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Abstract

Emerging evidence suggests that individuals with
autism spectrum disorder show interests or pref-
erences for specific types of nonsocial informa-
tion, including various forms of technology such
as autonomous robots. It is unknown whether di-
rect interaction with a humanoid robot could pro-
vide novel insight regarding characteristic variabil-
ity among young children with autism spectrum
disorder and/or at-risk for a subsequent diagnosis.
We recruited and assessed n = 59 preschool aged
children (2 – 4 year-olds), some of whom are con-
sidered at risk for developing autism spectrum dis-
order. We characterized variability in social respon-
siveness with standardized parent-report measures
and an automated characterization of proxemics,
or social distance, during a semi-structured inter-
action between the child and robot. We clustered
participants based on proxemics and two dimen-
sions of autistic features, one that quantifies ritu-
alized/routinized behaviors and one that quantifies
socialization. We then validated the clinical utility
of this grouping strategy with two other dimensions
of autism, one that quantifies restricted patterns of
play and one that quantifies communication abili-
ties. Results show that this social distance measure,
captured in this unique context, can be used with
existing methods to cluster participants into clini-
cally meaningful subgroups.

1 Introduction
Autism spectrum disorder (ASD) is a highly variable, devel-
opmental disorder characterized by a variety of deficits in so-
cial communication and interaction, such as lack of eye con-
tact, and restricted or repetitive behaviors, interests, and ac-
tivities [Association, 2013]. These behaviors are thus consid-
ered early markers for autism. Research has also shown that
children with autism have a strong interest in technology such
as autonomous robots, as established in [Scassellati, 2007].
Given that the autism phenotype, or observable characteris-
tics, varies from child to child, this work seeks to combine
the frequent interests of children with autism in technology

and robots, social behaviors of robots, and automated prox-
emics detection to add more nuanced characterization to the
autism phenotype.

This work combines and validates a combination of im-
portant metrics of autism: social distances, ritual behaviors,
restricted behaviors, socialization capabilities, and communi-
cation capabilities. Social distances, or proxemics, has been
shown to differ between typically developed people and peo-
ple with autism; this personal space differs between indi-
viduals and also between objects and people [Asada et al.,
2016]. Restricted and ritual behaviors can include intense
interest in a very narrow range of items (circumscribed in-
terests), repetitive movements like hand flapping or rocking,
ritual behaviors like lining up toys, and/or insistence on same-
ness of environment or routines. Communication and social-
ization skills can be measured to verify a child is hitting mile-
stones at a similar rate as typically developing peers. We col-
lected parent-reported ratings of repetitive and restricted be-
haviors using the Repetitive Behavior Scales for Early Child-
hood [Wolff et al., 2016]. as well as information on adap-
tive behavior (Vineland Adaptive Behavior Scales) and gen-
eral developmental level (Mullen Scales of Early Learning).
Relating these metrics to our new metric, a normalized ratio
using the child’s distance to the social robot and the child’s
distance to their closest caregiver, shows us distinct groups of
participants. This research shows that children clustered on
some sub-scales of these tests, combined with our distance
metric, show differences in other development sub-scales.

We begin with related work in Section 2, give a high-level
description of the human-robot interaction experiment and
raw data taken therefrom in Section 3, describe the data used
and preliminary analysis in Section 4, and end with a sum-
mary in Section 5.

2 Related Work
Socially Assistive Robotics is a recent area of robotics re-
search aimed at helping populations with special needs; it in-
cludes research for children or adults, such as robots as tools
for children with pervasive developmental disorders or robots
for adults as tools, companions, or helpers. Socially assistive
robotics research in autism is over a decade old, yet does not
currently meet standards of psychology and child develop-
ment researchers [Diehl et al., 2012; Scassellati et al., 2012;
Pennisi et al., 2016]. Robotics research with children with



autism stems from the fact that afflicted children tend to espe-
cially enjoy autonomous (or seemingly autonomous) robots
[Dautenhahn and Werry, 2004], and researchers have used a
wide variety of robot appearances and abilities in this area
[Scassellati et al., 2012]. While the reason for this high level
of interest is unknown, researchers clearly have the potential
to leverage robotics for autism diagnosis or treatment [Scas-
sellati, 2005].

