Effects of Limited Bandwidth Communications Channels on the
Control of Multiple Robots *

Paul E. Rybski, Sascha A. Stoeter, Maria Gini,
Dean F. Hougen, Nikolaos Papanikolopoulos

Center for Distributed Robotics
Department of Computer Science and Engineering
University of Minnesota, Minneapolis, MN USA

Abstract

We describe a distributed software system for con-
trolling a group of miniature robots using a very low
capacity communication system. Space and power lim-
itations on the miniature robots drastically restrict
the capacity of the communication system and re-
quire sharing bandwidth and other resources among
the robots. We have developed a process manage-
ment/scheduling system that dynamically assigns re-
sources to each robot in an attempt to maximize the
utilization of the available resources while still main-
taining a priori behavior priorities. We describe a
surveillance task in which the robots patrol an area and
watch for motion, and present experimental results.

1 Introduction

A restricted communication pipeline can be a lim-
iting factor in the control of a distributed robotic sys-
tem. In some robotic implementations, this problem
can be addressed with large capacity communications
hardware (such as a wireless Ethernet). Other robotic
systems of interest cannot use high-capacity communi-
cations because of size, power or computational band-
width limitations. In these cases, addressing systems
issues such as process scheduling becomes critical.

We describe a case study of a group of miniature
robots which must use very low capacity RF commu-
nications systems due to their small size. The size
limitations of these robots require them to rely on off-
board processing. Thus, these robots are completely

*This material is based upon work supported by the Defense
Advanced Research Projects Agency, Microsystems Technology
Office (Distributed Robotics), ARPA Order No. G155, Pro-
gram Code No. 8H20, Issued by DARPA /CMD under Contract
#MDA972-98-C-0008.

tCorresponding author

dependent on their RF systems in order to operate.
In order to handle high demand for this low capac-
ity communications system, a novel process manage-
ment /scheduling system has been developed.

A surveillance task in which the robots patrol an
area and watch for motion is also described. The re-
source allocation system assigns resources to each con-
trol process in an attempt to use as much of the avail-
able bandwidth as possible while maintaining other
constraints such as process priorities.

2 Miniature Robotic Systems

We have developed a set of miniature robotic sys-
tems, called Scouts [6], which are designed for surveil-
lance tasks. A Scout, shown in Figurel, is a cylindri-
cal robot 11 cm in length and 4 cm in diameter.

Figure 1: The Scout robot shown next to a ruler (in
inches) for scale.

Scouts can roll over smooth surfaces (up to a 20
degree slope), and are capable of jumping over ob-
jects 30 cm in height by using their spring-loaded tails.
The Scouts can transmit video from their cameras
and communicate digital information on separate RF
channels.

Due to the highly restrictive space and power con-
straints of the robot, its two on-board CPUs are only
powerful enough to handle communications and ac-
tuator controls. There is very little memory for any
high-level decision process and no ability to process
video captured by its camera. In order for the Scouts
to do anything useful, they must be paired with an
off-board decision process, such as a workstation or a
human teleoperator.

A fixed-frequency command radio is used to trans-
mit command packets to the Scouts. Each Scout has
a unique network ID, allowing a single radio frequency
to carry commands for multiple robots. By interleav-
ing packets destined for the different robots, multiple
Scouts can be controlled simultaneously. If the radio
throughput is high enough, real-time performance can
be achieved.

The Scouts broadcast video data over a fixed-
frequency analog radio link which must be captured
by a video receiver and fed into a digitizer. Because
the video is a continuous analog stream, only one robot
can transmit on a given frequency at a time. Signals
from multiple robots interfere with each other and be-
come useless. Due to space and power restrictions
on the current Scout design, we only have two differ-
ent video frequencies, limiting the simultaneous broad-
casting of video. Video from multiple robots can be
captured by interleaving the time which each robot’s
transmitter is on.

The RF limitations of the Scout pose several fun-
damental difficulties when trying to control several of
them simultaneously. Thus, an automated scheduling
system is required to make sure that the robots share
the limited communications resources and do not in-
terfere with each other’s transmissions.

