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Abstract

Electricity disaggregation focuses on classification of
individual appliances by monitoring aggregate electri-
cal signals. In this paper we present a novel algorithm
to automatically correct labels, discard contaminated
training samples, and boost signal to noise ratio through
high frequency noise reduction. We also propose a
method for prioritized classification which classifies ap-
pliances with the most intense signals first. When tested
on four houses in Kaggles Belkin dataset, these methods
automatically relabel over 77% of all training samples
and decrease error rate by an average of 45% in both
real power and high frequency noise classification.

Introduction
Electrical waste costs $130 billion and produces 1.1 giga-
tons of greenhouse gases each year in the United States
alone (Granade et al. 2009). However, sources of waste
are difficult to identify since energy consumed by appli-
ances varies widely depending on installation, maintenance,
and daily use (Berges et al. 2008; Froehlich et al. 2011;
Zeifman and Roth 2011a). Even identical appliances used
by consumers with similar demographics can vary by up to
300% (Seryak and Kissock 2003; Socolow 1978).

Identifying sources of waste allows for feedback on which
appliances can be turned off at specific times and automated
recommendations on which appliances can be replaced with
more energy efficient models. The more specific the feed-
back, the more consumers reduce waste (Carrie Armel et al.
2012). Appliance-specific data also improves building sim-
ulators, allows manufacturers to better redesign appliances,
and enables utility companies to improve load forecasting,
market segmentation, and energy efficient marketing.

Commercially available smart meter kits can measure sig-
nals at up to 1 Hz such as TED and Plugwise (Karlin,
Ford, and Squiers 2014), but they cannot fit all plug con-
figurations, require significant installation time, and the ex-
pense of installing an intrusive smart meter on every house-
hold appliance outweighs the potential waste reduced. (Car-
rie Armel et al. 2012). In contrast, electricity disaggregation
(also called Non-Intrusive Load Monitoring (NILM) (Hart

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1992) or Single Point Sensing (Patel et al. 2007)), measures
continuous aggregate electrical signals with only one meter,
classifying appliances on transient or steady-state time se-
ries features, which are measured as voltage, current, real
power, reactive power, power factor, current harmonics, or
High Frequency (HF) noise (Zoha et al. 2012).

Supervised learning methods for this domain assume sam-
ples are captured in isolation, are correctly labeled, each ap-
pliance has a sufficient number of training samples, and sam-
ples are present for all appliances. Typically contaminated
samples are identified manually, and labels are corrected by
hand. These assumptions break down when a device is de-
ployed to untrained consumers, and manual correction for a
wide consumer base is infeasible. Ignoring these challenges
significantly reduces real world classification accuracy.

In addition, previously implemented classification meth-
ods classify all appliances simultaneously. However, accu-
racy for low intensity appliances varies depending on what
other appliances are operating. High intensity appliances can
mask other appliances by maxing out detection equipment or
reducing signal to noise ratio, leading to misclassification of
lower intensity appliances.

This paper makes two key contributions. First, we intro-
duce a novel framework for label correction which automati-
cally corrects errors in training labels and identifies contam-
inated (non-isolated) samples. This correctly relabels 77%
462 training samples and identifies 2/3 of contaminated sam-
ples, enabling deployment of a supervised learning device to
a large consumer base.

Second, we present a method to prioritize classification
on an appliance’s relative signal intensity. This constructs
a decision tree based on a disparity metric coupled with
hierarchical clustering. Although automatic decision tree
construction has been utilized in other classification areas
(Müller and Wysotzki 1994; Murthy 1998), this is the first
application to electricity disaggregation, and the first deci-
sion tree construction algorithm to use hierarchical cluster-
ing.

The remainder of this paper is arranged as follows.
The next section summarizes related work. The Prioritized
Classification section details label correction and decision
tree construction. We then describe the experimental setup,
present and discuss results, and conclude with future work.



Figure 1: Sources of label error. Real power in both power phase 1 (black line) and power phase 2 (gray line) is displayed.
Errors may stem from truncated shutdown sequences (left) or external events in the same power phase (middle) or opposite
power phase (right). Samples shown also contain offsets from user error or improper synchronization.