Automatically detecting autism or autistic traits is a cur-
rent research area in computer vision, and much work uses as
much data as possible. For example, Hashemi et al. [2012]
analyzed footage from a non-intrusive GoPro camera placed
on a table, two to four feet from a clinician-child pair in which
the clinician was testing the child with a disengagement of at-
tention task and a visual tracking task. The authors went even
further in [Hashemi et al., 2014], in which they analyzed in-
terest sharing and atypical motor behavior by estimating head
motions from facial features and motor behavior by arm sym-
metry. Fasching et al. [2015] automatically coded activities
of people with obsessive-compulsive disorders from overhead
video footage in a structured lab, tracking how many times
participants touched various objects. These objects are stati-
cally located, such as faucets and handles, and easier to locate
in a static environment. In contrast, our laboratory works with
very young children in a play-based interaction, which adds
difficulties in instrumenting the room and reliably tracking an
active, potentially non-cooperative child.

Our work is informed by a common need of children on the
autism spectrum for sameness of routine; therefore, we do not
want to instrument the child’s clothing, or interrupt their au-
tonomy and routine more than already necessary to play with
a novel, social humanoid robot. We want to avoid adding
fiducial markers and maintain a structured and reproducible
play interaction. All interactions are thus initiated by a novel,
humanoid robot, while the entire experiment is recorded from
several different perspectives. As our own studies evidence,
the only perspective that can reliably capture the participant’s
location at all times is from the ceiling, so we mount a Go-
Pro camera on the ceiling in the center of the room. Fig. 1
shows this vantage point, which allows for tracking people’s
position over time.

Much research in socially assistive robotics studies child-
robot interactions. Feil-Seifer and Matarić [2011] created a
short free-play interaction with children and a robot, with the
future intention of allowing a robot to adjust its own behavior
based on the child’s reaction. This work tracked the child in
relation to the robot to automatically determine if the child
was having a positive or negative reaction to the robot. The
authors manually coded for the child avoiding the robot, in-
teracting with the robot or playing with bubbles the robot gen-
erated, staying still, being near parent, being against the wall,
or none of those. Results showed that children with a pos-
itive reaction to the robot spent over 80% of time interact-
ing, whereas children with a negative reaction spent less than
20% of time interaction with the robot. Mead et al. [2013]
also investigated proxemics (the study of social distances),
by placing a participant and researcher in discussion about a
static humanoid robot. Using a video camera and depth data,
they studied body pose during the experiment, training Hid-

Figure 1: Sample overhead view of the human-robot interaction ex-
periment.

den Markov Models on sensory experiences (such as voice
loudness and a variety of distances to other people and envi-
ronment objects) to correctly annotate initiation and termina-
tion of conversation.

Current research has therefore touched on proxemics and
how these measures change between typically and atypi-
cally developing people, automatically detecting symptoms
of autism, and how children react to autonomous robots.
We contribute a much larger sample size of participants, a
far more characterized description of our participants, and a
novel metric of our participants based on how they interact
with a social humanoid robot. We leverage these details to
compare and contrast our participants, which ultimately al-
lows us to characterize and group our participants into differ-
ent proxemic behaviors.

3 Research Method
3.1 Experimental Paradigm
The overarching goal of the robot interaction study with tod-
dlers (the age group of roughly 2–3 years old) is to better
characterize quantitative autistic traits in order to improve
characterization of homogeneous subgroups of children with
autism or at risk for autism. If we can better determine sub-
sets of autism phenotypes, we may be able to identify chil-
dren at high risk for autism spectrum disorder (ASD) when
they are very young. We first needed to demonstrate that the
response when interacting with a social robot varies between
children at all. For example, if the only responses to playing
with the robot were to sit on one’s parent or to sit in front
of the robot, then the play scenario does not generate varied
enough response to merit recruiting children diagnosed with
autism and wasting an affected family’s valuable and con-
strained time. Therefore, we first recruited a large number
of fairly neurotypical children for a proof-of-concept human-
robot interaction experiment.