3 Software Architecture

Decision processes such as behaviors or planning al-
gorithms need access to all of the individual resources
that are necessary to move the physical robots. To
address this, we have designed a software architec-
ture which is capable of connecting groups of deci-
sion processes with the physical resources in the sys-
tem [14]. The system is broken down into four distinct
subsystems, the Mission Control, the Resource Pool,
the User Interface, and the Backbone.

3.1 Mission Control

All behaviors and decision processes are contained
and managed from within the Mission Control subsys-
tem. Behaviors are organized in a hierarchical fash-
ion, where “parent” nodes spawn off “children” to do
various tasks. Priorities are assigned to behaviors to
determine how to allocate resources.

3.2 Resource Pool

The Resource Pool subsystem controls access to
robotic hardware and other computational resources
through processes called RESOURCE CONTROLLERS
(RCs). Every physical resource is given its own RC
to manage it. Access to this RC must be granted be-
fore a behavior can use that resource.

Some physical hardware can only be managed by
having simultaneous access to groups of RCs. This
grouping is handled by a second layer consisting of pro-
cesses called AGGREGATE RESOURCE CONTROLLERS
(or ARCs). For the sake of consistency, all RCs can
only be accessed through the use of ARCs, even if an
ARC handles only a single RC.

3.3 User Interface

Direct human control of the resources in the sys-
tem is provided through the User Interface (UI) sub-
system. Using a Ul console, a human can take control
over an autonomously controlled Scout and then re-
lease it back to the behavior that was controlling it
before.

3.4 Backbone

Tying all of these subsystems together in a seamless
fashion across a network of computers is a CORBA-
based [9] group of core services called the Backbone.
The Backbone also oversees the distribution and ac-
cess to the ARCs and RCs through the use of the
RESOURCE CONTROLLER M ANAGER.

4 Dynamic Resource Allocation

When instantiated by a behavior or Ul console,
each ARC must be told which specific RCs to use.
This information is either decided ahead of time (hard-
coded into the behavior) or can be obtained from an
on-line database.

Resource Pool

Mission Control

Behavior

Behavior

Behavior

User Interface

RF Hardware

Video Receiver &

Frame Grabber

[Scout Command Radio}

Video Signa

Teleoperation
Console

Commands —>

v

v

Figure 2: An Instance of the process management/scheduling system. Three Scouts are controlled by a combination of
behaviors and a teleoperation console. All three share the same video frequency, so only one robot can be controlled at a
given time. Solid lines indicate active connections (where data can flow between components) while dashed lines indicate
connections that are not currently active but may be active later during the scheduling process. Components from the
Backbone, such as the RESOURCE CONTROLLER MANAGER, are not shown.

4.1 Examples of ARCs and RCs

In order for a process to control a single Scout
robot, several physical resources are required. First, a
robot must be selected which is not currently in use by
another process. Second, a command radio is needed
which has enough capacity to handle the demands of
the process (refer to Section 4.3 for a discussion about
sharable RCs). Third, if the Scout robot is to transmit
video, exclusive access to a fixed video frequency must
be obtained. Finally, to process the video, a frame
grabber attached to a tuned video receiver is required.
Each instance of these four resources is managed by
its own RC.

Figure2 illustrates the interconnections between
the various components in the system. In this ex-
ample, a behavior tree is responsible for controlling
two robots and a UI teleoperation console lets a hu-
man control a third. Each component has its own
ARC which attempts to gain access to the appropri-
ate resources. In this example, there are three Scout
robots, all of which share a single video frequency. A
single video receiver is attached to a video processing
card and a Scout command radio is attached to a se-
rial port. The ARCs belonging to the behaviors must
share the video frequency and frame grabber RCs.
The ARC owned by the teleoperation console does not
need the frame grabber but still needs control of the
video frequency to operate. In this situation, only one

of the three ARCs will be able to send commands to its
robot at a time and thus must have their access sched-
uled by the RESOURCE CONTROLLER MANAGER.

4.2 The Resource Controller Manager

Access to RCs must be scheduled when there are
not enough RCs to satisfy the requirements of the
ARCs. The RESOURCE CONTROLLER MANAGER
maintains a master schedule of all active ARCs and
grants access to each of their RCs when it is their
turn to run. When requesting access to a set of RCs,
an ARC must specify a minimum amount of time that
it must run to get any useful work done (generally on
the order of seconds to minutes).