Related Work
Numerous supervised learning approaches have been ap-
plied to electricity disaggregation, including Additive Fac-
torial Hidden Markov Models (Kolter and Jaakkola 2012),
Viterbi Algorithm with Sparse Transitions (Zeifman and
Roth 2011b), Sparse Coding (Kolter, Batra, and Ng 2010)
coupled with Powerlets (Elhamifar and Sastry 2015), and
others summarized in (Zoha et al. 2012). However, none of
these methods utilize the rich feature dimension of High Fre-
quency (HF) noise data (Gupta, Reynolds, and Patel 2010).
They are also unable to identify contaminated samples or
correct mislabeled data without manually preprocessing.

Recent work on High Frequency (HF) noise data uses
specialized hardware to capture appliances’ Electromag-
netic Interference (EMI). This EMI is broadcast through-
out the circuitry of a building when an appliance with one
or more Switch Mode Power Supplies (SMPS) is operat-
ing. EMI emitted by SMPS components is measured for
each frequency as decibels per unit millivolt (dBmV), and
has been shown to be Gaussian around specific frequencies,
dissipating in harmonics, and consistent over long periods
of time. Transient EMI can be used for classification, but
limits the ability to identify modern appliances with “soft
switches” such as gaming consoles and LCD TV’s (Patel
et al. 2007). Steady-state signatures yield higher accuracy,
up to 94% with 10-fold cross-validated KNN, given suffi-
cient training samples on a set number of appliances, and
can distinguish between identical appliances operating in
different areas of the same building (Froehlich et al. 2011;
Gupta, Reynolds, and Patel 2010).

Yet simultaneous classification methods ignore noise gen-
erated by other appliances in any dimension, including HF
noise. Prioritized classification improves accuracy, classify-
ing the most signal intensive appliances first and updating a
noise model as appliances are positively identified.

Prioritized Classification
Label Correction
The first challenge in supervised learning is automatically
correcting labels. Labels are user-marked timestamps that
designate when appliances are turned on and off in isola-
tion in the training set. Label correction has been ignored by
previous research, as the focus has been on which classifica-
tion algorithms and which appliance signatures provide the

Mean Power Increase (W) for Back Porch Lights
Before Correction After Correction

Sample 1 229.7 331.8
Sample 2 145.0 333.15
Sample 3 144.0 330.7
Sample 4 143.1 N/A
µ (mean) 165.5 331.9
σ (standard dev.) 37.01 1.0

Classification Accuracy (+/- 10%)
True Positives 0/4 4/4
False Positives 3 8

Classification Accuracy (+/- 2σ)
True Positives 0/4 4/4
False Positives 8 0

Table 1: Effects of label errors on accuracy. Simple Mean
modeling with raw user labels generates only false positives,
regardless of the threshold used. Following label correction
(detailed in Algorithm 1), all true positives are found, and
false positives can be eliminated by reducing the threshold
from +/- 10% of real power to +/- 2σ.

highest accuracy. There has been no discussion of how to
deal with incorrect labels or contaminated training samples.
Instead, researchers simply discard poor samples captured.
However, this assumption will not hold in a model where an
untrained consumer is capturing the training data.

Labels can contain temporal errors for a number of rea-
sons, which are summarized in Figure 1. Experimental pro-
totypes can contain hardware latencies, or timing devices
may not be properly synchronized. Users capturing the data
can also introduce errors. A consumer may simply forget to
mark a device as off after a long period of operation. A con-
sumer can also inadvertently truncate a transient shut down
sequence by marking an appliance as off when they switched
it off instead of when it has completely turned off.

An example of the impact of incorrect training labels on
classification is summarized in Table 1. Four training sam-
ples are displayed from a house’s back porch lights. Al-
though modeling this should be simple due to the step func-
tion nature and significant power consumption (>300W),
modeling without label correction produces a very poor rep-



Algorithm 1: Label Correction [Real Power Domain]
Input: Real Power measurements for one training

sample in one power phase (RP), User-marked
on and off timestamps (ton user, toff user),
Adjustment increment (λ), Min baseline
activation (ν), Operational Threshold (θ),
Padding (p).

