An Overview of XRobots: A Hierarchical State Machine Basexhfjuage

Steve Tousignant, Eric Van Wyk, Maria Gini

Abstract— This paper introduces a prototype domain-specific Therefore, a HSM can be in multiple states simultaneously
language for programming mobile robots that is based on sp long as those states have a parent-child relationship.
hierarchical state machines. A novelty of this language ishiat Using an HSM-based language mirrors the way many

states are treated as first class entities in the language aribus h think about bl f th bil bot
they can be passed as arguments to other parameterized state researchers think about problems from the mobile robots

The structure and behavior of the language is presented, ahg ~ domain. In XRobots the states in a HSM specify behav-
with an example program. Further work and language design iors that the robot is expected to exhibit. This seems natural

challenges are also discussed. since roboticists often think in terms of a robot’s behasior
Behaviors, as a language construct in XRobots, can read from
. INTRODUCTION and write to a number of variables on entering or exiting

))) the behavior; these variables can include the actuators and
As advances in robotics have allowed small mobile robotsensors of the robot. Since our behaviors are based on the

to gain greater complexity and therefore be used to addreggtes of HSMs, the robot will remain in a behavior until one
more challenging tasks, programming them in a genergf its transitions takes it out of that behavior/state. Bitions
purpose language becomes a more arduous job. The difficulljecify a boolean condition and the target behavior, which
of this task is due to the fact that even the simplest robotih:,ay include parameters that are passed to that behavior.
program needs to take input from the sensors, run it throughnen its condition becomes true, the transitioreisabled
some type of a control algorithm, and write the output to th&jce we have based the language on HSMs, to transition
actuators of the robot. However, more complex algorithmgom one behavior to another we will need to exit one set
may add other steps such as preprocessing the sensory ingjftpehaviors, i.e. those that constitute the current statd,
or building a Brooksian subsumption architecture [1] ift® t anter another behavior.
control algorithm. The aspect that we add to HSMs is the ability to parame-
Thus, writing robotic algorithms in a general purposgerize behaviors and treat behaviors as first class stestur
programming language poses a number of challenges. Fpierefore, we can pass information from one state to the
example, sensors and actuators, as realized in imperative pnext. We allow parameters to be passed in two ways, by
grams, tend to be global variables which makesdularity value and by reference These terms have the common
difficult. The conceptual pattern that a given stimuli causemeaning associated with them in programming languages:
a given reaction becomes difficult to trace in the code. T@hen something is passed by value a copy is created and
state the problem more generally, the problem space hias lithassed to the called behavior; when something is passed by
correlation to the solution space. reference we use a reference to refer back to its run-time
These challenges are not unlike those found in other aregsiue and location. Since behaviors are first class strestur
of software development in which domain-specific programthey can also be passed into other behaviors either by value
ming and modeling languages have been proposed (see {#]by reference. This increases the potential for code reuse
for a survey). Thus, to address problems in developingithin the language.
software for mobile robots we propose a domain-specific The remainder of this paper is organized as follows.
language called XRobots that is based on hierarchical stag@ction Il gives an overview of the language itself, and
machines (HSMs). HSMs have their origins in the STATsection Ill walks the reader through an example program. We
ECHARTSs introduced by Harrel [3] and their evolution isdescribe some of the challenges of designing such a language

documented in [4]. They have been used in several are@sSection IV. Section V is a brief overview of related work.
of computer science and are widely used in the engineerimnally, Section VI outlines future work.
fields. HSMs have states and transitions between them as

in regular finite state machines (FSMs). The states typicall Il. XROBOTSLANGUAGE OVERVIEW
contain a set of actions which occur on thetry of a state
and another set of actions that occur on éxi of a state. Behaviorsare the fundamental building-block of XRobots.

HSMs build on the concepts of FSMs by introducing therhey correlate to states in HSMs and thus in XRobots can
notion that states can be nested in a hierarchical mannpge nested. The language provides the option of labeling one
_ N ‘ of the behaviors specified in another asigitial behavior to
S. Tousignant, E. Van Wyk, and M. Gini are with the Departmeft he entered when the parent is also entered. Behaviors have
Computer Science and Engineering, University of Minnestaneapo- b f h il di . d
lis, MN 55455 St ousi g@s. umm. edu, evw@s. umm. edu, & number of components that are illustrated in Fig. 1 an

gi ni @s. um. edu referenced by labeled comments.