Children were recruited from a laboratory-maintained
database at the University of Minnesota’s Institute of Child
Development. The participants in this study are low to



medium risk for ASD (because autism is more common
among siblings, some participants are considered at higher
risk); none of the participants are clinically diagnosed with a
spectrum disorder. Thus, the data shown in this paper con-
stitutes a reliable interaction baseline of varied but neurotyp-
ical children, and the variability in the participants shown in
our results can be compared to future interactions between
our robot and very high risk or clinically diagnosed toddlers.
Written informed parental consent was ensured in advance of
all testing; all research was approved by the university’s In-
stitutional Review Board.

We collected multiple data sets from each participant,
including standardized and novel assessments and video
footage. We introduce and use a proxemics metric automat-
ically generated using the overhead video footage, as well
as scores from classic child development assessments, the
Vineland Adaptive Behavior Scales [Sparrow et al., 1984],
Mullen Scales of Early Learning [Mullen, 1995], Social
Responsiveness Scale [Constantino and Gruber, 2002], and
the Video-Referenced Ratings of Reciprocal Social Behav-
ior [Marrus et al., 2015]. We first wrote software to track
actors of interest throughout the video; these actors include
the child, the robot, experimenters, and caregivers. The actor
tracking software we wrote uses the AdaBoost [Freund and
Schapire, 1999] algorithm implemented in the open source
computer vision library OpenCV3.1 and Python3.4. The user
first chooses the objects or people to track, then the software
tracks the item over time from start to end of the robot in-
teraction video, frame by frame. We record the center of the
raw coordinates of each actor, calculate the distance between
them (accounting for size of the actor), and convert the result-
ing pixel distance to distance in feet.

During the experiments, we introduce the child to Robbie
the Robot (a NAO from Softbank Robotics). Robbie plays
different games such as looking games, imitation games, and
dances. The games include “I Spy” (a looking game that en-
courages the child to find objects in the room), “Simon Says”
(an imitation game that encourages the child to copy motions
like clapping and waving), and several dances set to music.
The set of games is presented in the same order for every
child. The experimenter controlling the robot imitates some
of the robot’s movements and plays along during some of the
looking games, encouraging the child to do the same. The
interaction is recorded from up to four perspectives, most no-
tably from a GoPro mounted on the ceiling. The GoPro is
the only camera that is always located in the same place, is
impossible to reach by participants, and from which we can
almost always see all actors in the room.

We attempted to keep the same location for all actors in the
room across experiments. The experimenter that controlled
the robot (hereafter called simply the experimenter) sat next
to the robot slightly off-center in the room. If the child did
not need comfort or attention from their caregiver, they were
seated or standing on the floor near the robot, facing the robot.
In this case, the caregiver sat near the edge of the room with
another researcher, answering questions from a development
assessment. If the child needed constant or frequent attention
from the parent, the child might be seated on or near their
parent during all or part of the interaction, usually closer to

the robot than the parent would be if the child did not need
attention. Fig. 1 shows part of an overhead video frame;
the child faces the robot, seated on their caregiver, and the
experimenter is next to the robot.

3.2 Data
In all, 65 participants were recruited for this study, of which
60 contributed video footage of a robot interaction. In one
case, the experimenter, a second researcher, and the parent
all sat on the floor and attempted to draw the child’s atten-
tion to the robot; as this was a highly unusual configuration,
this video was not analyzed for this paper, leaving us with
59 videos. These 59 participants (31 males, 28 females),
were aged 25–45 months (mean 32.9 months, standard de-
viation 4.6 months). The interactions and therefore videos
range from roughly nine to 15 minutes long, depending on
the child’s willingness or ability to continue interacting with
the robot. The original video is slightly distorted, thus we first
undistort it and use the undistorted video for later analysis.

