
An Overview of XRobots: A Hierarchical State Machine Based Language

Steve Tousignant, Eric Van Wyk, Maria Gini

Abstract— This paper introduces a prototype domain-specific
language for programming mobile robots that is based on
hierarchical state machines. A novelty of this language is that
states are treated as first class entities in the language andthus
they can be passed as arguments to other parameterized states.
The structure and behavior of the language is presented, along
with an example program. Further work and language design
challenges are also discussed.

I. I NTRODUCTION

As advances in robotics have allowed small mobile robots
to gain greater complexity and therefore be used to address
more challenging tasks, programming them in a general
purpose language becomes a more arduous job. The difficulty
of this task is due to the fact that even the simplest robotic
program needs to take input from the sensors, run it through
some type of a control algorithm, and write the output to the
actuators of the robot. However, more complex algorithms
may add other steps such as preprocessing the sensory inputs
or building a Brooksian subsumption architecture [1] into the
control algorithm.

Thus, writing robotic algorithms in a general purpose
programming language poses a number of challenges. For
example, sensors and actuators, as realized in imperative pro-
grams, tend to be global variables which makesmodularity
difficult. The conceptual pattern that a given stimuli causes
a given reaction becomes difficult to trace in the code. To
state the problem more generally, the problem space has little
correlation to the solution space.

These challenges are not unlike those found in other areas
of software development in which domain-specific program-
ming and modeling languages have been proposed (see [2]
for a survey). Thus, to address problems in developing
software for mobile robots we propose a domain-specific
language called XRobots that is based on hierarchical state
machines (HSMs). HSMs have their origins in the STAT-
ECHARTs introduced by Harrel [3] and their evolution is
documented in [4]. They have been used in several areas
of computer science and are widely used in the engineering
fields. HSMs have states and transitions between them as
in regular finite state machines (FSMs). The states typically
contain a set of actions which occur on theentry of a state
and another set of actions that occur on theexit of a state.
HSMs build on the concepts of FSMs by introducing the
notion that states can be nested in a hierarchical manner.

S. Tousignant, E. Van Wyk, and M. Gini are with the Departmentof
Computer Science and Engineering, University of Minnesota, Minneapo-
lis, MN 55455 stousig@cs.umn.edu, evw@cs.umn.edu,
gini@cs.umn.edu

Therefore, a HSM can be in multiple states simultaneously
so long as those states have a parent-child relationship.

Using an HSM-based language mirrors the way many
researchers think about problems from the mobile robots
domain. In XRobots the states in a HSM specify thebehav-
iors that the robot is expected to exhibit. This seems natural
since roboticists often think in terms of a robot’s behaviors.
Behaviors, as a language construct in XRobots, can read from
and write to a number of variables on entering or exiting
the behavior; these variables can include the actuators and
sensors of the robot. Since our behaviors are based on the
states of HSMs, the robot will remain in a behavior until one
of its transitions takes it out of that behavior/state. Transitions
specify a boolean condition and the target behavior, which
may include parameters that are passed to that behavior.
When its condition becomes true, the transition isenabled.
Since we have based the language on HSMs, to transition
from one behavior to another we will need to exit one set
of behaviors, i.e. those that constitute the current state,and
enter another behavior.

The aspect that we add to HSMs is the ability to parame-
terize behaviors and treat behaviors as first class structures.
Therefore, we can pass information from one state to the
next. We allow parameters to be passed in two ways, by
value and by reference. These terms have the common
meaning associated with them in programming languages:
when something is passed by value a copy is created and
passed to the called behavior; when something is passed by
reference we use a reference to refer back to its run-time
value and location. Since behaviors are first class structures,
they can also be passed into other behaviors either by value
or by reference. This increases the potential for code reuse
within the language.

The remainder of this paper is organized as follows.
Section II gives an overview of the language itself, and
section III walks the reader through an example program. We
describe some of the challenges of designing such a language
in Section IV. Section V is a brief overview of related work.
Finally, Section VI outlines future work.

II. XROBOTS LANGUAGE OVERVIEW

Behaviorsare the fundamental building-block of XRobots.
They correlate to states in HSMs and thus in XRobots can
be nested. The language provides the option of labeling one
of the behaviors specified in another as aninitial behavior to
be entered when the parent is also entered. Behaviors have
a number of components that are illustrated in Fig. 1 and
referenced by labeled comments.