[+ #1 nane and paraneter |ist =/

Behavi or driveStrai ght For (fl oat duration){
/*+ #2 Declaration Block *x/
fl oat newburati on;
[*x #3 Entry Bl ock */

Ent r y{
rvel := 200.0;
| Vel := 200.0;

newDur ati on = duration - 5.0;

}

[+* #4 Transition bl ock *x/

Under Condition duration > 0

Apply Behavi or driveStrai ght For (newbDur ati on)

Under Condition duration <= 0

Apply Behavior Stop() /** The behavior stop is not shown *x/

[+x #5 Exit bl ock »x/

Exi t {
rvVel := 0.0;
I Vel := 0.0;
}

Fig. 1. A simple Behavior

1) Name: every behavior has a name and standard rulesstéck, all behaviors below it in the stack are sub-behaviors
scoping of names apply. In Fig. 1 the single behavioand enclosed by it in the hierarchy. Note that all programs
is nameddr i veSt r ai ght For . This can be seen at have a root behavior which is, by definition, an ancestor of
the comment labeled #1. all the behaviors in a program.

2) Pa_rameter List: A list of ty_pes and forma_ll argume_nt_s What HSMs add to FMS is the ability to nest states
which need to be passed into the behavior when it i§iihin states. In XRobots this is realized by behaviors as
called. See again label #1. . . ~ first class structures which can be declared within other

3) Declarations block: a list of declarations, includingyehayiors. Here, behaviors can be parameterized, and since
sub-behavior definitions, used in the behavior. Segghayiors are first class structures they can by passed into

label #2. _ other behaviors as arguments. These arguments, regaotlless
4) Entry Block: a block of statements that execute Wheﬂ/pe, can be declared as either pass by-reference or pass by-
the behavior is entered. See label #3. value. For primitive data types supported by XRobots, such

5) Transition block : A list of transitions consisting of ;¢ integer, floating-point and boolean types, this is hahdle

boolean expressions and target behaviors. When the eyxpected and as in other languages such as C++. For
condition evaluates to true the condition is enabled angbpaviors. however. this is more interesting.

the system transitions to the next behavior. See label o :
#4. We start by explaining the simple case where the targets of

ﬁransitions are constant named behaviors. At the beginning
of the program theoot behavior is made active and any
entry code block in it is executed. When any behavior is
At any specific point in the execution of the program, weentered, any child behavior labeled “initial” becomes\ati

say that any behavior that has been entered, but not exitedaizd its entry code is executed. The transition conditions of
an active behaviorFurthermore, the behavior that was moseach active behavior are tested. These tests are orderad fro
recently entered (but not exited) is therrent behaviorThe parent to child in the HSM and in order of appearance in a
order in which behaviors are entered and exited follows single behavior. The first condition that is found to be true
first-in-last-out ordering and thus we can view behaviors asnables that transition. In an enabled transition, allvecti
being pushed onto a stack when they are entered and poppethaviors that are descendants of the common ancestor of
off when they exit. The top element of this stack of activahe current and target behaviors are exited. As each bahavio
behaviors is the current behavior. As expected, such a stagkits, its exit code is executed. Lastly, the target behravio
is in-fact used in the implementation of XRobots. A propertys made active and its entry code is executed. However,
of the language is that if a behavior is active and thus on thieno transitions are enabled, the program does not change

6) Exit Block: a block of statements that execute whe
the behavior is exited. See label #5.

behaviors. The program pauses, new sensor values are rgaattern indefinitely unless an obstacle is hit. The example
and the process repeats, with a potentially new set of edablieas behaviors organized in the following hierarchy.
transitions. It is worth noting that while many behaviors ca

be exited at once, only one can be entered; so the target root . .
. . o . . straightLine
behavior must be a child or sibling of an active behavior.
o S start
In the above description, we assumed the target behavior is square

specified by name. However, since behaviors are first class

structures, they can also be used as arguments to another . rightCorner
)) : . : triangle
behavior. So variables with a behavior-type may appear in -
. . triangleCorner
the list of types that are the formal parameters of behaviors stop