There are seven total parts to the interaction (games and
dances), which we call presses for attention, or presses. Each
press varies in time, and there is a one minute buffer between
each press to give the child time to re-engage if they were not
interested or took a break from playing for some reason (e.g.
requested a snack or needed the rest-room). If the experi-
menter did not trigger the next press, after one minute passed
the robot started the next press anyway. Some interactions
were not completed due to equipment malfunction or partic-
ipant choice, giving us some children who did not complete
all seven presses. Where possible, these data are included in
the analyses.

The proxemics data used is generated from the raw coordi-
nates of each actor in the room. First, we find the Euclidean
distance between actors, giving us three channels of data: the
distances between the child and robot, the child and caregiver,
and the child and experimenter. In some experiments, two
caregivers were present during the interaction; the minimum
distance between the child and either parent was used in our
data, ensuring that we can reasonably compare children with
one or two caregivers present. The interactions, which are
recorded at 33 frames/second, were reduced by averaging the
Euclidean distances in one second windows to smooth the
data slightly; we use this averaged dataset for data analysis.

The assessment data used is generated by three exams –
two parent-report questionnaires and an administered test.
The first test is the Vineland Adaptive Behavior Scales (2nd
edition); this assessment asks parents to report on the child’s
behavior in five areas. These areas are communication, daily
living skills, socialization, motor skills, and maladaptive be-
havior. Our research focuses on the socialization, communi-
cation, and maladaptive behavior scales. The second test is
the Mullen Scales of Early Learning, which is a test admin-
istered by a trained professional to assess cognitive function-
ing in children aged 0 to 68 months (5.6 years). The areas
tested in this exam include gross motor skills, visual recep-
tion, fine motor, expressive language, and receptive language.
The third test varies by child. For children around 31 months
or older (2.5 years), we use the Social Responsiveness Scale,
which is a parent report questionnaire measuring social abil-



ities. For younger children, which in this study are approx-
imately 24–30 months of age (2 years to 2.5 years), we use
the Video-Referenced Ratings of Reciprocal Social Behavior,
a parent report questionnaire measuring social abilities.

4 Data Analysis and Results
Given the locations and distances over time between actors
in the interaction, we have three distinct time series: the dis-
tances between child and NAO, child and caregiver, and child
and experimenter. An example is shown in Fig. 2

Figure 2: The Euclidean distances between the child and parent,
child and robot, and child and experimenter (smoothed by averaging
over every second). Blue vertical bars indicate the beginning of a
press for social interaction, or a looking / imitating / dancing game.

We are first motivated to normalize the absolute distances
between actors during an interaction; a child that is two feet
from the robot and ten feet from their parent clearly has a
different comfort level than a child that sits on their parent
two feet away from the robot. There, we need a normalization
method that reduces the absolute distances to something that
evokes the different comfort levels between child and robot
or child and parent. To that end, we created a new metric,
“Distance Ratio,” that considers the distance to the robot, N ,
and the distance to the caregiver, CG, in Eq. 1.

N/(N + CG) (1)

We use this to reduce the variable distance to NAO and
distance to caregiver time series to a single, unit-less number
scaled [0, 1] for any particular moment in time during an in-
teraction, where a 1 value means closest to caregiver and a
0 value means closest to the robot. This allows us to more
easily see clear trends in the data, regardless of the absolute
distance. Fig. 3 shows all participants; some participants
show clear trends over time in their average Distance Ratio
per press. The data shows four clear subsets, along with a
small group with no obvious movement pattern. These sub-
sets include children that stay near their caregiver the entire
time (the lines near 1 at the top of the graph, 12 / 59 children),
those that stay near the NAO robot more of the time (the lines
near 0 at the bottom of the graph, 22 / 59), those that began
the interaction close to their parent but moved closer to the
robot over the duration of the interaction (6 / 59), those that
move from closer to the robot to closer to their parent (3 / 59),
as well as children with no reliable pattern of Distance Ratio
(16 / 59).

