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Abstract

We explore the use of behavior-based architectures within the context of reinforce-
ment learning and examine the effects of using different behavior-based architectures
on the ability to learn the task at hand correctly and efficiently.

In particular, we study the task of learning to push boxes in a simulated 2D environ-
ment originally proposed by Mahadevan and Connell [Mahadevan and Connell, 1992].
We examine issues such as effectiveness of learning, flexibility of the learning method to
adapt to new environments, effect of the behavior architecture on the ability to learn,
and we report results obtained on a large number of simulation runs.
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1 Introduction

Behavior-based architectures [Brooks, 1986] are extremely popular for robotics. In this paper
we examine the use of behavior-based architectures within the context of reinforcement
learning and examine the effects of using different behavior-based architectures on the ability
of robots to learn the task at hand correctly and efficiently.

In particular, we study the task of learning to push boxes in a simulated 2D environ-
ment originally proposed by Mahadevan and Connell [Mahadevan and Connell, 1992]. The
original paper described a box-pushing robot, called OBELIX, with a simple subsumption
architecture with three behaviors, FINDER, PUSHER, and UNWEDGER. FINDER is responsi-
ble for locating the boxes, PUSHER will push the boxes once they are found, and UNWEDGER
will unwedge the robot after it gets stuck against some obstacle. The behaviors act indepen-
dently, and each has an Applicability Function assigned to it, which decides if the behavior
is applicable for a given state of the sensors. When more than one behavior is applicable at
a time, priority is given to UNWEDGER, followed by PUSHER, and then by FINDER).
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Each behavior also has a Learning Table, which is the main mechanism for learning. A
Learning Table is a numeric table whereby the columns represent the actions available to
the robot, and the rows represent the robot’s sensor states. Each entry in the Learning
Table represents the “quality” of a certain action during a certain sensor state, for a specific
behavior. Each behavior has associated with it a Reward Function, which determines how
successful a previous action was. If an action is deemed “bad” the Reward Function will
decrease the appropriate Learning Table entry. If the action is considered “good” then the
Learning Table entry is increased. In theory, as the robot continually updates its Learning
Tables, the values in the Learning Tables will converge, and the robot will learn the best
actions to take under various circumstances.

A large body of work exists in the area of reinforcement learning, as reported in the excel-
lent survey [Kaelbling et al., 1996], and many applications to robotics have been reported.
Methods such as progress estimators have been proposed [Mataric, 1994] and applied to real
robots, decomposition of problems into subproblems has been used [Connell and Mahadevan, 1993,
Whitehead et al., 1993] in addition to monolithic learning [Whitehead, 1992], methods for
learning individual subgoals and then learning how to achieve them sequentially have been
proposed [Singh, 1992], and methods of shaping have been developed for learning the archi-
tecture in addition to individual behaviors [Dorigo and Colombetti, 1994, Dorigo, 1995].

Mahadevan and Connell in [Mahadevan and Connell, 1992] pionered the combination of
the subsumption architecture with reinforcement learning. More recent work by Mahade-
van [Mahadevan, 1994, Mahadevan, 1996] compares the Q-learning method with R-learning
[Schwartz, 1993] for various domains (including the box-pushing domain) using different ex-
ploration strategies. The box-pushing domain is a rich domain for experimental work in
learning because of its complexity in terms of number of states and actions, and because
it requires learning sequences of actions. It is also interesting in robotics because it could
easily be implemented on a real robot. Others have studied the box-pushing problem using
different techniques. For instance, Koza [Koza and Rice, 1992] reports results on using a
genetic programming approach to generate a program for the robot to push boxes. Only
limited experimental results are reported in [Koza and Rice, 1992], which makes it impossi-
ble to compare the results of the genetic programming approach with the results reported
in [Mahadevan and Connell, 1992] and with our results.

In the work we present here we are mainly interested in assessing the ability of the robot
to learn the given task in different environments, and in measuring how well the robot learns.

2 Experimental Results

The experiments we describe have been designed to answer the following fundamental ques-
tions:

Measurements: How should the learning be measured? measuring the percentage of cor-
rect responses after a number of learning trials does not always capture how well the
specific task at hand has been learned. We introduce a number of domain specific mea-
sures for the box-pushing task that capture more closely the performance of the learning
method at learning the box-pushing task, and we use them in our experiments. We



also introduce some domain independent measures that measure the amount of learn-
ing in terms of the number of sensor states reached, the number of entries reached in
the Learning Tables, and the percentage of non-zero value rewards assigned. Details
on the specific measures we use are given in Section 3.

Behavior-based architecture: How does the behavior-based architecture affect learning?
As reported in [Mahadevan and Connell, 1992], the decomposition in behaviors simpli-
fies learning. The question we want to address is how different decompositions affect
learning in terms of speed of learning and effectiveness at learning the task at hand. We
show with our experiments that an architecture with more behaviors performs at least
as well as a simpler architecture, and performs better in more cluttered environments.
We explore two different behavior-based architectures, the original one and a new one
with more behaviors. For our experiments we assume the architecture is given and not
learned.