Output: Timestamps (ton corrected, toff corrected).
1 increments = [0,λ, 2λ, 3λ];
2 for i = 1..size(increments) do
3 for j = 1..size(increments) do
4 if |RP [ton user − increments[i]] -

RP[toff user + increments[j]]| ≤ ν then
5 Insert [ton user −

increments[i], toff user + increments[j]]
into D

6 if |D| = 0 then
7 return [ton corrected = null, toff corrected = null]
8 else
9 foreach d ∈ D do

10 e = Longest contiguous time interval
∈ [d.ton, d.toff ] s.t.
∀t ∈ [d.ton, d.toff ], RP [t]−RP [d.ton] ≥ θ
AND RP [t]−RP [d.toff ] ≥ θ

11 Insert e into E

12 [ton corrected, toff corrected] = argmax
e∈E

(e.toff − e.ton)
13 return [ton corrected − p, toff corrected + p]

resentation due to label offset and contamination of the 4th
sample. Simple Mean modeling misses all four training sam-
ples and produces only false positives. In contrast, after cor-
recting labels and discarding the contaminated sample, Sim-
ple Mean modeling correctly captures the 330W operating
power, correctly classifies all four true positives, and elimi-
nates false positives with the proper real power interval.

Algorithm 1 details an automated process to correct la-
bels. Since consumers attempt to capture samples in iso-
lation, we assume the power before and after the training
sample is the same. Manually labeled on and off times are
stepped out by set increments to create candidate intervals.
Each interval is then checked to see if the starting and end-
ing powers are within the minimum baseline activation ν. If
not, the interval is discarded. For the remaining intervals, the
longest contiguous sequence exceeding the base power level
beyond a set threshold θ is marked. The longest such can-
didate interval is then selected and stepped out by padding
p to ensure transient feature capture. Although performed in
the Real Power domain, Algorithm 1 can be applied to any
feature. An example is displayed in Figure 2.

Algorithm 1 has only 4 parameters: λ, ν, θ, p ∈ R+. Ad-
justment Increment (λ) adjusts on and off timestamps. Set-
ting λ too small relative to user errors will prevent the al-
gorithm from adjusting timestamps far enough outside the

Figure 2: Corrected Labels. Intervals used for baseline back-
ground power before and after are displayed. New labels are
set around the longest contiguous sequence of measurements
exceeding the operational power threshold (θ). Padding (p)
is then added to ensure transient signal capture.

appliance operation window, while setting λ too large risks
pushing increments into other nearby samples, both of which
prevent accurate relabeling. Minimum Baseline Activation
(ν) can be modeled by observing a period of time when
no appliances are active and calculating the maximum noise
fluctuation. Operational Threshold (θ) should be set signifi-
cantly below the lowest appliance to be modeled, but above
ν. Any appliances below θ will not be accurately relabeled,
and setting θ close to ν will incorporate baseline noise into
relabeling. Finally, padding (p), ensures transient signal cap-
ture below θ, and optimal padding depends on the method
being used to model appliances.

We experimented in a range for each parameter value: λ ∈
[5, 60] seconds, ν ∈ [2, 50] Watts, θ ∈ [5, 100] Watts, and
p ∈ [1, 20] seconds. Parameter values resulting in the most
accurately relabeled samples for this dataset were θ = 15W,
λ = 15 seconds, p = 8 seconds, and ν ∈ [5, 10] W (with
no noticable difference for values of ν). Future work will
focus on more specific methods to automatically tune these
parameters to fit the dataset modeled.

Noise Reduction and Appliance Modeling
We perform noise reduction and model appliances in both
the real power and HF domains. Real power is smoothed us-
ing a moving average filter of 1.4 seconds, which improves
label correction from roughly 50% on unsmoothed data to
86%. We also down-sample test data from 5 Hz to 0.05 Hz.
Real power is then averaged over the relabeled window.

HF noise fluctuates between -50 to -70 dBmV for most
houses. Most appliances generate 8 dBmV - 60 dBmV
above this baseline. To compensate for this noise, (Gupta,
Reynolds, and Patel 2010) used a hard threshold of 8 dBmV
for detection, and a sliding window for smoothing of size
25 (a little over 1 second). To avoid hard thresholds, we
use a multi-step noise removal process which first removes
base background noise, then removes variations in back-
ground noise, and finally applies a 1.7KHz x 1 second me-
dian noise filter. Following noise reduction, labels are re-
calculated around the strongest frequency, and the median
value for each frequency is stored in the appliance model.