/** #1 name and parameter list **/
Behavior driveStraightFor(float duration){

/** #2 Declaration Block **/
float newDuration;
/** #3 Entry Block */
Entry{

rVel := 200.0;
lVel := 200.0;
newDuration = duration - 5.0;

}

/** #4 Transition block **/
Under Condition duration > 0
Apply Behavior driveStraightFor(newDuration)

Under Condition duration <= 0
Apply Behavior Stop() /** The behavior stop is not shown **/

/** #5 Exit block **/
Exit{

rVel := 0.0;
lVel := 0.0;

}
}

Fig. 1. A simple Behavior

1) Name: every behavior has a name and standard rules of
scoping of names apply. In Fig. 1 the single behavior
is nameddriveStraightFor. This can be seen at
the comment labeled #1.

2) Parameter List: A list of types and formal arguments
which need to be passed into the behavior when it is
called. See again label #1.

3) Declarations block: a list of declarations, including
sub-behavior definitions, used in the behavior. See
label #2.

4) Entry Block: a block of statements that execute when
the behavior is entered. See label #3.

5) Transition block : A list of transitions consisting of
boolean expressions and target behaviors. When the
condition evaluates to true the condition is enabled and
the system transitions to the next behavior. See label
#4.

6) Exit Block: a block of statements that execute when
the behavior is exited. See label #5.

At any specific point in the execution of the program, we
say that any behavior that has been entered, but not exited is
anactive behavior. Furthermore, the behavior that was most
recently entered (but not exited) is thecurrent behavior. The
order in which behaviors are entered and exited follows a
first-in-last-out ordering and thus we can view behaviors as
being pushed onto a stack when they are entered and popped
off when they exit. The top element of this stack of active
behaviors is the current behavior. As expected, such a stack
is in-fact used in the implementation of XRobots. A property
of the language is that if a behavior is active and thus on the

stack, all behaviors below it in the stack are sub-behaviors
and enclosed by it in the hierarchy. Note that all programs
have a root behavior which is, by definition, an ancestor of
all the behaviors in a program.

What HSMs add to FMS is the ability to nest states
within states. In XRobots this is realized by behaviors as
first class structures which can be declared within other
behaviors. Here, behaviors can be parameterized, and since
behaviors are first class structures they can by passed into
other behaviors as arguments. These arguments, regardlessof
type, can be declared as either pass by-reference or pass by-
value. For primitive data types supported by XRobots, such
as integer, floating-point and boolean types, this is handled
as expected and as in other languages such as C++. For
behaviors, however, this is more interesting.

We start by explaining the simple case where the targets of
transitions are constant named behaviors. At the beginning
of the program theroot behavior is made active and any
entry code block in it is executed. When any behavior is
entered, any child behavior labeled “initial” becomes active
and its entry code is executed. The transition conditions of
each active behavior are tested. These tests are ordered from
parent to child in the HSM and in order of appearance in a
single behavior. The first condition that is found to be true
enables that transition. In an enabled transition, all active
behaviors that are descendants of the common ancestor of
the current and target behaviors are exited. As each behavior
exits, its exit code is executed. Lastly, the target behavior
is made active and its entry code is executed. However,
if no transitions are enabled, the program does not change

behaviors. The program pauses, new sensor values are read,
and the process repeats, with a potentially new set of enabled
transitions. It is worth noting that while many behaviors can
be exited at once, only one can be entered; so the target
behavior must be a child or sibling of an active behavior.

In the above description, we assumed the target behavior is
specified by name. However, since behaviors are first class
structures, they can also be used as arguments to another
behavior. So variables with a behavior-type may appear in
the list of types that are the formal parameters of behaviors.
The arguments are passed into these parameters by value
unless theByRef indicator is present which indicates that
they are to be passed in by reference.

When a behavior is passed by reference, a reference
(which can be implemented as a pointer as in languages such
as C++) is stored for the name of the behavior argument
of the called behavior’s state machine. If the transition that
uses the argument is enabled, we look up the reference of
that argument and use it as the target of the transition. All
the protocols of the HSM, which were describe above, are
followed. This means that we locate the target in the HSM,
find the common ancestor behavior of the current and the
target state in the HSM, and exit and enter states as described
above. The only difference here is that we have a stored
variable holding the target behavior.

