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ABSTRACT

We are interested in the problem of multi-agent con-
tracting, in which customer agents must solicit the re-
sources and capabilities of other, self-interested agents
in order to accomplish their goals. Goals may involve
the execution of multi-step tasks, in which different tasks
are contracted out to different suppliers. We have de-
veloped a testbed that allows us to study decision be-
haviors of agents in this context. It can generate sets of
plans with known statistical attributes, formulate and
submit requests for quotations, generate bids with well-
defined statistics, and evaluate those bids according to a
number of criteria. Each of these processes is supported
by an abstract interface and a series of pluggable mod-
ules with many configuration parameters. Data collec-
tion and analysis tools round out the package.

1. INTRODUCTION

The business-to-business (B2B) e-commerce market is
expected to expand rapidly, with the global market ex-
pected to exceed $7.29 trillion in 2004, according to
Gartner Group research. A recent separate study from
Boston Consulting Group predicts productivity gains
from B2B e-commerce will equal 1% — 2% of sales by
2004 and 6% by 2010.

Firms can cut costs and improve efficiency by mov-
ing online. Instead of fulfilling orders from warehouses,
companies will look for manufacturers that can build on
demand in order to meet consumers demand for make-
to-order products. More production processes will be
outsourced, making supply chains longer and more con-
voluted. The increased complexity will be compounded
by accelerated production schedules which demand tight
integration of all processes. Thus, the field is ripe for
the introduction of systems that automate logistic plan-
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ning among multiple entities such as manufacturers,
part suppliers, shippers, and specialized subcontractors.

Current e-commerce systems typically rely on either
fixed-price catalogs or auctions. Companies usually work
with prequalified suppliers and buyer-supplier relation-
ships depend on factors such as quality, delivery perfor-
mance, and flexibility as opposed to just cost [10]. In
addition, current e-commerce systems do not have any
notion of time (except for domain specific systems such
as SABRE used in the travel industry). Time plays a
fundamental role in supply-chain formation and man-
agement, since many products are made up of different
parts and require multiple suppliers who have to coor-
dinate their work.

We are interested in understanding how a community of
heterogeneous, self-interested agents, can make commit-
ments and carry out plans that require multiple tasks
and coordination among multiple agents. We have pro-
posed a market architecture [5] and we have implemented
prototypes of both the market architecture and the agents.
We call this system MAGNET (Multi AGent NEgotia-
tion Testbed). MAGNET provides support for a vari-
ety of types of transactions, including complex multi-
agent contract negotiations with temporal and prece-
dence constraints.

This paper is organized as follows: Section 2 describes
the environment of MAGNET agents, and the basic ac-
tivities and roles of agents in that environment. Sec-
tion 3 describes our experimental implementation of a
customer agent that we are using to explore agent deci-
sion processes. Section 4 describes the implementation
of abstract supplier agents. Section 5 gives some ex-
amples of the types of studies supported by this frame-
work. Section 6 describes related work, and Section 7
concludes and outlines our future plans and open prob-
lems.

2. THE MAGNET SYSTEM

MAGNET gives an agent the ability to use market mech-
anisms (auctions, catalogs, timetables, etc.) to discover
and commit resources needed to achieve its goals. We
assume that agents are heterogeneous and self-interested,
and may be acting on behalf of different individuals or
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Figure 1: The MAGNET architecture

commercial entities who have different goals and differ-
ent notions of utility. Although we use auction mech-
anisms, the problem MAGNET must solve is a com-
bination of a scheduling problem and a combinatorial
auction problem.

Agents may fulfill one or both of two roles with re-
spect to the MAGNET architecture, as shown in Fig-
ure 1. Customer agents pursue their goals by formulat-
ing and presenting Requests for Quotations (RFQs) to
Supplier agents through the market infrastructure [5].
Customers have goals that they themselves cannot sat-
isfy, either because they lack the abilities, or the re-
sources to carry out at least some of the operations.
Suppliers have resources to offer, and are willing to make
those resources available in a way that maximizes their
value.

The RFQ specifies a task network that includes task
descriptions, a precedence network, and possibly other
time constraints. Customer agents attempt to satisfy
their goals for the least net cost, where cost factors
can include not only bid prices, but also goal comple-
tion time and risk factors. More precisely, these agents
are attempting to maximize the utility function of some
user, as discussed in detail in [3].