The arguments are passed into these parameters by value
unless theByRef indicator is present which indicates that The behaviorroot is a container for the program. It is
they are to be passed in by reference. the outermost state in the HSM and contains the child be-
When a behavior is passed by reference, a referenbaviorsstraightLine start, square triangle, andstop These
(which can be implemented as a pointer as in languages suaghaviors are the nested states inside the behaaarThis
as C++) is stored for the name of the behavior argumepattern of nesting states machines within a state machine
of the called behavior's state machine. If the transitioat th is what gives us a hierarchy. At present, programs must
uses the argument is enabled, we look up the reference lidve aroot behavior, though it need not be nameabt.
that argument and use it as the target of the transition. Allhe parameters tmot are the robot’s actuators and sensors;
the protocols of the HSM, which were describe above, arhese are indicated by the appropriate keywords. It should
followed. This means that we locate the target in the HSMye noted we are assuming a differential-drive robot and that
find the common ancestor behavior of the current and thee declare the sensorBumpand|Bumpand the actuators
target state in the HSM, and exit and enter states as dedcrib®el andIVel as parameters to theot behavior, see label #1
above. The only difference here is that we have a storad Fig 2. The sensors are used for obstacle avoidance. The
variable holding the target behavior. actuators are set in the entry block of each non-root behavio
Alternatively, when a behavior is passed by value, aee,for example, comment #4 and #6. Additionatipt only
representation of the “value” of the behavior is passeds Thhas a declaration block.
passed-in behavior is dynamically instantiated as a new sub The behaviorssquare and triangle both take an integer
behavior of the called behavior. If a transition is takentig t parametercount as well as a behaviocavoid The integer
behavior, again, the standard XRobots rules and semantjgarameter keeps track of how many times each shape has
for applying behaviors are again enforced. been traced. Therefore it determines when to transition
Alternatively, if a behavior is passed by reference intdetween behaviors. However, the behawimaightLinetakes
some other behavior, the transition is handled using tHeoth a by-reference and by-value behavior, as well as a by-
static location of the behavior passed. Therefore, a tiiansi value integer. The by-value behavior parameter determines
to a by-reference behavior argument is no different than wthat the robot will do if its bump sensors detect an obstacle.
transition where the target is written directly except floe t In this case, the robot will call thetopbehavior defined after
fact that the target is not a constant but name (stored in tikemment #8 . The point of passing the obstacle avoidance
reference) that must be looked up. behavior as a parameter is that we could easily repstme
This augmented HSM model allows the code to moraith some other obstacle avoidance algorithm. Note the only
easily correspond to the problem space. It is rather naturalace we have hard-coded the namestiipis in the start
to think of mobile robotics problems in terms of behaviorsbehavior at comment #6, so changing this name would be
A behavior may be something like following a wall, buteasy. The sole point of thetart behavior is to configure the
the behavior to follow a wall may be made up of smalleparameters ofriangle.
behaviors, such as finding the wall and arcing into and out The behavior parameter associated with comment #2
of the wall. So it also seems quite natural to think of anextBehaviaris the behaviorstraightLine will call when
behavior being made up of smaller behaviors and beirtis finished. We determinstraightLineis finished by the
composable into a larger behavior. Such behaviors (to @se tblock, which automatically increments at every time step
term informally) can be specified quite naturally in XRobotsunless otherwise rest set such as in the entry block of
straightLing see comment #5 in Fig 2. The value of the
Il. EXAMPLE PROGRAM clock is used as part if not all of our transition conditiosese
This section contins a more complex example of asomment #4 for example. Similarly, all other transitiong us
XRobots program that shows how behaviors can be passsgime combination of the clock and the counts as conditions
along with other features. It is shown in Fig. 2 and Fig. 3for transitions. We are making the simple assumption that
This algorithm is designed for a simple differential-drivetravelling so long at a constant speed will move the robot a
robot with a left and right front bumper. given distance and ignoring things like wheel slippage.
The robot navigates the outline of a square four times and straightLinés second parameter is a by-value behavior
then the outline of a triangle four times. It continues thigalled avoid, which we pass on tdriangle and square It

/+*x #1 Root behavior with sensor and actuator paraneters *x/
Behavi or root (sensor bool rBumb, sensor bool | Bunb,
actuator float rVel, actuator float lvel) {