Adaptability to new environments: Is the learning sufficiently independent on the en-
vironment in which it was achieved? Ideally, we would like the robot to be able to
learn a task in one environment and then be able to perform the same task in a dif-
ferent environment with only minimal learning. We report results on experiments
done in three types of environments, one similar to the environment originally used in
[Mahadevan and Connell, 1992], one much more cluttered, and one quite sparse but
with many boxes. We show that a robot that learns in a more difficult environment
is more capable to adapt to a different environment. This seems to contradict results
obtained using the technique of shaping [Hilgard and Bower, 1975], in which a simple
problem is presented first, and more complex problems are presented later. However,
we have to keep in mind that in our case the architecture of the behaviors is already
known and fixed, as opposed to cases in which the architecture has to be learned as
well [Dorigo and Colombetti, 1994].

3 Measuring Robot Effectiveness

Mahadevan and Connell in [Mahadevan and Connell, 1992] argued that a robot with a Learn-
ing Table for each behavior will learn faster, and perform better than a robot with one,
monolithic Learning Table that spans all behaviors. As a result, the primary characteristics
they use to judge the robot’s performance centers around how quickly the entries in the
Learning Tables converge.

To address other issues such as effectiveness of learning and performance at the task
learned, we need to introduce other metrics. This in turn will also help nail down what
aspects of the original behavior architecture could be changed to improve performance.

When the original robot runs within complex environments, it quickly becomes evident
that its major weakness is that it does not cover open ground very well. When the envi-
ronment is confined, as it is with the testbench environment used in the original paper, this
weakness is not as obvious as with a more spacious environment. Thus, a characteristic we
want to measure, and an improvement we want to make, is the total distance the robot



travels, and the total area the robot covers. This is important because we want the robot to
find as many boxes as possible and by traveling more the chance of finding boxes increases.

Similarly, we want the robot to perform its task well, namely to push as many boxes as
far as possible in the shortest amount of time. Thus, we need to measure the number of
boxes touched by the robot in a given period of time and the distance that the boxes are
pushed. Although this metric alone is not very reliable, since the boxes and the environment
could be arranged to favor one implementation over another, it does give an idea of how well
the robot performs over an extended period in doing the task it is expected to do.

We should also not forget the learning aspect of the robot. We not only want the robot
to learn fast (quality) but also to learn a lot (quantity). This will be accomplished mostly
by improving the distance that the robot covers, thereby exposing the robot to new sensor
states. To ensure that this is indeed accomplished we will need to measure the number of
sensor states reached, the number of entries in the Learning Tables that are modified from
the initial state, and the number of non-zero rewards assigned.

When we go about trying to improve the robot’s performance, certain characteristics
of the original robot have to remain constant, to ensure that any perceived improvements
are for real. In the new architecture we present, the physical characteristics of the robot
are the same: the new robot also has eight sensors positioned as before, and the same five
actions. The Learning Tables thus have the same size, although the number of Learning
Tables is different. We also continue to use the same method of reinforcement learning with
percolation of reward values back in time (five levels of recursion), and Hamming distance
grouping of sensor states. This makes performance comparisons possible.

With the physical characteristics and method of learning constant, we are left to experi-
ment with a well defined set of robot conditions. We can change the underlying architecture,
the corresponding Applicability and Reward Functions, and the actual implementation of
the Learning Tables and examine what impact those changes have on the ability of the robot
to learn the task of pushing boxes.

4 Validation of the simulation system

Before jumping into experimenting with a new architecture, it was necessary to do some sort
of rudimentary validation of the simulation program we created. The best way to do this
was to attempt to duplicate the results of the Mahadevan and Connell robot. This was done
with surprising success. Figure 1 shows the floor map that the original physical robot used.
A set of 20 learning trials were set up for the robot, each trial lasting 100 moves. The robot
starts in the same initial position for each trial, although the starting direction is random.
This is the same number of trials and steps as in the original system.

The performance of each robot behavior is computed, as in [Mahadevan and Connell, 1992]
by the following equation:

Average_reward — Minimum_reward

Per formance_rating = - —
Maximum_reward — Minimum_reward

The Per formance_rating represents the quality of the decisions made by the robot after
the trials. If this percentage is high, then the behavior is making decisions that receive high
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Figure 1: Original floor map for the learning trials.

rewards. Conversely, if the percentage is low, then the robot is getting a lot of negative
punishment from the behavior. The reason for the Per formance_rating statistic is to show
the convergence of the robot’s Learning Tables as the simulation trials progressed.

The statistics for our simulation program and the original Mahadevan and Connell sim-
ulation are given below in Table 1. The disparity in the numbers can be attributed to slight
differences in the simulation floor plans, although other factors probably also contribute,
such as different lengths of the forward move, different sizes of the simulated boxes, and
subtle differences in the way that the sensors are simulated. All in all, the new simulation
program comes very close to mimicking the Mahadevan and Connell results.

Measure Original implementation Our implementation
Average reward for FINDER 0.20 0.294
Average reward for PUSHER -0.20 -0.325
Average reward for UNWEDGER 0.16 -0.020
Performance rating for FINDER 30% 32%
Performance rating for PUSHER 70% 67%
Performance rating for UNWEDGER 79% 74%

Table 1: Learning measures reported for the original implementation and results with our
implementation. The results obtained with our simulation program are for the original robot
on the original floor map shown in Figure 1.