ARCs are divided into sets depending on the RCs
they request. ARCs that ask for independent sets of
RCs are put into different groups. These groups will
run in parallel with each other since they do not in-
teract in any way. The ARCs that have some RCs
in common are examined to determine which of them
can operate in parallel and which are mutually exclu-
sive. ARCs which request a non-sharable RC cannot
run at the same time and must break their operating
time into slices. ARCs which have a sharable RC in
common may be able to run simultaneously, assum-
ing that the total bandwidth requirements for that
sharable RC do not exceed its total capacity.

ARCs that have higher priorities are given prece-
dence over ARCs with lower priorities. The RE-

SOURCE CONTROLLER MANAGER attempts to gener-
ate a schedule of running ARCs which allows all ARCs
of the highest possible priority to run as often as they
are able. If any ARCs of a lower priority can run at
the same time as these higher priority ARCs without
increasing the wait time of any of the higher-priority
ARQCs, they are allowed to do so. Lower priority tasks
that cannot be so scheduled must wait (possibly indef-
initely) for the higher priority tasks to complete. This
may be changed in future versions if it detracts from
the overall usability of the system. Trying to maintain
this priority structure can work against the system’s
goal of maximizing resource utilization. However, in
the design specification for this architecture, maintain-
ing the priority structure of the behaviors was deemed
more important than overall system throughput.

4.3 Sharable Resources

Sharable RCs, such as the Scout radio, have to man-
age their own schedule to ensure that each of the ARCs
using them can do so at their requested bandwidth. In
order to streamline the scheduling process, commands
sent to sharable RCs must have a constant interval be-
tween invocation. In addition, each request must be
completed before the next request is made. However,
because the CPU load of any given computer will vary
depending on how many components are running on it,
the run-time of any given request may vary. Given the
first two constraints, and some assumptions on the va-
lidity of the third, a simple rate monotonic algorithm
(RMA) [7] is used.

RMA generates optimal schedules by giving prece-
dence to processes with higher request frequencies.
Once again, the user-set priorities must be maintained
when schedule is computed. Thus, higher user-set pri-
ority ARCs have precedence over lower user-set prior-
ity ARCs regardless of the frequency of the requests.
This often produces a schedule which is suboptimal in
its usage of the RC, but which maintains the user-set
priority relationships.

5 A Distributed Surveillance Task

We are developing a distributed surveillance task in
which the Scouts are deployed into an area to watch
for motion. This is useful in situations where it is im-
practical to place fixed cameras because of difficulties
relating to power, portability, or even the safety of the
operator. In this task, the Scouts are assumed to al-
ready be deployed into the environment by a human
or another robot [11]. Their cameras are aimed at spe-
cific locations where motion is likely to happen (such

as by a doorway or in a hallway). The environment is
assumed to be large enough that a single Scout cannot
view all the area at once. In each experiment, 20 trials
were run.

5.1 Experimental Results

To illustrate how the system works and to show
how the low-bandwidth communications channels can
affect the robots, a set of experiments is described
in which several Scouts perform a simple distributed
motion-detection task.

As shown in Figure 3, Scout 1 is placed to watch the
entrance to the room and Scout 2 is placed to watch
much of the inside of the room.

- Start of Path End of Path
Scout #1
“Vlew Angle Scout #2
View Angle
&
8 Meters

Figure 3: Top view of the room where the motion detec-
tion experiment took place. The square objects are tables
and other pieces of furniture. The field of views of both
Scout robots are shown as wedges and the path the moving
object took through the room is shown as a dotted line.

The viewpoints of both Scout cameras intersect the
main thoroughfare through the room. Anything trav-
eling through this area would have to travel through
both areas of coverage. In these experiments, both
robots share the same video frequency, and so each
robot’s video transmission is scheduled in a simple
round-robin fashion. Each robot’s behavior is allowed
to run for five seconds in order to capture a good num-
ber of clean frames. At the end of five seconds, the be-
havior is swapped out (shutting off the Scout’s video),
allowing the other behavior to capture video.

In the experimental setup, a Pioneer 1 mobile
robot [2] enters the room from the left and makes its
way to the right. The Pioneer was chosen for its ability
to repeatedly travel over a path at an identical speed*.