Alternatively, when a behavior is passed by value, a
representation of the “value” of the behavior is passed. This
passed-in behavior is dynamically instantiated as a new sub-
behavior of the called behavior. If a transition is taken to this
behavior, again, the standard XRobots rules and semantics
for applying behaviors are again enforced.

Alternatively, if a behavior is passed by reference into
some other behavior, the transition is handled using the
static location of the behavior passed. Therefore, a transition
to a by-reference behavior argument is no different than a
transition where the target is written directly except for the
fact that the target is not a constant but name (stored in the
reference) that must be looked up.

This augmented HSM model allows the code to more
easily correspond to the problem space. It is rather natural
to think of mobile robotics problems in terms of behaviors.
A behavior may be something like following a wall, but
the behavior to follow a wall may be made up of smaller
behaviors, such as finding the wall and arcing into and out
of the wall. So it also seems quite natural to think of a
behavior being made up of smaller behaviors and being
composable into a larger behavior. Such behaviors (to use the
term informally) can be specified quite naturally in XRobots.

III. E XAMPLE PROGRAM

This section contins a more complex example of an
XRobots program that shows how behaviors can be passed
along with other features. It is shown in Fig. 2 and Fig. 3.
This algorithm is designed for a simple differential-drive
robot with a left and right front bumper.

The robot navigates the outline of a square four times and
then the outline of a triangle four times. It continues this

pattern indefinitely unless an obstacle is hit. The example
has behaviors organized in the following hierarchy.

root
straightLine
start
square

rightCorner
triangle

triangleCorner
stop

The behaviorroot is a container for the program. It is
the outermost state in the HSM and contains the child be-
haviorsstraightLine, start, square, triangle, andstop. These
behaviors are the nested states inside the behaviorroot. This
pattern of nesting states machines within a state machine
is what gives us a hierarchy. At present, programs must
have a root behavior, though it need not be namedroot.
The parameters toroot are the robot’s actuators and sensors;
these are indicated by the appropriate keywords. It should
be noted we are assuming a differential-drive robot and that
we declare the sensorsrBump and lBumpand the actuators
rVel and lVel as parameters to theroot behavior, see label #1
in Fig 2. The sensors are used for obstacle avoidance. The
actuators are set in the entry block of each non-root behavior,
see, for example, comment #4 and #6. Additionally,root only
has a declaration block.

The behaviorssquareand triangle both take an integer
parametercount as well as a behavioravoid. The integer
parameter keeps track of how many times each shape has
been traced. Therefore it determines when to transition
between behaviors. However, the behaviorstraightLinetakes
both a by-reference and by-value behavior, as well as a by-
value integer. The by-value behavior parameter determines
what the robot will do if its bump sensors detect an obstacle.
In this case, the robot will call thestopbehavior defined after
comment #8 . The point of passing the obstacle avoidance
behavior as a parameter is that we could easily replacestop
with some other obstacle avoidance algorithm. Note the only
place we have hard-coded the name ofstop is in the start
behavior at comment #6, so changing this name would be
easy. The sole point of thestart behavior is to configure the
parameters oftriangle.

The behavior parameter associated with comment #2
nextBehavior, is the behaviorstraightLine will call when
it is finished. We determinestraightLine is finished by the
clock, which automatically increments at every time step
unless otherwise rest set such as in the entry block of
straightLine, see comment #5 in Fig 2. The value of the
clock is used as part if not all of our transition conditions,see
comment #4 for example. Similarly, all other transitions use
some combination of the clock and the counts as conditions
for transitions. We are making the simple assumption that
travelling so long at a constant speed will move the robot a
given distance and ignoring things like wheel slippage.

straightLine’s second parameter is a by-value behavior
called avoid, which we pass on totriangle and square. It

/** #1 Root behavior with sensor and actuator parameters **/
Behavior root (sensor bool rBumb, sensor bool lBumb,

actuator float rVel, actuator float lvel) {

Behavior straightLine (
/** #2 parameter list using the type behavior**/
ByRef Behavior nextBehavior(int, ByVal Behavior),
ByVal Behavior avoid(),
int count) {