We have added a number of features to our simulator, including using B+ Trees to
implement the Learning Tables (as detailed later in Section 6), a flexible user interface, and a
method for measuring the area that the robot covered during simulation. We utilize a kind of
“pixel map”, a two-dimensional array that represents the entire area of the simulation’s floor



map. The elements of the array are all initialized to zero (or false), and as the robot image
on the screen overlaps screen pixels, the corresponding elements in the two-dimensional array
are set to one (or true). At the end of the simulation, we can compute the area covered by
the robot by simply counting all the elements in the array with a value of one. This method
is not perfect, since the pixel coverage on the screen is just an approximation for a simulated
robot, but it is a good approximation nonetheless.

5 The original 3-behavior architecture

The robot described in [Mahadevan and Connell, 1992] uses eight sonar sensors located on its
front and sides to detect objects. Each sensor has three possible states: no object detected, a
near object detected (from nine to 18 inches away), and a far object detected (18 to 30 inches
away). We will use FRONTNEARSONARBITSON and FRONTFARSONARBITSON to indicate
the corresponding sensor values, and FRONTSONARBITSON to indicate that an object has
been detected in front of the robot when we do not care if it is near or far. In addition, the
robot has two special sensor readings. The Bump bit indicates whether or not the robot
has bumped up against an object, and the STUCK bit indicates whether or not the robot is
stuck against an object after trying to move forward.

The robot has eight sonar sensors, a BuMmP bit, and a STUCK bit, so in total there
are 3% x 2 x 2 = 26,244 number of rows in each Learning Table. The robot can move in
five different ways: FORWARD, TURNLEFT 22.5°, TURNRIGHT 22.5°, TURNLEFT 45°, and
TURNRIGHT 45°. Each Learning Table has 5 x 26,244 = 131, 220 entries.

Populating the Learning Tables one entry at a time can reduce the effectiveness of the
robot’s learning. To improve the time in which the Learning Tables are filled, techniques can
be used to group together similar sensor states, allowing several entries in the Learning Tables
to be modified within a single move. Mahadevan and Connell describe two such grouping
techniques: grouping by Hamming distances (of the sensor state bit vectors) and grouping
by statistical clustering. The method we use is grouping by Hamming distance, which can
be shortly explained as follows. When a sensor state entry is updated in a Learning Table,
we also update all the other sensor states in the same table whose bit vector representation
differs by £ bits or less. For our simulation, £ equals one. As a rule, higher Hamming
distances do not increase the rate of “useful” learning information propagated through the
table, because greater differences in sensor states will naturally require different actions in
the long run.

The original architecture, shown in Figure 2 has three behaviors, FINDER, PUSHER, and
UNWEDGER. FINDER is responsible for locating the boxes, PUSHER will push the boxes
once they are found, and UNWEDGER will unwedge the robot after it gets stuck against
some obstacle.

The behaviors act independently, and each has an Applicability Function assigned to it,
which decides if the behavior is applicable for a given state of the sensors. The FINDER
behavior is always applicable, PUSHER is applicable either if the BuMP bit is on or has been
on in the current history of the behavior, UNWEDGER is applicable if the STUCK bit is on
or has been on in the current history of the behavior. Priority is given to UNWEDGER, then
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Figure 2: Original architecture for the 3-behavior robot.

PusHER (and then FINDER) when more than one behavior is applicable at a time. Figure 3
shows the Reward Functions of the original robot.

Finder_reward

Pusher_reward

Unwedger_reward

if action=FORWARD and FRONTNEARSONARBITSON
if not FRONTNEARSONARBITSON

otherwise

if action=FORWARD and BumMP

if not Bump
otherwise

if STuck

if action=FORWARD and not STUCK

otherwise

Figure 3: Original reward functions for the 3-behavior robot.

The concept of a behavior’s current history should be explained. A behavior’s history
indicates how many moves the robot is allowed to continue under the same behavior, even
though the original conditions that made the behavior applicable are no longer true. For
example, when the unwedger_history is set to 5, then the robot may continue in the UN-
WEDGER behavior for five more moves, even though the robot’s STUCK bit is no longer set.
This has the effect of allowing the robot to learn a series of actions to take when certain
conditions are encountered.

The learning method we use, the same as the one reported in [Mahadevan and Connell, 1992],
is based on Q-learning [Watkins, 1989, Watkins and Dayan, 1992]. The method is as follows:

1. Initialize the Learning Table.

2. Do forever:

(a) Observe the current sensor state s.
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(b) Given the sensor state s and the most recently active behavior determine the new
active behavior using the Applicability Functions, and select the corresponding
Learning Table.

(c) For the given sensor state s and the Learning Table, choose the action with the
largest value a. If all actions have a zero value (which means that the sensor state
has never been encountered before) then select the FORWARD action.

(d) Carry out action a.

(e) Let the new sensor state be ¢, and the immediate reward for executing @ in sensor
state s be r. Update the last used entry in the Learning Table according to the
following rule:

Q(s,a) == Q(s,a) + B(r + v xet) — Q(s,a))

where e(t) is the maximum Q(¢, a) over all actions a performed in state ¢, 3 and vy
are values between 0 and 1. § controls the rate at which the error of the current
Q value is corrected, 7y is a discount factor.

6 The new 6-behavior architecture

A new behavior-based architecture, developed as an alternative to the original, is shown in
Figure 4.

