81)(1 - SQ)CQ(DSI, DSI)

This formula is certainly much more complicated than
the formulas for one unknown. In fact the number
of terms to be summed in a formula that considers
all three resources — default, sense and request inter-
vention — grows exponentially (3" for n unknowns).
The number of factors in the longest term is 2n + 1.
Thus, calculating the expected cost of just one scenario
is O(n3"). Even the amount of cost data that must
be collected grows exponentially in the number of un-
knowns. There are many other scenarios that must be
evaluated and compared to this one to find the optimal
strategy of sensing and defaulting.

Clearly, we cannot effectively calculate this optimal
strategy unless the number of unknowns is quite small.
Rather, we need heuristic techniques that will help us
find an approximately optimal strategy. Finding such
techniques will be a subject of our future research.

7 DISCUSSION

A well recognized problem with planning is the inabil-
ity of most planners to deal with the inexactness and
noise of the real world.

Several solutions have been proposed that range from
eliminating planning altogether in favor of reactive
planning [Brooks, 1986] or situated systems [Agre and
Chapman, 1987, Kaelbling, 1988], to combining reac-
tivity and planning [Georgeff and Lansky, 1987, San-
born and Hendler, 1988], to interleaving planning with
execution [McDermott, 1978, Durfee and Lesser, 1986,
Chapman, 1991], to preplanning for every contingency
[Schoppers, 1987], to verifying the executability of
plans and adding sensing whenever needed to reduce
the uncertainty [Brooks, 1982, Doyle et al., 1986].

Brooks [1982] verifies the feasibility of a plan in light
of uncertainties and errors and decides when sensors
are needed to reduce the amount of error. Doyle et
al. [1986] use sensors to verify the execution of a plan.
The sensor requests are generated after the plan has
been produced by examining the preconditions and
postconditions of each action in the plan. Domain de-
pendent verification operators map assertions to per-
ception requests and expectations. The entire process
is done before executing the plan. Hager and Mintz



[1991] have more recently proposed methods for sensor
planning based on probabilistic models of uncertainty.

Few have addressed the more specific problem we ad-
dress. Our work has been inspired, among others, by
the work of Turney and Segre [1989], who alternate
between improvising and planning. Since sensing is
assumed to be expensive, their system prefers actions
with the fewest sensor requests first. The results ob-
tained show the importance of good heuristics over
sophisticated planning strategies. The quality of the
heuristic improvisation strategy has the largest effect
on the quality of the solution. This seems to suggest
that it is more important to develop good heuristics
than to develop a sophisticated planner.

The need to plan with incomplete information raises
important theoretical issues. A number of authors
have proposed decision theoretic approaches to plan-
ning and control. Horvitz et al. [1989] propose a gen-
eral model for reasoning under scarce resources that
is based on decision theory [Dean, 1990]. Chrisman
and Simmons [1991] produce near optimal cost plans
by using Markov Decision Processes to decide what to
sense.

Drummond and Bresina [1990] propose an algorithm
that maximizes the probability of satisfying a goal.
More recent work of Minton et al. [1991] analyzes
in a rigorous way a linear and a non-linear planner in
terms of their overall efficiency, examining both search
space complexity and time cost. Hsu [1990] proposes
to plan with incomplete information by generating a
“most general partial plan” without committing to any
choice of actions not logically imposed by the infor-
mation available at that point. She uses an anytime
algorithm [Dean and Boddy, 1988] to choose the ap-
propriate action on the current partial plan when the
system has to act.
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