Entry { /** #3 setting the clock and differential-drive**/
clock := 0.0;
rvel := 100.0;
lvel := 100.0;

}
/** #4 calling a behavior specified as a by value parameter **/
Under Condition rBump || lBump Apply behavior avoid()
Under Condition clock > 25.00

/** #5 calling the behavior specified by the
argument nextBehavior with the parameter count **/

Apply Behavior nextBehavior(count, avoid)

}
/** #6 the initial behavior start initializes the system **/
Initial Behavior start(){
Under Condition True Apply Behavior square(0, stop)

}
/** #7 the behavior square takes the count of homw many squares have been

drawn and an abstacle avoidance behavior **/
Behavior square(int sq_count, ByVal Behavior avoid){
Behavior rightCorner(int corner_count)
Entry{

clock := 0.0;
rVel := 250.0;
lVel := 25.0;

}
Under Condition clock > 7.0 && cornerCount < 4

% MLG -- straightLine has 3 parameters not 2
Apply Behavior straightLine(square, corner_count)

UnderCondition clock > 7.0 && cornerCount == 4
Apply Behavior square(sq_count, stop)

Exit{
corner_count:= corner_count + 1;

}
}

Fig. 2. Triangle Square Program (Part 1)

Under Condition rBump || lBump
Apply Behavior avoid()

Under Condition sq_count < 4
% MLG -- straightLine has 3 parameters not 2

Apply Behavior straightLine(square, corner_count)

Under Condition tri_count => 4
% MLG -- traingle has 2 parameters not 1
Apply Behavior triangle(0)

Exit{
sq_count := sq_count + 1;

}
}
Behavior triangle(int tri_count, ByVal Behavior avoid){
Behavior triangleCorner(int corner_count)
Entry{
clock := 0.0;
rVel := 250.0;
lVel := 25.0;

}
Under Condition clock > 15.0 & & corner_count < 3
% MLG -- traingle has 2 parameters not 1

Apply Behavior triangle(corner_counter)
Under Condition clock > 15.0 && corner_count == 3

% MLG -- straightLine has 3 parameters not 2
Apply Behavior straightLine(triangle, corner_counter)

Exit{
corner_count := corner_count + 1;
}

}
Under Condition rBump || lBump

Apply behavior avoid()

Under Condition tri_count < 4
Apply Behavior straightLine(triangle, avoid, corner_count)

Under Condition tri_count => 4
Apply Behavior square(0)

Exit
tri_count:=tri_count+1;

}
/** #8 Use stopping as an obstacle avoidance technique and an example of a

Behavior passed around by value **/
Behavior stop(){
Entry{
rVel := 0;
lVel := 0;
}

}
}

Fig. 3. Triangle Square Program (Part 2)

determines the behavior to use if an obstacle is encountered.
straightLine’s integer parameter,count, counts how many
times each shape has been traced. It is used as input when
the behavior stored innextBehavior, i.e. triangle or square,
is called. The parameterized behavior determines the type of
shape the robot will navigate. This program is an example
of most, but not all of the constructs in the language.

The behaviorrightCorner is nested insquare, and thus its
ancestors aresquareand root. Because of the hierarchy, the
parameters of the ancestor stateroot are visible in the child
staterightCorner.

The behaviortriangleCorner is a good example of the
entry, transition, and exit block arranged in proximity to
each other. This fact is because the declaration block, which
must come before the entry, is empty. The declaration block
contains the declaration of any variables within the behavior,
including other behaviors. For example,triangleCorner is
declared at the top oftriangle in its declaration list.

This program provides a couple of examples of passing
arguments. BothtriangleCornerandrightCorner, take an in-
teger argument that determines how many times the triangle
or square, respectively, have been circumnavigated. When
we call these behaviors, we must provide a value for the
integer count. The arguments to the behaviorstraightLine
are slightly more complicated since it takes both a behavior
and an integer, see comment #5. Additionally the behavior
argument has a parameter list of an integer, so only behaviors
with one integer argument used when callingstraightLine.