The PusH and UNWEDGE behaviors are almost identical to the ones used in the original
robot, except that UNWEDGE simply turns away from the obstacle and uses WANDER to
move away. The FIND behavior is significantly different than the original FINDER and is
limited to finding obstacles, leaving to PURSUE the job of approaching them. The WANDER,
PURSUE, and ALIGN behaviors are new.

The relationship between the behaviors goes as follows: the robot will normally start out
in the FIND behavior, scanning its immediate environment for an object without moving
forward (although this method does not guarantee that the robot will not move forward
during the FIND behavior). If an object is found, the robot will enact the PURSUE behavior,
moving forward towards the object. If no object is found, and the robot receives a time-out
from the FIND behavior, the robot will enact the WANDER behavior and attempt to travel a
significant distance away from its current position. The robot will wander until the WANDER
behavior has a time-out (at which time the robot returns to the FIND behavior) or the robot
bumps into something. Whenever the robot hits an object, it will enact the PUSH behavior,
and try to push the object in hopes that the object is a box. If the robot should lose contact
with the box while in the PusH behavior, the ALIGN behavior will start up, and attempt
to realign the robot with its lost box. Whenever the robot becomes stuck (whether it is
pushing a box or not) it will enact the UNWEDGE behavior, and try to free itself from the
stuck position.

A major concern in designing the new architecture was that increasing the number of
Learning Tables would make the memory load unbearable, especially if this new robot was
physically implemented. If the number of sensors were increased (usually a desired step, since
increasing the number of sensors will improve almost every navigational robot approach),
then the memory load would be worsened even more.
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Figure 4: New architecture for the 6-behavior robot.

To alleviated this potential problem, we have implemented the Learning Tables as B+
Trees, a common data structure used in database implementations [Comer, 1979]. Each leaf
node of the B+ Tree represents a single row in the Learning Table, indexed by a sample of
the robot’s sensor states. To access the nodes, a particular state of the sensors is encoded
into a key. Each key corresponds to one state of the sensors, and viceversa, to maintain
consistency. Initially, the B+ tree is empty. As the robot updates new sensor states, the B+
tree creates new nodes. If the robot tries to read the values for a sensor state that has not
been encountered yet, (which also means that there is no node in the tree for that sensor
state), then a value of zero is returned.

Since the relationships between the new behaviors are more complex than the simple
priority scheme of the original robot, the Applicability Functions we defined for them de-
pend on the current active behavior. For ease of implementation, the determination of the
behavior’s applicability has been combined into one large function, that simulates the action
of a Finite State Machine, where the behaviors are the states. Details of the Applicability



function are shown in Figure 5.

The 6-behavior robot relies on behavior histories more so than the 3-behavior robot,
because the new robot has more behaviors, and thus more behavior interaction. The initial
behavior history values for the 6-behavior architecture, assigned when a behavior is first
enacted, are shown later in Table 2. These values were not decided upon through a rigorous
analytical approach, but through trial-and-error. More discussion on the behavior histories
and their importance to avoid local minima is in the next Section.

7 Rewards and the Problem of Local Minima

The Reward Functions must be diverse enough to encourage the expected interaction of the
robot’s behaviors, while at the same time remaining straight-forward and useful under a
variety of different environments. The new Reward Functions, shown in Figure 6, look quite
similar to the original ones, although there are clear differences.

In the original robot, the UNWEDGER behavior was rewarded for successfully moving
forward without getting stuck. In the new robot, the UNWEDGE behavior is only responsible
for unwedging itself within its current position, and does not need to move forward at all.
The WANDER behavior will make sure that the robot gets away from the stuck position.
Thus the new Reward Function rewards the robot for not moving forward to get unstuck.

In the PUsH behavior, it is assumed that the robot is currently BUMPed. The original
case where the robot uses the pusher_history to become realigned with a lost box is no longer
needed (because of the ALIGNER behavior, as explained earlier). Therefore, the Reward
Function for PusH will reward the robot when it moves forward, and punish the robot for
all other moves.

We want ALIGN to cause the robot to turn in place (hopefully in one or two moves),
until the robot bumps back up against the wayward box. Thus, the robot will be rewarded
for BUMPing against an object without moving forward, otherwise it will be punished.

The PURSUE behavior is responsible for moving the robot towards an object once it has
been detected in the FIND behavior. Thus, we want to punish the robot whenever it loses
sight of the detected object (or when its front sensors no longer detect the object). Similarly,
we want to reward the robot whenever it stays in-line with the detected object and moves
forward.

We want the FIND behavior to turn the robot around in its current position to locate a
nearby object, without moving forward. As a result, the robot will be punished for moving
forward, and will be rewarded for locating an object with its front sensors (without moving
forward). In theory, if the robot finds an object while in the FIND behavior, all non-forward
moves in that FIND sequence will be rewarded through percolation of reward values back in
time.