Behavi or straightLine (
[+ #2 parameter |list wusing the type behavior=*x/
ByRef Behavi or next Behavi or (i nt, ByVal Behavior),
ByVval Behavi or avoid(),
int count) {
Entry { /*x #3 setting the clock and differential-drive*x/

clock := 0.0;

rvel = 100. 0;

| vel = 100. 0;
}
[+ #4 calling a behavior specified as a by val ue parameter =*x/
Under Condition rBunp || | Bunp Apply behavior avoid()

Under Condition clock > 25.00
[+ #5 calling the behavior specified by the
argunent nextBehavior with the paraneter count =*x/
Appl y Behavi or next Behavi or (count, avoid)

}
[+*+ #6 the initial behavior start initializes the systemxx/
Initial Behavior start(){
Under Condition True Apply Behavior square(0, stop)
}
[*x #7 the behavi or square takes the count of homw many squares have been
drawn and an abstacl e avoi dance behavi or *=*/
Behavi or square(int sqg_count, ByVal Behavior avoid){
Behavi or right Corner(int corner_count)

Entry{
clock := 0.0;
r Vel = 250.0;
| Vel = 25.0;
}

Under Condition clock > 7.0 && cornerCount < 4
% MLG -- straightLine has 3 paraneters not 2
Appl y Behavi or straightLine(square, corner_count)
Under Condi tion clock > 7.0 &% cornerCount ==
Appl y Behavi or square(sg_count, stop)
Exi t{

}
}

corner_count:= corner_count + 1;

Fig. 2. Triangle Square Program (Part 1)

Under Condition rBunp || | Bunp
Appl y Behavi or avoi d()
Under Condition sq_count < 4
% M_G -- straightLine has 3 paraneters not 2
Apply Behavi or straightLine(square, corner_count)

Under Condition tri_count => 4
% MLG -- traingle has 2 paraneters not 1
Apply Behavior triangle(0)

Exit{
sg_count := sg_count + 1;
}

}
Behavior triangle(int tri_count, ByVal Behavior avoid){
Behavi or triangl eCorner(int corner_count)

Entry{

clock := 0.0;

r Vel = 250.0;

| Vel = 25.0;
}

Under Condition clock > 15.0 & & corner_count < 3
% MLG -- traingle has 2 paraneters not 1
Apply Behavior triangle(corner_counter)
Under Condition clock > 15.0 && corner_count ==
% M_G -- straightLine has 3 paraneters not 2
Apply Behavi or straightLine(triangle, corner_counter)

Exit{

corner _count := corner_count + 1
}
}
Under Condition rBunp || |Bunp

Appl y behavi or avoi d()

Under Condition tri_count < 4
Apply Behavi or straightLine(triangle, avoid, corner_count)

Under Condition tri_count => 4
Appl y Behavi or square(0)

Exi t
tri_count:=tri_count +1;
}
/+x #8 Use stopping as an obstacl e avoi dance techni que and an exanple of a
Behavi or passed around by val ue *x/
Behavi or stop(){

Ent ry{
rvel := 0;
I Vel := 0;
}
}

}

Fig. 3. Triangle Square Program (Part 2)

determines the behavior to use if an obstacle is encounteredThe last challenge deals with the pragmatics of the lan-

straightLinés integer parametergount counts how many guage.We are unsure how easy it may be for the programmer
times each shape has been traced. It is used as input whemeason about programming in this model. The higher-order
the behavior stored inextBehaviari.e. triangle or square nature of the language (i.e. behaviors as first class stesjtu

is called. The parameterized behavior determines the tiype may be problematic to people who are not used to such con-
shape the robot will navigate. This program is an exampheentions. This claim may be especially true for those whose
of most, but not all of the constructs in the language. background is solely in imperative programming. Therefore

The behaviorightCorneris nested irsquare and thus its one of the challenges for us as language developers is how
ancestors arsquareandroot. Because of the hierarchy, theto minimize this barrier.
parameters of the ancestor statet are visible in the child
staterightCorner.