Note that each interaction varies in length due to potential
buffer time between presses in a single interaction. The buffer

Figure 3: Some visible patterns: children that stay near the robot
(22), stay near the caregiver (12), move from caregiver to robot over
time (6), and move from robot to caregiver over time (3). Some have
no discernible pattern (16). (Best viewed in color.)

time, lasting up to one minute between presses as needed, is
included in the last press that occurred. For example, if Child
A needed a 40 second break after a one minute press, but
Child B didn’t need a break and only used two seconds after
the same one minute press, the press lasted for 100 seconds
for Child A but only 62 seconds for Child B.

This flexibility in interaction time naturally raises the ques-
tion of how to compare these variable length data. The time
difference between presses is capped at 60 seconds, and any
time between presses is used to draw the participant’s atten-
tion back to the robot. By and large, the excess time was
spent by the participant getting a snack or toy, playing with
other items in the room, or talking to their caregiver; none of
the buffer time was spent interacting with the robot while the
robot was not moving autonomously. Therefore, we consider
the time between presses to be noise, and we analyze only the
times the robot and child spent interacting together.

To remove the noise, we choose a simple method of align-
ing all presses in all interactions, and we truncate each press
to the length of the shortest occurrence of that press over all
participants. For example, say Child A took 60 seconds dur-
ing Press 1 with a 30 second break, then 180 seconds during
Press 2 with a 10 second break. Say Child B took 60 sec-
onds during Press 1 with a 2 second break, then 180 seconds
during Press 2 with a 2 second break. It should be noted that
in most cases the experimenter manually starts the next press
for attention with the robot, so short breaks of 1-3 seconds are
simply the time taken to reach over and push buttons on the
robot (or occasionally, to first re-orient the robot towards the
child if they shifted position). Our first data exploration only
compares participant reactions to the robot while the robot is
actively moving or speaking; thus, Press 1 is truncated to 62
seconds for both participants and Press 2 is truncated to 182
seconds for both participants.

The effect of such data loss, i.e. 28 seconds after Press 1
and 8 seconds after Press 2 in the above example, admittedly
contains some distance data. Either the participant didn’t
move between presses or approached the robot again from
somewhere else in the room. In theory, a participant might
have outlasted the one minute buffer time and started the next



Table 1: Data spread of used scores from Vineland, Mullen, and
vrRSB or SRS assessments.

Min Max Mean Std Dev
Restricted behaviors 0 8 2.36 2.06
Ritual behaviors 0 9 2.79 2.01
Composite R/R Items 0 26 9.64 6.79
Socialization 82 136 108.46 11.90
Composite adaptive
behaviors

86 133 107.81 12.03

Communication 81 135 109.79 11.21
Early learning com-
posite (ELC)

83 148 115.09 17.15

vrRSB or SRS 0.03 0.58 0.13 0.09

press further from the robot than they were at the (truncated)
end of the previous press. However, in practice, this did not
happen; only the first two cases occurred. Thus, minimal in-
teraction information was lost due to this truncation.

In addition to the social distances and metrics above, we
consider several scales from the Vineland and Mullen as-
sessments described above. Specifically, we consider the
number of restricted behaviors endorsed, number of rit-
ual items endorsed, composite restricted or ritualized be-
havior items endorsed, socialization score, adaptive behav-
ior composite scores, communication scores, early learn-
ing composite score, and the Social Responsiveness Scale
or Video-Referenced Ratings of Reciprocal Social Behavior
(whichever was appropriate based on the participants’ age).
The minimum, maximum, mean, and standard deviation of
these scores across all participants are given in Table 1.