Finally, the WANDER behavior is successful any time it makes the robot move forward.
However, the WANDER function will be used often, and in dissimilar circumstances, so we
do not want to punish the robot whenever it does not move forward. The only time the
WANDER behavior is actually unsuccessful is when the robot becomes stuck. Thus, the
Reward Function for WANDER will reward the robot when it moves forward, and hand down
a punishment whenever the robot becomes stuck.
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Select case by current_behavior:
case UNWEDGE:
if STuck
then initialize unwedge_history and return UNWEDGE
else if unwedger_history > 0
then decrement unwedge_history and return UNWEDGE
else initialize wander_history and return WANDER
case PUSH:
if STUuCK
then initialize unwedge_history and return UNWEDGE
else if Bump
then return PusH
else initialize align_ history and return ALIGN
case ALIGN:
if STuck
then initialize unwedge_history and return UNWEDGE
else if Bump
then return PUSH
else if align_history > 0
then decrement align_history and return ALIGN
else initialize wander history and return WANDER
case PURSUE:
if STUCK
then initialize unwedge_history and return UNWEDGE
else if Bump
then return PUSH
else if pursue_history > 0
then decrement pursue_history and return PURSUE
else initialize wander_history and return WANDER
case FIND:
if STuck
then initialize unwedge_history and return UNWEDGE
else if Bump
then return PUSH
else if FRONTSONARBITSON
then initialize pursue_history and return PURSUE
else if find_history > 0
then decrement find_history and return FIND
else initialize wander_history and return WANDER;
case WANDER:
if STuck
then initialize unwedge_history and return UNWEDGE
else if Bump
then return PUSH
else if wander _history > 0
then decrement wander_history and return WANDER
else initialize find history and return FIND

Figure 5: Applicability function for the 6-behavior robot.
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1 if action=FORWARD and not STUCK
—3 if STUCK
otherwise

Wander_reward =

if action ZFORWARD and FRONTSONARBITSON
—1 if action=FORWARD
0 otherwise

Find_reward =

Pursue_reward = —3 if not FRONTSONARBITSON

otherwise

Align_reward =

0
3 if action ZFORWARD and Bump
1 otherwise

1

if action=FORWARD

Push-reward = —3 otherwise

-3 if STuck
1 if action # FORWARD and not STUCK
0 otherwise

Unwedge_reward =

{ 1 if action=FORWARD and FRONTSONARBITSON

Figure 6: Reward functions for the 6-behavior robot. Tha values have been obtained by
trial-and-error.

Notice that there is no history kept for the PUsH behavior. In the original robot, the
push_history was kept so that the robot could try to re-align after it lost contact with a box.
In the new architecture, this requirement is taken over by the ALIGN behavior, so there is
no need for the PUsH behavior to time-out. If the robot is pushing a box, we want it to
continue as long as it can, until the box is stuck against an obstacle.

Also, the value for the WANDER history is rather high, 30 moves. This provides the new
robot with enough opportunity to explore new areas. The PURSUE history is 10, because
that is the number of moves it takes the robot to travel further than the length of its sensor
range.

A feature we added is the following additional update to the behavior histories, that is
applied every time a reward or punishment is computed:

if not STUCK and action= FORWARD
then initialize steps_without_forward to 0
else increment steps_without_forward

The global variable steps_without_forward represents the current number of moves the
robot has enacted without moving in a forward direction. If the robot reaches the point
where it has not moved forward for a number of moves equal to the maximum allowed for
the current active behavior (shown in Table 2), then the robot will automatically enact a
random move (of constant distribution). This is so that the robot has a chance to rescue
itself if its state of rewards and punishments for a given behavior reaches a local minimum.
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A local minimum will be encountered in the following scenario: the robot gets stuck
against a wall or in a corner. The robot performs a series of turning actions, but when the
UNWEDGE behavior does a time-out, the robot finds itself in the same position as it was
when it first got stuck (which would happen if the entries in the UNWEDGE’s Learning Table
for the current sensor state held the right values). Through percolation of reward values
back in time, the past actions are summarily punished, and the robot ends up still unable
to move forward. The UNWEDGE behavior repeats the same series of actions (because each
action received a proportional amount of punishment), which will result in the same failure,
over and over, indicating that a local minima has been reached.

Mahadevan and Connell claimed that their approach avoided local minima, and to a
certain extent this is true because the robot will not reach a local minima when operating in
open space. However, experiments with more complex environments have shown that under
the right conditions, the 3-behavior robot will get mired in local minima when attempting to
navigate a cluttered environment. The random operation thus acts as a last resort, intended
to kick the robot back into gear after becoming permanently stuck against an obstacle. In
general, the chances of the robot reaching a local minima decrease as the robot experiences
more and more new sensor states.

The maximum number of moves the robot can enact without moving forward, given for
each behavior, are listed in Table 2. The values have been determined by trail-and-error.

Initial value Max No. steps

for history w/o forward
UNWEDGE 5 20
PusH 0 9
ALIGN 5 20
PURSUE 10 20
FIiND 5 20
WANDER 30 5

Table 2: Values used to initialize the history of behaviors, and maximum number of steps
allowed in a history without a forward movement for the 6-behavior robot.

8 Comparison of performance of the 3-behavior with
the 6-behavior robot

In Table 3 we show results obtained when running the 3-behavior robot on the original map.
For this set of experiments, we performed 20 learning trials of 100 steps each, as in the
original implementation. We have found this number of steps to be sufficient to fully train
the robot.