Decision Tree Construction - One Dimension

Algorithm 2: Decision Tree Construction
Input: X: Training samples of n appliances in m

dimensional feature space(Fm), Distm():
Single Linkage Distance Functions for feature
space Fm, no appm: representation of ’no
appliance state’ in Fm.

Output: Decision Tree prioritizing classification.
1 DT Construct(X, Distm(), no app)
2 FG = argmax

Fi∈Fm

GiniIndex(Fi)

3 root = Cluster(X[FG], DistG(), Hierarchical)
4 if |X| 6= 1 then
5 low cluster = min(DistG(root.cluster1,

no app), DistG(root.cluster2, no app))
6 high cluster = max(DistG(root.cluster1,

no app), DistG(root.cluster2, no app))
7 DT Node =

Create Decision Node(high cluster,
low cluster, DistG())

8 DT Node.left =
DT Construct(Xhigh cluster, Distm(), high cluster)

9 DT Node.right =
DT Construct(Xlow cluster, Distm(), low cluster)

10 return DT Node
11 else
12 return DT Node = new Node.setRules(Classify

on root.appliance)

13 Create Decision Node(low cluster, high cluster,
DistG())

14 DT Node = new node
15 DT Node.setRules()
16 if DistG(f1, low cluster) > DistG(f1,

high cluster) then
17 Follow DT Node.left
18 Follow DT Node.right
19 else
20 Follow DT Node.right

Prioritized classification first requires a way of compar-
ing appliances to decide which to classify first. Although the
appliances can simply be sorted, this prioritizes appliances
with most intense signal compared to an inactive state. In-
stead we use single linkage agglomerative hierarchical clus-
tering to prioritize appliances with the most intense signals
relative to other appliances. Unlike other types of clustering,
such as K-means or EM, hierarchical clustering can dynam-
ically change the number of clusters without significant re-
computation. Although the dendrogram produced by hierar-
chical clustering lends itself naturally to automatic decision
tree construction, this is the first application as such (Müller
and Wysotzki 1994; Murthy 1998).

An example decision node, shown in Figure 3, prioritizes
on the 2nd real power phase following classification of dual

Decision
Criterion Appliance Cluster Prioritized

> 391W Kitchen Light (437W)

197W–391W Other Phase 2 Light Sets (290W-344W)
Living Room Audio/DVR/TV (242W)

71W–197W Bedroom 1 LCD TV (152W)
Bonus room LED TV (112W)

< 71W Master Bath Fan (30W)
All Other Appliances (0W)

Figure 3: Example decision tree construction using real
power phase 2, after classification of dual power appliances
(oven and dryer). Since hierarchical clustering is used, clus-
ters can be defined as a binary split, as in Algorithm 2 or a
set amount of the max cluster distance (30% in this case).

power appliances (oven and dryer). A set of appliances is a
cluster if all of the distances within the cluster are less than
30% of the max cluster distance, which produces 4 clusters.
The first cluster consists of a single appliance, the kitchen
lights, which operate at 437W. The second cluster contains a
number of other lights and the living room Audio-DVR-TV,
which all operate between 241W - 344W. The third cluster
consists of 2 TV’s which operate at 112W and 152W. The
final cluster contains the master bathroom fan, which oper-
ates at 30W, and all other appliances, which operate at 0W
(since they operate on the other power phase).

The intervals containing clusters’ appliances are used to
build the decision threshold of the node. For example, the
kitchen lights operate at a mean 427W. The next closest
cluster (via single linkage distance) is at 344W, making
the threshold to prioritize classification of the kitchen lights
391W. Once fully constructed, if a real power increase in
phase 2 above 391W is detected (following classification
of the oven and dryer), the decision tree will prioritize the
kitchen lights. Nodes with multiple appliances recursively
call the algorithm to complete construction. This can be used
on any data dimension, given an appropriate distance metric.

There are multiple advantages for using decision tree pri-
oritization. First, the tree can be constructed automatically
to partition any feature space for a specific training data set,
prioritizing appliances for classification based on their inten-
sity relative to other appliances. Second, once constructed,
it can be coupled with a number of different classification
methods. Finally, a running noise model can be updated as
appliances are detected, allowing for a dynamic threshold to
halt classification when a low-intensity appliance is masked
by noisy appliances, increasing accuracy. This is not possi-
ble with simultaneous classification methods.