IV. CHALLENGES OF THELANGUAGE

With the added expressivity of passing behaviors by value
and by reference come some challenges in language design.
We describe here the three most important:

1) ensuring that invoking a by-reference behavior follows
standard rules;

2) error detection when passing by-value behaviors;
3) dealing with the pragmatics of the language.
Transitions with a by-reference target behavior should use

the same protocol as transitions with constant target behavior.
The only difference, and thus the challenge, is retrieving the
reference to the behavior so that it is in a similar form as a
constant target behavior. We must, for example, not attempt
to transition to a behavior that is nested several layers deeper
in the hierarchy than the current depth. What we wish to
avoid is having one algorithm for each type of transition
since they fundamentally do the same operation.

Passing behaviors by value introduces the possibility for
some interesting errors to arise. Say, for instance, we havea
behavior that accesses variables from an ancestor state, and
we pass that behavior by value into a behavior in another
branch of the hierarchy. When that other branch tries to make
that behavior the current behavior, the ancestor variablesit
tries to access may not be accessible if the ancestor behavior
that defined them is no longer active. It will be fairly straight
forward at runtime to throw an error that the variable is not
defined, but it would be preferable to detect this situation at
compile time and flag the error at that point.

The last challenge deals with the pragmatics of the lan-
guage. We are unsure how easy it may be for the programmer
to reason about programming in this model. The higher-order
nature of the language (i.e. behaviors as first class structures)
may be problematic to people who are not used to such con-
ventions. This claim may be especially true for those whose
background is solely in imperative programming. Therefore,
one of the challenges for us as language developers is how
to minimize this barrier.

V. RELATED WORK

This section examines briefly programming languages
whose main purpose is to simplify robotic programming.
Such languages can mostly be classified as either reactive
languages, or imperative languages, or languages based on a
standardized middleware, such as CORBA. Domain specific
languages are starting gaining popularity in the robotics
community, because they promise to simplify the process of
developing the large and complex programs that are needed
for robots.

In a major change from the approaches that were com-
monly used in robotics, Brooks [5] introduced the subsump-
tion architecture, an architecture based on layers of compo-
nents connected to each other, that operate on sensor data and
produce control commands to the robot. The components use
“inhibition” and “suppression” mechanisms to override other
components, enabling the building of complex programs that
are scalable and modular. Brooks later introduced the Behav-
ior Language to make it easy to implement his subsumption
architecture [6]. Since the subsumption architecture is based
on Augmented Finite State Machines (AFSM), so is the
language. The Behavior Languages syntax is compiled into
a set of AFSM, which can in turn be translated into code to
run on a number of different sets of hardware.

Player/Stage [7] is currently the most widely used public
domain software for programming real robots and for simu-
lating them. Player/Stage evolved over the years from using
only IP ports and low-level communication between Player
and Stage or the physical robots, to a CORBA based system
based on components, where Player acts as an abstraction
between Stage or the hardware and a high-level programming
language which is used to control the robots.

More recently, Gerkey, one of the developers of
Player/Stage, introduced the Robotic Operating System
(ROS) [8]. ROS provides a standardized interface between
robotic algorithms and hardware. Popular packages, such as
Player, can be wrapped and used in ROS. Its developer argue
its advantages include: being thin – it is small memory-wise;
peer-to-peer – it does not require a central server; multi-
lingual; tool based – a large set of small tools is used to
handle the workflow; and Free and open source. ROS could
be thought of as the next generation of Player/Stage.

Many programming languages have been proposed for
robots. For a survey of the field, see [9]. For instance,
a task-level robotic programming language was presented
in [10]. While the robot language itself is imperative, it
is based on the reactive language ESTREL. The code is

reminiscent of classical AI plans. At the heart of the language
are robot tasks which are simple plans instructing the robot
to complete some procedures. Like many other languages for
robots, these plans can be combined with conditions, run in
sequence or in parallel, and inserted into loops. Through the
use of the mechanisms, simple plans can be built into more
complex plans.

A language of a different flavor is the Multiagent Robot
Language (MRL), introduced in [11], which is based upon
Guarded Horn Clauses and similar to the Guarded Command
Language, GCL [12]. Each declaration in the language has a
head, guard, and body. The head is comparable to a function
or rule name. The guard and body are atomic formulas such
that if the guard is entailed, the body is executed.