The behaviortriangleCorneris a good example of the This section examines briefly programming languages
entry, transition, and exit block arranged in proximity towhose main purpose is to simplify robotic programming.
each other. This fact is because the declaration block,lwhiSuch languages can mostly be classified as either reactive
must come before the entry, is empty. The declaration blodanguages, or imperative languages, or languages based on a
contains the declaration of any variables within the betravi standardized middleware, such as CORBA. Domain specific
including other behaviors. For examplgiangleCorneris languages are starting gaining popularity in the robotics
declared at the top dfiangle in its declaration list. community, because they promise to simplify the process of

This program provides a couple of examples of passindeveloping the large and complex programs that are needed
arguments. BotltriangleCornerandrightCorner, take an in- for robots.
teger argument that determines how many times the triangleln a major change from the approaches that were com-
or square, respectively, have been circumnavigated. Whemonly used in robotics, Brooks [5] introduced the subsump-
we call these behaviors, we must provide a value for thion architecture, an architecture based on layers of cempo
integer count. The arguments to the behawbmaightLine nents connected to each other, that operate on sensor diata an
are slightly more complicated since it takes both a behavigmroduce control commands to the robot. The components use
and an integer, see comment #5. Additionally the behavidinhibition” and “suppression” mechanisms to overrideeith
argument has a parameter list of an integer, so only betmvi@romponents, enabling the building of complex programs that
with one integer argument used when callsteaightLine are scalable and modular. Brooks later introduced the Behav
ior Language to make it easy to implement his subsumption
architecture [6]. Since the subsumption architecture geta

With the added expressivity of passing behaviors by valugy, Augmented Finite State Machines (AFSM), so is the
and by reference come some challenges in language desigfhguage. The Behavior Languages syntax is compiled into

V. RELATED WORK

IV. CHALLENGES OF THELANGUAGE

We describe here the three most important: a set of AFSM, which can in turn be translated into code to
1) ensuring that invoking a by-reference behavior followsun on a number of different sets of hardware.

standard rules; Player/Stage [7] is currently the most widely used public

2) error detection when passing by-value behaviors; domain software for programming real robots and for simu-

3) dealing with the pragmatics of the language. lating them. Player/Stage evolved over the years from using

Transitions with a by-reference target behavior should usaly IP ports and low-level communication between Player
the same protocol as transitions with constant target hehav and Stage or the physical robots, to a CORBA based system
The only difference, and thus the challenge, is retrievirey t based on components, where Player acts as an abstraction
reference to the behavior so that it is in a similar form as hetween Stage or the hardware and a high-level programming
constant target behavior. We must, for example, not attemlanguage which is used to control the robots.
to transition to a behavior that is nested several layerpetee More recently, Gerkey, one of the developers of
in the hierarchy than the current depth. What we wish t@layer/Stage, introduced the Robotic Operating System
avoid is having one algorithm for each type of transitioROS) [8]. ROS provides a standardized interface between
since they fundamentally do the same operation. robotic algorithms and hardware. Popular packages, such as

Passing behaviors by value introduces the possibility fdPlayer, can be wrapped and used in ROS. Its developer argue
some interesting errors to arise. Say, for instance, we havets advantages include: being thin — it is small memory-wise
behavior that accesses variables from an ancestor state, geer-to-peer — it does not require a central server; multi-
we pass that behavior by value into a behavior in anothdingual; tool based — a large set of small tools is used to
branch of the hierarchy. When that other branch tries to makeindle the workflow; and Free and open source. ROS could
that behavior the current behavior, the ancestor variablesbe thought of as the next generation of Player/Stage.
tries to access may not be accessible if the ancestor behavioMany programming languages have been proposed for
that defined them is no longer active. It will be fairly stfatig robots. For a survey of the field, see [9]. For instance,
forward at runtime to throw an error that the variable is noa task-level robotic programming language was presented
defined, but it would be preferable to detect this situatibn an [10]. While the robot language itself is imperative, it
compile time and flag the error at that point. is based on the reactive language ESTREL. The code is