Tree Construction - Multiple Dimensions
Although single dimension decision trees have advantages,
their full potential is realized when combining multiple di-
mensions. A single decision tree is still constructed, but the
algorithm chooses at each level on which dimension to pri-
oritize, detailed in Algorithm 2. At each step the Gini index
is computed for each dimension, and the dimension with the
highest disparity is chosen to partition the appliances. Fol-
lowing threshold calculation for each cluster, the algorithm
is called recursively by nodes with multiple appliances.

In contrast to traditional machine learning methods such
as SVM or KNN, this method does not classify based on
all of the data. Instead, it prioritizes classification. Multiple
dimensions allow the decision tree to alternate, choosing the
dimension best suited to classify the most unique appliances.

Results
Belkin Kaggle Dataset
Multiple datasets are publicly available, including REDD
(Kolter and Johnson 2011), Plugwise, AMPds, and others
detailed in (Makonin et al. 2013), but none of these contain
processed HF noise data. Some only contain signals down
to the circuit level, and most have been cleansed to correct
labels and remove erroneous or missing measurements. We
use the Kaggle Belkin dataset to evaluate our results, as it
contains appliance-specific labels that have not been prepro-
cessed to remove incorrect labels or contaminated samples.

This dataset contains over 7GB of raw electrical data from
4 different houses, with 36-38 appliances per house. Voltage
and current are sampled at 5 Hz, which are used to calcu-
late real power, imaginary/reactive power, and power factor
in both AC power phases. High Frequency data is hardware-
processed into decibels per unit millivolt (dBmV) and pro-
vided at 20 times per second. There are up to 4 labeled sam-
ples per appliance, attempted to be captured in isolation.

Label Correction and Sample Discarding
Automatic label correction is able to accurately relabel 77%
of the samples in the dataset, summarized in Table 2. Of the
104 samples that are not relabeled, almost half are for appli-
ances with extremely low or no visible power draw. Thirteen
of the unadjusted samples are contamined and correctly dis-
carded. These samples should not be used for training and
appliance modeling purposes, as the attributes in both power
and HF data include characteristics of multiple devices.

Other devices lack a continuous power draw, such as
the garbage disposal, garage door opener, and bread maker.
Since the label correction scheme requires a long window of
continuous operation, it is currently unable to relabel these
appliances using real power. However, these appliances have
limited impact on both classification and waste reduction
due to lack of continuous operation and low power draw.

The remaining 28 unadjusted samples contain significant
user error. Some samples contained identical on and off
timestamps. Others were labeled inside of appliance opera-
tion for very noise appliances such as a dishwasher or wash-
ing machine. A few samples contained gross errors, where
the labels were very far away from the actual operation, or

Adjusted Total Percent
Labels Samples Relabeled

House 1 84 111 75.7%
House 2 89 119 78.8%
House 3 109 131 83.2%
House 4 76 101 75.3%
Total 358 462 77.5%

Cause of Unadjusted Labels Samples
Negligible Power Draw (<20W) 51
Contaminated Sample 13
Lack of Continuous Power Draw 12
Identical ON/OFF Timestamps 12
Proximal Label Noise 8
Gross Labeling Error 5
Insufficient Temporal Separation 3
Total 104

Table 2: Label Correction Results. The Algorithm 1 was able
to successfully relabel over 77% of 462 training samples for
148 appliances. Of the unadjusted samples, almost half oc-
curred with appliances operating below 20W. The remain-
ing unadjusted samples lacked continuous real power draw,
were contaminated, or contained major user errors.

there was very small temporal separation between samples.
Parameters for label correction described earlier could be
modified to capture some of these samples, but this would
create errors for other cleanly captured appliance samples.

With cyclic devices, such as dishwashers, dryers, and
ovens, the algorithm performs single cycle capture. These
appliances drop their power consumption to a negligible
amount in between cycles. Since the algorithm looks for the
longest window of operation, it relabels the longest cycle,
and this cycle is used for classification.