CORBA-based approaches have been and are still popular
in robotics, because they provide components and useful
services [13]. Unfortunately, they are also complex to learn
and have often a non trivial overhead. Smart [14] asserts that
the robotic research agenda could be significantly accelerated
by a standardized robotic middleware. He claims that most
research teams waste time building their own platforms when
they could get straight to the heart of their research. But he
does admit there are large barriers to a universal operating
system such as the heterogeneity of robotic hardware, the
limited computational power of most robots, and the fre-
quency of numerous types of failures in robots. He asserts
that developing such a system will take the support of the
whole robotics community and a number of iterations to get
it right.

Orca [15] is a framework for developing component-based
software for robots. The building blocks of Orca are data
objects, communication patterns, and transport mechanisms.
A component is built by selecting from a standard set of
these building blocks. The framework is open source so that
individuals can extend it by adding new building blocks,
and doing so will account for new hardware, communication
protocols, etc. The authors make a point of the difference
between objects and components. They define components
as freestanding executables, so you do not have to compile
your system if you are using pre-built components. Each
component would encapsulate the behaviors of the device it
controlled. In one sense such a system would be compiled
as components and then assembled into the running system.

URBI [16], has similarities with older versions of
Player/Stage. It is based on a client/server model where the
server runs on the robot itself. Thus the server contains all
the low-level interfaces with the hardware. The client can be
written in any language that handles TCP sockets, but C++
or Java are most commonly used. URBI has a large user base
and supports multiple hardware platforms, ranging from the
Lego Mindstorm to the the humanoid NAO.

ASEME (Agent Systems Engineering Methodology) [17]
has been proposed recently for developing software for
agents. The approach uses the model-driven engineering
paradigm, which relies on model transformations, and is
intended to cover all the phases of the design and develop-
ment of software for a complex distributed system of agents.

ASEME is being applied to program robots for RoboCup.
Domain specific languages are gaining popularity in

robotics. Wellborn [18] presents a DSL for robotics em-
bedded in Java. His DSL extends java with Resources,
Coordinator, Portals, etc, that allow broadcast, client/server,
and peer-to-peer communication between robots. His primary
goal is to decrease the amount of communication needed in
these applications. His contribution is more to the area of
distributed computing than to robotics. In fact, the author
leaves it as future work to get his system running on real
robots.

XABSL [19] is a recent example of an extensible behavior
specification language designed for robotics. The language
has been used for multiple robotics platforms, most notably
to program robots for RoboCup.

Reckhauss et al. [20], present an example of a Platform
Independent Model (PIM) coupled with a Platform Specific
Model (PSM). They develop a PIM to control a whole array
of robots, and a PSM to control each specific robot. Clearly
this is a way to handle robot heterogeneity. However, each
PSM can have its own syntax so you may end up with a
number of related, but disparate languages with identical
semantics. The authors cite this as an example of model
driven development.

VI. FURTHER WORK AND CONCLUSION

We intend to expand this work on several fronts. The first,
and most obvious steps are formalizing the semantics and
completing a stable version of the compiler. We would also
like to build a simulator so that we can test programs while
examining the internal flows of data. Visual inspection of a
robotic program may not be sufficient, but tracing though a
program step by step will be helpful.

We intend to test the language by comparing it to some
know code base. A possibility is using the challenges design
for the CURIE project [21] and comparing both our results
and the quality of our code to there findings. Eventually,
it would also be nice to get user feedback on the ease of
development in our language.

In this paper we have introduced a language for program-
ming mobile robots based on an augmented HSM model.
What augments the HSM model is the use of parameterized
behaviors (states) and the ability to treat behaviors (states) as
first class structures. The programming model has potential
advantages over the state of the art in that it more closely
resembles the problem space and has significant higher-order
capabilities. We have shown the syntax of the language and
conceptually how the language will function. The opportuni-
ties and difficulties of passing around behaviors as by-value
and by-reference parameters has been discussed.

REFERENCES

[1] R. A. Brooks, “A robust layered control system for a mobile robot,”
Massachusetts Institute of Technology, Cambridge, MA, USA, Tech.
Rep., 1985.