Note that the number of entries per move in the Learning Table can be greater than one,
because the Hamming distance propagation algorithm allows multiple entries to be updated
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FINDER PUSHER UNWEDGER

Average reward 0.294 -0.325 -0.020
Performance rating 32% 67% 74%
% time behavior active 17 18 65
% zero-value rewards assigned 12% 24% 20%
No. sensor states reached 141 156 185
No. Learning Table entries reached 377 305 474
No. Learning Table entries per move 1.11 0.85 0.36

Table 3: Performance of the 3-behavior robot using the original floor map.

WANDER FIND PURSUE ALIGN PusH UNWEDGE

Average reward 0.099 -0.157 0.279 -0.208 -0.006  0.131
Performance rating ™%  21%  82%  20% 5% 78%
% time behavior active 36 1 1 5 8 50
% zero-value rewards assigned 8% 16% 2%  31% 10% 6%
No. sensor states reached 232 7 10 60 54 220

No. Learning Table entries reached 667 29 25 195 174 603
No. Learning Table entries per move  0.92 4.14  1.39 1.82 1.13 0.61

Table 4: Performance of the 6-behavior robot using the original floor map.

within the same move.

The next logical step is to run the 6-behavior robot on the same environment for the
same number of trials, and compare the results. Table 4 describes the results from the series
of learning trials, which were executed in the same manner as before, i.e. 20 trials with 100
steps per trial. The performance rating for the new robot’s behaviors are comparable to the
behaviors of the original 3-behavior robot.

Table 4 also includes the percent that each behavior was active, the percentage of rewards
assigned that have a value of zero, the number of unique sensor states reached for each
behavior, the number of unique Learning Table entries reached by each behavior, and the
number of unique Learning Table entries reached per active move of the behavior.

At this point, we begin to see the improvement of the 6-behavior robot over the 3-
behavior robot. During the simulation trials, the 3-behavior robot spent two-thirds of the
time unwedging itself from a stuck position, while the 6-behavior robot spends roughly
half of the time unwedging. Also, the ratio of Learning Table entries to number of active
moves is generally higher for each behavior of the 6-behavior robot. The ratio for the FIND
and PURSUE behaviors of the 6-behavior robot are probably not representative of the actual
performance of the behaviors, since these behaviors are not active for very long. The assertion
does hold for the other behaviors.

What about the robot overall? Remember that our original motivation was to improve
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3-behavior 6-behavior

Total distance traveled 859 ft. 1335 ft.
Average distance per move 5.1 in. 8 in.
No. Learning Table entries per move 0.574 0.729
No. box touches 17 26
Total distance boxes pushed 131 ft. 200 ft.

Table 5: Comparison of the 3-behavior and 6-behavior robots using the original floor map.

the robot’s performance and increase the amount of information that the robot learns.

Consider the statistics given in Table 5. The new 6-behavior robot consistently pushes
more boxes and travels further distances in the same amount of time as the original 3-behavior
robot, primarily because the 6-behavior robot, through the implementation of the WANDER
behavior, is prevented from gravitating towards walls and obstacles already explored. In
the process, the Learning Tables of the 6-behavior robot are exposed to about 24% more
sensor information. More boxes are pushed, and by larger distances. The total distance that
the boxes are pushed is measured in Manhattan distance (not the linear distance between
starting and ending positions) because in the simulation boxes are only allowed to move
translationally.

We cannot claim that the 6-behavior robot is learning faster than the 3-behavior robot,
but the 6-behavior robot is learning more, and in the end performs its task more effectively.
Both Robots appear to be able to learn the task in the same amount of trials. Adding more
trials did not significantly changed the results.

9 Other Environments

To support our claim that the 6-behavior robot learns to do the task more effectively than
the 3-behavior robot we need more experiments. In particular, the next question we will
investigate is: how well does the 6-behavior robot operate in different environments? To
answer this question we have created tests for two other scenarios: a cluttered environment
with many obstacles, and a sparse environment with very few obstacles and a lot of open
space. Both new environments are much larger than the original one, so the robot has to
learn to cover much greater distances. The cluttered environment has many fixed obstacles,
so the robot has to learn not to spend too much time trying to push unmovable objects.
Because of the clutter, it is also easier for the robot to get stuck.

9.1 Cluttered Environment

First we examine the cluttered environment, whose floor map is given in Figure 7. The large
rectangular objects are fixed obstacles, the square objects are the boxes. The robot is shown
as a circle with a line pointing to its front. Both the 3-behavior robot and the 6-behavior
robot were put through 10 trials within the cluttered environment, each trial starting in
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the same position and lasting 1,000 moves. A trial of 1,000 moves gives the robot plenty of
opportunity to explore a large portion of the environment.

The results obtained indicate that the performances of the 3-behavior and the 6-behavior
robots are roughly the same. The performance rating for each behavior of the two robots
is almost identical to the corresponding results of the first learning trials, and both robots
spend approximately one-third of the time unwedging.

449 feet

Y

A

O 388 feet

€ L]

Figure 7: Floor map of a cluttered environment. The map is not drawn to scale. The robot
appears much bigger than its size really is.

The 3-behavior robot tends to cling to the outer walls of the environment without ven-
turing into new, open space, so it will repeatedly try to push obstacles that have already
been pushed. Usually this redundant action by the PUSHER behavior is rewarded, because
there is no built in mechanism to punish the robot for repeating actions under identical
circumstances (the robot also is unable to distinguish the explored areas of the environment
from the unexplored areas).