Some samples with long durations contained original
timestamps well inside of their window of operation, mak-
ing automatic relabeling difficult. Of the 358 new labeled
samples, 6 were relabeled incorrectly, resulting in 98% of
the relabeled samples being properly labeled.

None of the teams competing in the Belkin Energy Disag-
gregation Competition discussed any methods of automatic
label correction, although Gupta suggested extending the off
window by a fixed amount1 something teams may have done
with hard-coded values. Hence, this is the first application of
automatic label correction to both electricity disaggregation.

Decision Tree vs. KNN
We compare our results using an automatically constructed
decision tree with KNN. Although more advance classifica-
tion algorithms are available, KNN is the only method that
has been tested against HF data, as demonstrated in (Gupta,
Reynolds, and Patel 2010). We also compared resultsing
using real power edge detection to show results in multi-

1http://www.kaggle.com/c/belkin-energy-disaggregation-
competition/forums/t/5119/event-off-timestamps-don-t-appear-to-
line-up-with-power-changes



False Positives (Real Power) False Positives (HF Signature)
Classification All Top 20 Top 10 Top 5 Top 2 Top 1 All Top 20 Top 10 Top 5 Top 2 Top 1
KNN 4002 1689 913 220 193 161 59212 48792 3783 549 105 47
Decision Tree 4002 1103 610 168 109 66 59212 28941 793 256 13 3
Reduction 0% 35% 33% 24% 44% 59% 0% 41% 79% 53% 88% 94%

Figure 4: Reduction in Error Rate with Decision Trees over KNN. Decision Trees reduce edge detection error rate in both real
power (left) and High Frequency (right) for all appliances as well as subsets ranked according to dimensional intensity.

ple dimensions. Each house in the dataset contains either
3 or 4 samples per appliance. We divided the training data
into as many sets for cross-validation, ensuring that each set
contained 1 training sample. Following appliance modeling,
these were then used to classify every other subset of the
training data. Because failures to properly classify the entire
window of operation of an appliance can occur for multiple
reasons, we focus exclusively on classifying on activations
(i.e. an appliance is switched from off to on).

Comparison in classification between the decision tree
and KNN are shown in Figure 4. For real power, KNN is
able to achieve an accuracy of nearly 90% when classify-
ing all appliances. Although this seems high, this actually
contains many false positives, since most appliances are off
most of the time. Classification improves when classifying a
subset of the appliances, ranked in terms of real power. Re-
sults for the subset containing the top 20, top 10, top 5, top
2, and top appliance are shown in Figure 4.

For HF data, KNN generates many false positives, as
many devices have a negligible HF signature. Minor EMI
noise in the house circuitry gets mapped to low intensity ap-
pliances instead of being correctly classified as no appliance
activation. The accuracy improves restricting classification
to the most intense appliances, but KNN still generates many
false positives due to few state-space partitions.

In contrast, the decision tree constructed eliminates many
of these false positives. When all appliances are classified,
both methods perform the same, since they are forced to
classify all devices, even those with very low power or poor

HF signals. When the decision tree classifies on a subset of
appliances, the number of false positives relative to KNN de-
creases significantly, especially for the top 1 or 2 appliances.
This is because the decision tree can preserve the space par-
tition, and is designed to classify a subset of appliances.

Conclusions and Future Work
We have proposed a method to automatically correct labels
and identify contaminated training samples which has not
been previously discussed. This step is critical for any su-
pervised learning device that is installed and trained by a
large number of untrained consumers. Our algorithm is able
to correctly relabel 77% of training samples and appliances
across 4 different houses with 148 appliances, and correctly
discards all 13 contaminaed samples.

We have also proposed a method to prioritize appli-
ance classification through automatically constructed deci-
sion trees, allowing for variable accuracy thresholds. This
method can incorporate any data dimension with a proper
distance metric, and reduces error rate by up to 94% over
KNN, even when used on only one dimension of data.

Future work includes automatically tuning label correc-
tion parameters based on observed baseline noise and tight-
ening thresholds for individual appliance classification, al-
lowing detection of unmodeled appliances. In addition, in-
cluding a dynamic noise model that can be updated as appli-
ances are positively classified will allow for variable cutoff
for classification, to maximize classification accuracy based
on observed noise in each data dimension.
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