Supplier agents attempt to maximize the value of their
resources by submitting bids in response to those RFQs.
Bids specify what tasks they are able to undertake,
when they are available to perform those tasks, and at
what price. Bids may specify combinations of tasks with
a single price, and may also include prices on individual
tasks. Prices for multiple tasks can include a discount
or a premium.

As an example, let’s imagine we need to do a site prepa-
ration for installing a large-scale server. Figure 2 shows
a plan to complete the site preparation. Our plan is
complicated by a couple of factors. The server must be
ordered ahead, and will arrive one week after we order

it. Because it is the most expensive part of the installa-
tion, we do not want to leave it idle, and so it must be
installed immediately when it arrives. Also, there is a
network boom in our area, and people to do wiring are
hard to find. We may have to wait.

Air
Conditioning

Network ——

Install
Server

Order
Server

Figure 2: Plan for preparing a site for installa-
tion of a large-scale server.

3. A CUSTOMER AGENT

‘We now focus on the structure and responsibilities of a
Customer agent in the MAGNET environment. As in-
dicated in Figure 1, the basic operations are planning,
bidding, and plan execution. We have implemented a
simple Planner that generates random plans with well-
defined statistics, and a Bid Manager with a fairly rich
implementation of tools for composing RFQs and se-
lecting bids. The Execution Manager is not yet imple-
mented.

3.1 Planner

The Planner’s task is to turn high-level goals into exe-
cutable plans, represented as task networks. A task net-
work consists of a set of task descriptions, the temporal
constraints among them, and possibly nonzero delays
between tasks, to cover communication and transporta-
tion delays.

The planner in the testbed generates tasks by selecting



randomly from a library of task types, and then creates
random precedence relations among them. It can also
accept pre-defined plans. We expect that in many do-
mains, plans will be chosen from a library or defined by
a human user rather than being generated by a general-
purpose planner.

The definitions of tasks must be shared among the agents.

That is why we show the communication of the Domain
Model from the Market to the Agents in Figure 1. This
model includes not only the task definitions, but statis-
tics (presumably collected by the market) about each
task type. These statistics include expected duration
and variability, expected price and variability, and re-
source availability data.

In our site-preparation example, we would find out from
the market that wiring resources are thin. This data is
then included in the plan received by the Bid Manager.

The plan generated by the Planner is a central data
structure throughout a MAGNET system. The Bid
Manager uses it to generate RFQs and to evaluate and
record resource commitments and timing data, and the
Execution Manager uses it to monitor and repair the
ongoing execution of the plan. Part or all of the plan
is included in a RFQ. In fact, each of the other com-
ponents can be characterized by how it uses, decorates,
extends, or updates the plan.

3.2 Bid Manager

The Bid Manager is responsible for ensuring that re-
sources are assigned to each of the tasks of a plan, that
the assignments taken together form a feasible sched-
ule, and that the cost and risk of executing the plan is
minimized. This cost must also be less than the value
of the goal at the time the goal is reached.
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Figure 3: The Bid Manager

When the Bid Manager is invoked, some tasks in the
plan may already be assigned. This can occur because
the Execution Manager may use the Bid Manager to

repair a partially-completed plan in which previously
determined assignments have failed, because the agent
will perform some of the tasks itself, or because bidding
is being carried out in multiple stages. For example, the
company may be able to set up the network, and so it
might not contract for that task.

The Bid Manager must construct and issue a RFQ), eval-
uate bids, and accept bids in order to carry out its re-
sponsibilities. The high-level structure of the Bid Man-
ager is shown in Figure 3.

3.2.1 Process Planner

The Process Planner creates the high-level agenda for
the Bid Manager. A primary responsibility is to allo-
cate time to negotiation and plan execution. The cur-
rent version is really just a placeholder that reads an
agenda from a configuration file or a user interface. In
the future it will be responsible for deciding which mar-
kets to use, when to consult local catalog and timetable
databases, and how to break up the plan accordingly.
If the plan has alternative branches, it may also decide
which alternatives to pursue and in what order. For
example, it may decide to solicit bids on a high-value
but risky approach, and if that fails to fall back on a
lower-value but safer alternative. It could also decide to
defer taking bids on later tasks until earlier tasks were
underway or even completed. This is standard practice
in many industries. In our site-preparation example,
we might decide to wait until the wiring was underway
before ordering the server.