In reality, the 3-behavior robot rarely escapes the cluttered corner of the starting position,
while the 6-behavior robot covers much more ground. As Table 6 shows, the 6-behavior robot
travels over seven times further in linear distance (absolute distance, not factored for relative
starting and ending positions), reaches four times more new Learning Table entries, pushes
five times more boxes during the trials (and pushes those boxes much further), and perhaps
most importantly, the 6-behavior robot covers four times more area than the 3-behavior
robot.
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3-behavior 6-behavior

Total distance traveled 537 ft. 4014 ft.
Average distance per move 0.6 in. 4.8 in.
Total area covered in 10 trials 605 sq.ft. 2641 sq.ft.
No. Learning Table entries per move 0.060 0.250
No. box touches 2 10
Total distance boxes pushed 2 ft. 86 ft.

Table 6: Comparison of the 3-behavior and 6-behavior robots in the cluttered environment.

3-behavior 6-behavior

Total distance traveled 1428 ft. 6789 ft.
Average distance per move 1.7 in. 8.5 in.
Total area covered in 10 trials 2822 sq.ft. 9848 sq.ft.
No. Learning Table entries per move 0.074 0.190
No. box touches 16 41
Total distance boxes pushed 95 ft. 955 ft.

Table 7: Comparison of the 3-behavior and 6-behavior robots in the sparse environment.

9.2 Sparse Environment

The experiments on the sparse environment shown in Figure 8 had similar results. Ten trials
of 1000 moves were executed, each trial starting at the same initial position with a random
heading. Like the cluttered environment trials, the sparse map trials produced almost iden-
tical performance ratings for both the 3-behavior and 6-behavior robots for each behavior,
and both robots spent nearly the same percentage of time, 25% and 19% respectively, in the
UNWEDGE behavior. Again, the original 3-behavior robot spent more time in the PUSHER
behavior.

Table 7 gives clearer indication of which robot performed better. The 6-behavior robot
traveled almost five times further in absolute distance, touched twice as many boxes, filled
61% more Learning Table entries, and covered ten times more area. As with the experiments
on the cluttered environment, these statistics show that the 6-behavior robot performs the
box pushing task more effectively, and would likely maintain that effectiveness in similar,
sparse environments.
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Figure 8: Floor map of a sparse environment. The map is not drawn to scale. The robot
appears much bigger than its size really is.

9.3 More comparisons

There are other factors that might account for the improved performance of the 6-behavior
robot architecture. For instance, it may be that the performance increase is really related to
the fact that the reward functions shown in Figure 6 and used in the 6-behavior robot are
active more of the time and hence provide more information about how to perform the task.

Tables 8 and 9 list the percentages of zero-value rewards assigned to each behavior during
the simulations in the different environments. We can see from the tables that decomposing
the behaviors, as we did going from the 3-behavior to the 6-behavior robot, leads to sub-
stantially fewer zero-value rewards. By specializing behaviors, the reward functions become
more fine-tuned and leave less ambiguity in assigning rewards. Zero-value rewards are not
desirable. The robot can make better decisions when fewer zero-value rewards are assigned,
and therefore the 6-behavior robot performs better.

10 Adapting to a Different Environment

In theory, a robot controlled by a behavior-based architecture should be more capable of
adapting from one environment to another than a robot controlled with a traditional archi-
tecture. Ultimately, it is desirable to create a robot that can take the information it has
learned from one set of surroundings, and apply that information to an entirely new envi-
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FINDER PUSHER UNWEDGER ALL BEHAVIORS

Original environment 12% 24% 20% 20%
Cluttered environment 4% 39% 36% 33%
Sparse environment 81% 26% 48% 67%

Table 8: Percentage of zero value rewards assigned for the 3-behavior robot.

WANDER FIND PURSUE ALIGN PUsH UNWEDGE ALL BEHAVIORS

Original environment 8% 16% 2%  31% 10% 6% 8%
Cluttered environment 14%  12% 7% 8% 3% 3% 8%
Sparse environment 16% 13% 2% 6% 2% 3% 9%

Table 9: Percentage of zero value rewards assigned for the 6-behavior robot.

ronment. This is what we have done with the 6-behavior robot, to see how well this machine
learning method is applicable across different environments.

The prior experiments were repeated on both the cluttered and sparse floor maps, except
this time, the robot begins with the Learning Table data it had gained after completing the
very first set of learning trials (the experiments run on the floor map given in Figure 1).
The robot was loaded with the Learning Tables from the original learning, initialized to the
same starting position with a random heading, and run for 10 trials each of 1000 moves.
The statistics gathered from these experiments (number of sensor states reached, number
of Learning Table entries reached, etc.) do not include the data loaded into the robot be-
forehand, and solely reflect the robot’s performance in the new environments. The statistics
reflect the robot’s performance on a per trial basis, and not accumulated over 10 trials, since
the Learning Tables were re-initialized to the same original table before each trial.