reminiscent of classical Al plans. At the heart of the largpia ASEME is being applied to program robots for RoboCup.
are robot tasks which are simple plans instructing the robot Domain specific languages are gaining popularity in
to complete some procedures. Like many other languages f@botics. Wellborn [18] presents a DSL for robotics em-
robots, these plans can be combined with conditions, run bbedded in Java. His DSL extends java with Resources,
sequence or in parallel, and inserted into loops. Through ttCoordinator, Portals, etc, that allow broadcast, cliemtsr,
use of the mechanisms, simple plans can be built into moend peer-to-peer communication between robots. His pyimar
complex plans. goal is to decrease the amount of communication needed in
A language of a different flavor is the Multiagent Robotthese applications. His contribution is more to the area of
Language (MRL), introduced in [11], which is based upomristributed computing than to robotics. In fact, the author
Guarded Horn Clauses and similar to the Guarded Commarehves it as future work to get his system running on real
Language, GCL [12]. Each declaration in the language hasrabots.
head, guard, and body. The head is comparable to a functionXABSL [19] is a recent example of an extensible behavior
or rule name. The guard and body are atomic formulas sudpecification language designed for robotics. The language
that if the guard is entailed, the body is executed. has been used for multiple robotics platforms, most notably
CORBA-based approaches have been and are still poputarprogram robots for RoboCup.
in robotics, because they provide components and usefulReckhauss et al. [20], present an example of a Platform
services [13]. Unfortunately, they are also complex torlearindependent Model (PIM) coupled with a Platform Specific
and have often a non trivial overhead. Smart [14] asserts thidlodel (PSM). They develop a PIM to control a whole array
the robotic research agenda could be significantly acdeléra of robots, and a PSM to control each specific robot. Clearly
by a standardized robotic middleware. He claims that moshis is a way to handle robot heterogeneity. However, each
research teams waste time building their own platforms whePSM can have its own syntax so you may end up with a
they could get straight to the heart of their research. But heumber of related, but disparate languages with identical
does admit there are large barriers to a universal operatisgmantics. The authors cite this as an example of model
system such as the heterogeneity of robotic hardware, théiven development.
limited computational power of most robots, and the fre-
quency of numerous types of failures in robots. He asserts VI. FURTHER WORK AND CONCLUSION

that developing such a system will take the support of the We intend to expand this work on several fronts. The first,
whole robotics community and a number of iterations to gednd most obvious steps are formalizing the semantics and
it right. completing a stable version of the compiler. We would also
Orca [15] is a framework for developing component-basegke to build a simulator so that we can test programs while
software for robots. The building blocks of Orca are dataxamining the internal flows of data. Visual inspection of a
objects, communication patterns, and transport mechanisniobotic program may not be sufficient, but tracing though a
A component is built by selecting from a standard set ohrogram step by step will be helpful.
these building blocks. The framework is open source so that\we intend to test the language by comparing it to some
individuals can extend it by adding new building blocksknow code base. A possibility is using the challenges design
and doing so will account for new hardware, communicatiofor the CURIE project [21] and comparing both our results
protocols, etc. The authors make a point of the differencgnd the quality of our code to there findings. Eventually,
between objects and components. They define componeftsvould also be nice to get user feedback on the ease of
as freestanding executables, so you do not have to compilevelopment in our language.
your system if you are using pre-built components. Each |n this paper we have introduced a language for program-
component would encapsulate the behaviors of the devicenfing mobile robots based on an augmented HSM model.
controlled. In one sense such a system would be compilgghat augments the HSM model is the use of parameterized
as components and then assembled into the running systafBhaviors (states) and the ability to treat behaviorsesyats
URBI [16], has similarities with older versions of first class structures. The programming model has potential
Player/Stage. It is based on a client/server model where thgvantages over the state of the art in that it more closely
server runs on the robot itself. Thus the server contains absembles the problem space and has significant higher-orde
the low-level interfaces with the hardware. The client can bcapab”ities_ We have shown the SyntaX of the |anguage and
written in any language that handles TCP sockets, but C4onceptually how the language will function. The opportuni
or Java are most commonly used. URBI has a large user baggs and difficulties of passing around behaviors as byevalu

and supports multiple hardware platforms, ranging from thgnd by-reference parameters has been discussed.
Lego Mindstorm to the the humanoid NAO.