*Several quick experiments showed that the system was just

Four different sets of experiments are run where the
system load is varied between each experiment. In the
first experiment, two Scouts are used to detect motion
(referred to as the active Scouts). In the second exper-
iment, a user requests a teleoperation console to access
a third Scout while the first two active Scouts are do-
ing their surveillance task. The system dynamically
adjusts the new schedule to allow the new request and
must reduce the available resource time for the first
two Scouts. In the third experiment, two extra Scout
teleoperation requests are made and in the fourth ex-
periment, three extra Scout teleoperation requests are
made. In each experiment, the Pioneer 1 moves past
the first two Scouts (which do not change their po-
sitions between experiments) twenty times. Figure4
shows the percentage of times the Pioneer was de-
tected and missed by the Scouts.

Active | Extra | %Motion | %Motion
Scouts | Scouts | Detected Missed
2 0 80% 20%
2 1 5% 25%
2 2 60% 40%
2 3 50% 50%

Figure 4: Experimental results showing the effectiveness
of the system under increasingly heavy load.

As the system load increases, the ability of the sys-
tem to function properly decreases. This was expected
as the RESOURCE CONTROLLER MANAGER has no
knowledge about what kinds of tasks the ARCs and
RCs are doing and thus cannot alter the priorities
to adjust to increased system load. This is beyond
the scope of its design as its primary function is to
avoid resource request conflicts among the decision
processes.

One interpretation of these results is that the sys-
tem is incapable of handling any reasonably large
number of Scout robots (say larger than 8 or 9). These
particular results show performance for a single envi-
ronment, single position of robots, and single rate at
which objects move about in the environment. The
more accurate interpretation of these results is that if
all of these robots are to share a single video channel
and command radio, then the system will not be able
to function very effectively as the number of robots
increases. This is not a deficiency of the system but
rather an indication that higher bandwidth communi-

as good at detecting human motion as it was for detecting the
Pioneer.

cations channels are required. For instance, by adding
a second video channel, the effectiveness of the system
will increase. Based on some preliminary experiments,
adding a second video channel in this particular ex-
perimental setup would have boosted the percentage
of detected motion for the two robots (assuming they
were on different channels) to 100%. Increasing the
number of robots which were not assisting the first
two in this task would once again decrease the overall
performance. An exact measure of the performance
depends on multiple variables, such as the positions
of the robots in the environment, the rate at which
the target moves, how many video frequencies are used
and how many robots use a particular video frequency.
A more thorough analysis of how each of these vari-
ables affects the performance of the system is beyond
the scope of this paper but is included in[12].

6 Related Work

To control a large group of robots, the software ar-
chitecture must allow for distributed operations and
facilitate allocation and use of resources. Multiple
architectures have been proposed to support fault-
tolerant execution of plans for single and multiple
robot systems. Examples span from support for high-
level mission specification [8] and task planning[3] to
situated control [15], fault-tolerant control [10, 5], and
robust execution of distributed plans[4]. Much re-
mains to be done before a general architecture is de-
veloped that is applicable to heterogeneous robots and
tasks and supports real-time operations under a wide
spectrum of conditions with graceful degradation. The
architecture we presented provides support for distri-
bution of resources across robots and use of shared re-
sources, and integrates in a seamless way autonomous
and human-supervised control.

Limited communication bandwidth is a serious
problem when robots have to transmit large amounts
of data, such as live video, and when many robots
need to share the bandwidth, as in the examples we
presented. A wide body of literature exists in the area
of real-time scheduling algorithms[13]. We plan on ex-
perimenting with various scheduling and negotiation
algorithms for resource allocation in the context of our
architecture. For instance, a promising method for ne-
gotiation for real-time systems has been proposed [1] in
the context of automated flight control. The method is
based on quality of service and allows users to specify
a spectrum of quality of service requests. The prob-
lem we address in this paper is assessing the effects of
limited communication bandwidth on the execution

of tasks more than strategies for guaranteeing optimal
allocation of resources.

7 Conclusions

We have presented some important systems issues
related to the control of multiple robots over a low
bandwidth communications channel. We have de-
scribed a distributed software control architecture de-
signed to addresses these issues.