The cluttered environment results are almost identical to those obtained by running the
experiments directly in the cluttered environment (without any prior learning). The key
difference is in the WANDER behavior. The number of new sensor states reached and the
number of new Learning Table entries reached for the WANDER behavior are half of what
the were for the WANDER behavior in the cluttered environment trials. This shows that the
robot did not wander into unfamiliar territory like it should do, but instead wandered over
and over in the same corner of the cluttered environment. Table 10 reinforces this suspicion.
The robot adapting to the cluttered environment travels less distance than the robot starting
its learning in the cluttered environment; it reaches 50% fewer Learning Table entries, and
on average covers 17% less area after ten trials. This seems to indicate that learning in a
smaller and simpler environment does not provide much useful information for a much larger
and more complicated environment.

The experiments on the robot adapting to the sparse environment had better success. In
fact, the robot adapting to the sparse environment performed better than the robot starting
from scratch in every category. It seems as if the robot actually benefited from the prior
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Cluttered Sparse

Total distance traveled 3,821 ft. 7,567 ft.
Average distance per move 4.6 in. 9.0 in.
Total area covered in 10 trials 2,179 sq.ft. 10,094 sq.ft.
No. learning table entries per move 0.170 0.130
No. box touches 5 49
Total distance boxes pushed 53 ft. 1293 ft.

Table 10: Comparison of performance of the 6-behavior robot, when adapting to the cluttered
environment vs. adapting to the sparse environment.

knowledge, which follows conventional intuition, although it is not clear to what extent the
prior knowledge improved the robot’s performance. These experiments indicate that the
initial learning helped the robot to adapt to a new much larger environment. Perhaps, in
the smaller environment the robot had more chances of touching boxes and so it learned how
to push them. When learning directly in a large and sparse environment, often the robot
does not have much chance of touching many boxes and so the learning is limited.

The results of similar experiments we performed using the 3-behavior robot are less
conclusive. As we have shown earlier, the 3-behavior robot is not very successful at finding
and pushing boxes in the large environments, and so it does not do very well at the task
even with prior learning.

To verify our results, we run another set of experiments, this time making the robots
to learn first in the sparse environment (shown in Figure 8) and then in the cluttered en-
vironment (shown in Figure 7), and viceversa. The idea here is to verify if the size and
complexity of the space where the initial learning is done have any noticeable impact on
the subsequent learning. The 6-behavior robot did quite well when learning initially in the
cluttered environment and then moving to the sparse environment, but was also successful
(even though to a lesser extent) when doing the reverse. The 3-behavior robot was again not
very successful. The major reason for the better success of the 6-behavior robot is due to its
WANDER behavior, that allows it to explore more of the space. In sparse environments the
WANDER behavior is active much more than the UNNWEDGE behavior, but even in cluttered
environments WANDER is the most active behavior.

We can make the claim, nevertheless, that prior knowledge potentially can improve the
robot’s performance when adapting to different environments. The disparity of the results
between the cluttered and sparse environment experiments shows that the improvement is
still very dependent on the robot’s current environment. Environments in which the robot
can perform the box pushing task well, i.e. sparse environment for the 6-behavior robot, will
also be the environments that the robot can more easily adapt to.

This conclusion is not terribly revolutionary, and the experimental results from the robot
adapting to the cluttered environment indicate that practical success of the robot applying
knowledge from different environments is rather limited. In fact, as the experiment shows,
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at times prior knowledge can be a detriment.

11 Conclusions

The first conclusion we must make is that the underlying behavior-based architecture is
crucial to the robot’s learning performance, perhaps more important than how the sensor
data is grouped and how the reward functions are parameterized. The more detailed and
explicit the architecture is, the better the robot will learn and perform its box-pushing task.
Stated another way, the original Mahadevan and Connell approach to machine learning can
be improved, and without significantly changing the machine learning method itself. The
method does not replace or over-shadow the architecture, but instead enhances it. The best
aspect of the Mahadevan and Connell approach is that it fully utilizes the advantages of the
behavior-based architecture, i.e. its robustness, limited error propagation, and its ability to
operate in real-time.

Similarly, we can conclude that the machine learning method examined in this paper
is scalable, scalable in the sense that its learning can carry over into more complex envi-
ronments. The method is also flexible, in the sense that the type of environment does not
matter. The experiments show that the 6-behavior robot performs reasonably well in both
the cluttered environment and the open, sparse environment, although the degree of im-
provement is still dependent on the environment. How much more complex the environment
can be remains a subject for future investigation.

The last set of experiments shows that by using this machine learning approach, the
robot’s learned sensor information can be applied from one environment to a different en-
vironment with some success. Again, that success is dependent on the environment. Even
though the performance improvements are limited and environment dependent, the results
are encouraging. Any improvement in performance is better than having to learn from
scratch every time the environment changes.

It is also evident through prolonged observations of the simulated robot, that further
improvements can be made. The 6-behavior robot still spends too much effort exploring
territory that it has already explored. A possible solution would be to implement a kind
of localized map making in the robot, whereby the robot stores patterns of sensor states,
and check to make sure that recent patterns are not repeated. Another problem concerns
the rate at which the robot learns. There is a point during the robot’s learning trials where
the continued application of rewards and punishments are no longer helpful. This becomes
evident in the simulation when the robot appears “jittery” and begins to spend more time
turning in open space than moving forward. The propagation of reward values over and
over causes the robot to look indecisive, and degrades effectiveness. It would be wise then
to implement the rewards and punishments not as constant values, but as functions that
decrease their value over time, as done, for instance, in [Hougen et al., 1996]. Such a change
would likely improve the robot’s learning ability even more.
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