[2] A. van Deursen, P. Klint, and J. Visser, “Domain-specificlanguages:
an annotated bibliography,”SIGPLAN Not., vol. 35, pp. 26–36, June
2000. [Online]. Available: http://doi.acm.org/10.1145/352029.352035

[3] D. Harel, “Statecharts: A visual formalism for complex systems,”
Sci. Comput. Program., vol. 8, pp. 231–274, June 1987. [Online].
Available: http://portal.acm.org/citation.cfm?id=34884.34886

[4] M. Yannakakis, “Hierarchical state machines,” inTheoretical Com-
puter Science: Exploring New Frontiers of Theoretical Informatics, ser.
Lecture Notes in Computer Science, J. van Leeuwen, O. Watanabe,
M. Hagiya, P. Mosses, and T. Ito, Eds. Springer Berlin / Heidelberg,
2000, vol. 1872, pp. 315–330.

[5] R. Brooks, “A robust layered control system for a mobile robot,”
Robotics and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14 –
23, Mar. 1986.

[6] ——, “The behavior language: User”s guide,” Massachusetts Institute
of Technology, Cambridge, MA, USA, Tech. Rep., 1990.

[7] B. Gerkey, R. T. Vaughan, and A. Howard, “The Player/Stage
project: Tools for multi-robot and distributed sensor systems,” in Int’l
Conf. on Advanced Robotics, Coimbra, Portugal, June 2003. [Online].
Available: citeseer.ist.psu.edu/gerkey03playerstage.html

[8] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J.Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” inICRA Workshop on Open Source Software, 2009.

[9] J. Kramer and M. Scheutz, “Development environments
for autonomous mobile robots: A survey,”Autonomous
Robots, vol. 22, pp. 101–132, 2007. [Online]. Available:
http://dx.doi.org/10.1007/s10514-006-9013-8

[10] E. Coste Maniere, B. Espiau, and́E. Rutten, “Task-level robot
programming combining object-oriented design and synchronous
approach : a tentative study,” INRIA, Research Report RR-1441,
1991. [Online]. Available: http://hal.inria.fr/inria-00075119/PDF/RR-
1441.pdf

[11] H. Nishiyama, H. Ohwada, and F. Mizoguchi, “A multiagent robot
language for communication and concurrency control,” inInt’l Conf.
on Multi Agent Systems. Los Alamitos, CA, USA: IEEE Computer
Society, 1998, p. 206.

[12] E. W. Dijkstra, “Guarded commands, nondeterminacy andformal
derivation of programs,”Commun. ACM, vol. 18, pp. 453–457, August
1975. [Online]. Available: http://doi.acm.org/10.1145/360933.360975

[13] D. Brugali, Software Engineering for Experimental Robotics.
Springer, 2007.

[14] W. D. Smart, “Is a common middleware for robotics
possible?” in Proc. IROS 2007 workshop on Mea-
sures and Procedures for the Evaluation of Robot
Architectures and Middleware, 2007. [Online]. Available:
http://www.cse.wustl.edu/ wds/?q=papers&display=detail&tag=iros-
ws2007

[15] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback,
“Towards component-based robotics,” inProc. IEEE/RSJ Int’l Conf.
on Intelligent Robots and Systems, 2005, pp. 1475–1480.

[16] Baillie, “Urbi: Towards a universal robotic low-levelprogramming
language,” inProc. IEEE/RSJ Int’l Conf. on Intelligent Robots and
Systems, 2005.

[17] M. P. Spanoudakis N., “Modular JADE agents design and implemen-
tation using ASEME,” inIEEE/WIC/ACM Int’l Conf. on Intelligent
Agent Technology, Toronto, Canada, 2010.

[18] C. R. Welborn, “Specifying a domain specific language for cooperative
robotics,” Ph.D. dissertation, Texas Tech University, 2006.

[19] M. Lötzsch, M. Risler, and M. Jüngel, “XABSL - A pragmatic
approach to behavior engineering,” inProc. IEEE/RSJ Int’l Conf. on
Intelligent Robots and Systems, Beijing, China, 2006, pp. 5124–5129.

[20] M. Reckhaus, N. Hochgeschwender, P. G. Ploeger, and G. K. Kraet-
zschmar, “A platform-independent programming environment for robot
control,” in 1st Int’l Workshop on Domain-Specific Languages and
models for ROBotic systems (DSLRob10), Oct. 2010.

[21] [Online]. Available: http://web.mae.cornell.edu/hadaskg/outreach/curie2010.html