We performed several analyses on our data. First, to see
if the Distance Ratio was strongly correlated with any of the
other score values of interest, we generated a correlation ma-
trix. No strong redundant relationships were found, as the
highest value between the Distance Ratio and any other score
was only 0.15. Next, we check if our participants varied
enough to be grouped by the Distance Ratio. We hypothe-
sized that the Distance Ratio (using mean Distance Ratio for
an interaction) with a physical dimension and a social dimen-
sion could result in distinct clusters of participants. A reli-
able, good clustering would be stable (participants would be
clustered in the same way for a large number of iterations) and
have internal consistency (statistically significant differences
in the scores used to cluster). If the clusters also had external
consistency, or statistically significant differences in scores
that were not used to cluster, then we will have validated our
novel distance metric varies between children and that can be
used in conjunction with existing measures to show differ-
ences in behaviors in a child-robot interaction experiment.

We performed KMeans clustering across the participants,
from K = 2 to K = 5, using Distance Ratio, ritual behav-
ior sub-score, and socialization sub-score. The most stable
clustering was K = 2; participants were grouped the same
way every time out of 1, 000 iterations. We then performed a
t-test over the participant groups’ scores used for clustering.
All three scores between the two groups were statistically sig-
nificant, at p < 0.002, meaning these clusters are very stable

and contain participants with distinctly different ritual and so-
cialization behaviors. Children who spent time closer to NAO
were also the children with higher ritualized behavior scores,
but also higher socialization scores.

We then sought to validate the clusters with different mea-
sures, not used for clustering, along another physical dimen-
sion (restricted behavior sub-score), another social dimen-
sion, (communication behavior sub-score), reciprocal behav-
iors score (vrRSB or SRS, whichever was appropriate based
on age), and the early composite learning score. Performing
a two-tailed t-test on each set of scores per group resulted
in statistically significant differences in both the restricted
behaviors sub-score and the communication sub-score (p <
0.05 for each), but not the others. A graph of group assign-
ment color coded in blue and red, with the three values as
axes, is shown in Fig. 4. To see if these clusters differ in
statistically significant ways, we performed a two-tailed t-test
on all test scores listed in Table 1. The two groups’ test score
averages and standard deviations are reported in Table 2. The
second group, with a much smaller Distance Ratio (spends
more time closer to NAO), has higher restricted behaviors but
also higher communication skills (an unexpected finding, but
statistically significant nonetheless).

Figure 4: Distance Ratio versus ritual behavior sub-score versus
socialization sub-score, by group.

5 Conclusions and Future Work
In this paper we have shown our new metric, Distance Ratio,
that scores a child’s social distance when interacting with a
novel robot, elicits meaningful variability in proxemics. We
showed that children who spent more time in close proximity
to the robot also show more ritualized and restricted behav-
iors. The distance ratio is generated from applying computer
vision techniques to overhead video footage of participants
interacting with a robot, and normalizing the absolute dis-
tance between the child and robot and child and caregiver.

Lastly, while our initial method of equalizing participants’
time series is truncation of excess noise, it could be that the



Table 2: Group differences by score, where M is mean and SD is
standard deviation. * indicates statistical significance of p < 0.05,
and ** indicates statistical significance of p < 0.002.

G0 M G0 SD G1 M G1 SD
Distance Ratio** 0.61 0.33 0.27 0.26

Ritual** 1.95 1.22 4.29 2.18
Socialization** 104.19 10.03 115.8 11.00

Restricted* 1.95 1.90 3.10 2.07
Comm.* 107.5 11.12 113.6 10.01

vrRSB or SRS 0.13 0.10 0.14 0.06
ELC 113.1 17.69 119.4 14.49

time lapse between presses holds key information– for exam-
ple, longer time between presses potentially indicates a less
interested child or a more active child that repeatedly needs
their attention drawn back to the robot. Thus, other meth-
ods that include the entire interaction, such as dynamic time
warping, might show useful differences.
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