ASEME (Agent Systems Engineering Methodology) [17] REFERENCES
has been proposed recently for developlr_wg softh_;\re fp[l] R. A. Brooks, “A robust layered control system for a mebibbot,”
agents. The approach uses the model-driven engineering Massachusetts Institute of Technology, Cambridge, MA, UBéch.
paradigm, which relies on model transformations, and is_ Rep., 1985. . - . _
. ded t Il the phases of the desian and develo g] A. van Deursen, P. Klint, and J. Visser, “Domain-specliioguages:
Intended to cover a p g Vi an annotated bibliographySIGPLAN Not. vol. 35, pp. 26-36, June

ment of software for a complex distributed system of agents. 2000. [Online]. Available: http://doi.acm.org/10.11852029.352035

(31

(4

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

D. Harel, “Statecharts: A visual formalism for compleysgems,”
Sci. Comput. Program.vol. 8, pp. 231-274, June 1987. [Online].
Available: http://portal.acm.org/citation.cfm?id=38¥834886

M. Yannakakis, “Hierarchical state machines,” Theoretical Com-
puter Science: Exploring New Frontiers of Theoretical nfatics ser.
Lecture Notes in Computer Science, J. van Leeuwen, O. Wagana
M. Hagiya, P. Mosses, and T. Ito, Eds. Springer Berlin / Hibieley,
2000, vol. 1872, pp. 315-330.

R. Brooks, “A robust layered control system for a mobilgbot,”
Robotics and Automation, IEEE Journal, afol. 2, no. 1, pp. 14 -
23, Mar. 1986.

——, “The behavior language: User”s guide,” Massachissktstitute
of Technology, Cambridge, MA, USA, Tech. Rep., 1990.

B. Gerkey, R. T. Vaughan, and A. Howard, “The Player/8tag
project: Tools for multi-robot and distributed sensor eyss$,” inInt'l
Conf. on Advanced Robotjc€oimbra, Portugal, June 2003. [Online].
Available: citeseer.ist.psu.edu/gerkeyO3playerstagg.

M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote,L&ibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot opegatin
system,” inICRA Workshop on Open Source Softwa&809.

J. Kramer and M. Scheutz, “Development environments
for autonomous mobile robots: A survey,” Autonomous
Robots vol. 22, pp. 101-132, 2007. [Online]. Available:
http://dx.doi.org/10.1007/s10514-006-9013-8

E. Coste Maniere, B. Espiau, anfl. Rutten, “Task-level robot
programming combining object-oriented design and symubue
approach : a tentative study,” INRIA, Research Report RR114
1991. [Online]. Available: http://hal.inria.fr/inria@®75119/PDF/RR-
1441.pdf

H. Nishiyama, H. Ohwada, and F. Mizoguchi, “A multiagembot
language for communication and concurrency control,Infi Conf.
on Multi Agent Systems Los Alamitos, CA, USA: IEEE Computer
Society, 1998, p. 206.

E. W. Dijkstra, “Guarded commands, nondeterminacy domal
derivation of programs,Commun. ACMvol. 18, pp. 453-457, August
1975. [Online]. Available: http://doi.acm.org/10.11360933.360975
D. Brugali, Software Engineering for Experimental Robotics
Springer, 2007.

W. D. Smart, “Is a common middleware for robotics
possible?” in Proc. IROS 2007 workshop on Mea-
sures and Procedures for the Evaluation of Robot
Architectures and Middleware 2007. [Online]. Available:
http://www.cse.wustl.edu/ wds/?g=papers&display=iitag=iros-
ws2007

A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A.édback,
“Towards component-based robotics,” Broc. IEEE/RSJ Int'l Conf.
on Intelligent Robots and Systen2005, pp. 1475-1480.

Baillie, “Urbi: Towards a universal robotic low-levgbrogramming
language,” inProc. IEEE/RSJ Int'l Conf. on Intelligent Robots and
Systems2005.

M. P. Spanoudakis N., “Modular JADE agents design anplémen-
tation using ASEME,” inlEEE/WIC/ACM Int'l Conf. on Intelligent
Agent TechnologyToronto, Canada, 2010.

C. R. Welborn, “Specifying a domain specific languagedooperative
robotics,” Ph.D. dissertation, Texas Tech University, 200

M. Lotzsch, M. Risler, and M. Jingel, “XABSL - A pragma
approach to behavior engineering,” Broc. IEEE/RSJ Int'l Conf. on
Intelligent Robots and SystenBeijing, China, 2006, pp. 5124-5129.
M. Reckhaus, N. Hochgeschwender, P. G. Ploeger, and.&r&et-
zschmar, “A platform-independent programming environtienrobot
control,” in 1st Int'l Workshop on Domain-Specific Languages and
models for ROBotic systems (DSLRohXD§t. 2010.

[Online]. Available: http://web.mae.cornell.edatfaskg/outreach/curie2010.html