We have demonstrated how the communications
bottleneck affects the overall performance of the
robots and demonstrated initial results of how our
system starts to degrade under increased load. The
next step is to add more intelligence into the behav-
iors which will allow them to dynamically adjust their
requested run-times to react to their situations. Ad-
ditionally, we are examining other kinds of RF com-
munications hardware to see whether we are able to
increase the number of open video channels, which is
the main limiting factor in our system.

8 Acknowledgements

This research is supported in part by the Doctoral
Dissertation Fellowship program at the University of
Minnesota.

References

[1] T. Abdelzaher, E. Atkins, and K. Shin. QoS ne-
gotiation in real-time systems and its application
to automated flight control. IEEE Trans. Com-
puters, 49(11):1155-1169, Nov. 2000.

[2] ActivMedia, Inc., Peterborough, NH. Pioneer
Operation Manual 2nd Ed., 1998.

[3] R. Alami, S. Fleury, M. Herrb, F. Ingrand,
and F. Robert. Multi-robot cooperation in the
MARTHA project. IEEE Robotics and Automa-
tion Magazine, 5(1):36-47, Mar. 1998.

[4] E. M. Atkins, T. F. Abdelzaher, K. G. Shin,
and E. H. Durfee. Planning and resource allo-
cation for hard real-time, fault-tolerant plan exe-

cution. Autonomous Agents and Multi-Agent Sys-
tems, 4(1/2), Mar. 2001.

[5] K. Dixon, J. Dolan, W. Huang, C. Paredis, and
P. Khosla. Rave: A real and virtual environ-
ment for multiple mobile robot systems. In
Proc. Int’l Conf on Intelligent Robots and Sys-
tems (IROS’99), 1999.

[6] D. F. Hougen, J. C. Bonney, J. R. Budenske,
M. Dvorak, M. Gini, D. G. Krantz, F. Malver,
B. Nelson, N. Papanikolopoulos, P. E. Rybski,
S. A. Stoeter, R. Voyles, and K. B. Yesin. Recon-
figurable robots for distributed robotics. In Gov-
ernment Microcircuit Applications Conference,
pages 72-75, Anaheim, CA, Mar. 2000.

[7] C.L. Liu and J. W. Layland. On the complexity
of fixed-priority scheduling of periodic, real-time
tasks. Journal of the Association for Computing
Machinery, 20(1):46-61, 1973.

[8] D. MacKenzie, R. C. Arkin, and R. Cameron.
Specification and execution of multiagent mis-
sions. Autonomous Robots, 4(1):29-57, Jan. 1997.

[9] Object Management Group. The Common Object
Request Broker: Architecture and Specification.
Object Management Group, 1998.

[10] L. E. Parker. ALLIANCE: An architec-
ture for fault tolerant multirobot cooperation.
IEEE Transactions on Robotics and Automation,
14(2):220-240, Apr. 1998.

[11] P. E. Rybski, S. A. Stoeter, M. D. Erickson,
M. Gini, D. F. Hougen, and N. Papanikolopou-
los. A team of robotic agents for surveillance. In
Proc. of the Int’l Conf. on Autonomous Agents,
pages 9-16, Barcelona, Spain, June 2000.

[12] P. E. Rybski, S. A. Stoeter, M. Gini, D. F.
Hougen, and N. Papanikolopoulos. Performance
of a distributed robotic system using shared com-
munications channels. Technical Report 01-031,
University of Minnesota Computer Science and
Engineering Department, 2001.

[13] J. Stankovic, M. Spuri, K. Ramamritham, and
G. Buttazzo. Deadline Scheduling For Real-Time
Systems: EDF and Related Algorithms. Kluwer
Academic Publishers, Boston, 1998.

[14] S. A. Stoeter, P. E. Rybski, M. D. Erickson,
M. Gini, D. F. Hougen, D. G. Krantz, N. Pa-
panikolopoulos, and M. Wyman. A robot team
for exploration and surveillance: Design and ar-
chitecture. In The Sizth International Conference
on Intelligent Autonomous Systems, pages 767—
774, Venice, Italy, July 2000.

[15] B. Werger and M. J. Matari¢. From insect to
internet: Situated control for networked robot
teams. Annals of Mathematics and Artificial In-
telligence, Fall, 2000.