3.2.2 Negotiation Manager

The Negotiation Manager handles the actual bidding
process. Its overall job is to decorate the plan with a
feasible, minimum-cost set of resource assignments. It
uses the Bid Evaluator to decide among alternative bid
combinations.

Negotiation Manager
Bid
Scheduler

Bid
Agenda
Plan

Auction
Manager
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Figure 4: The Negotiation Manager

The Negotiation Manager is further broken down into
a set of components, as shown in Figure 4. The Bid
Scheduler assembles a schedule for the bidding process,
possibly subdividing the time allocated by the Process
Planner, and adds items to the agenda to drive the Auc-
tion Manager. Dividing the bidding process into multi-



ple phases can be an important strategy to reduce the
level of uncertainty in the plan. For example, we might
not want to take bids on the air conditioning for our
site-preparation task until we have firm dates for the
wiring. We’ll discuss an example of multi-phase bid-
ding in Section 5.

Several different versions of the Bid Scheduler have been
implemented to experiment with different strategies. Ul-
timately it will be up to the Process Planner to decide
which strategy (or strategies) to use, and configure the
Bid Scheduler accordingly through its agenda entries.

Before bids can be solicited in a market, an RFQ must
be composed. The RFQ is a structure that contains
some portion of the plan data (tasks and precedence
relations) as determined by the Bid Scheduler, along
with a set of scheduling constraints. The primary role
of the RFQ Builder is to determine those scheduling
constraints. Information comes from several sources:

e From the Planner, we have a set of tasks and their
precedence constraints. This information is con-
tained in the plan.

e From the Market, we have statistical information
about duration and variability for the different
task types. We also have information about re-
source availability and the number of vendors who
are likely to bid on tasks of this type.

e From the Process Planner, we have the overall
schedule for the execution of the plan.

e From the Bid Scheduler, we know which tasks are
to be advertised for bid in the current RFQ.

The primary goal of the RFQ Builder is to produce an
RFQ that will solicit the most advantageous set of bids
possible. The approach we take is to find a balance be-
tween giving maximum flexibility to suppliers, ensuring
that the resulting bids will combine feasibly, and ensur-
ing that the job will be completed by the deadline. We
do this by setting early-start and late-finish times in the
RFQ for each task.

Figure 5 shows two alternative ways to schedule and
compose the RFQs for our site preparation project. In
version A, we believe we have 5 weeks to finish our site,
and the only scarce resource is wiring. Therefore, we
allow 3 weeks for the one-week wiring job, and we are
guaranteed that if we receive bids on all tasks, they can
be combined feasibly. In version B, we are interested in
finishing the site as soon as possible. Therefore, we bid
out the remodeling and wiring first in RFQ B1, and we
bid out the remainder of the tasks in RFQ B2 after we
get a bid that finishes the wiring by the end of week 3.

The Auction Manager interacts with the Market and/or
other agents to solicit bids. Different versions of the
Auction Manager can be implemented to interact with
different market environments. We have a version that
uses a MAGNET market to solicit bids, and one that
uses a set of in-process simulated Supplier agents di-
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Figure 5: RFQ Example

rectly to generate bids for testing purposes. The latter
version is useful for doing large statistical studies where
throughput is a critical factor.

3.2.3 Bid Evaluator

A Bid Evaluator is a search engine that takes a plan and
a set of bids, and attempts to find an optimal or near-
optimal mapping of bids to tasks, respecting temporal
constraints. It must do this within the period of time
allocated by the Process Planner, which may have been
subdivided by the Bid Scheduler.

‘We have implemented two evaluators. One is based on
Integer Programming, and the other is a highly modular
Simulated Annealing (SA) search engine [4].

The Integer Programming (IP) solver operates in two
phases. The first phase generates basic bid-compatibility
constraints, and then walks all paths of length 2 or
greater in the precedence network, across all compati-
ble bid combinations, to discover feasibility constraints.
These are then packaged up and sent off to an external
IP solver.

The core part of the simulated-annealing engine is simi-
lar to the one described in [15]. Starting with a plan and
a set of bids, we generate and evaluate bid mappings
until one of several stopping conditions holds. These
include failure to find improvement for a configurable
number of iterations, expiration of the deliberation time



limit, and lack of mappings that have any untried ex-
pansions. We have described this in detail, along with
experimental performance data, in [4].
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Figure 6: Bid Example

Figure 6 shows a very small example of the problem the
Bid Evaluator must solve. We composed the RFQ with
a large overlap between the wiring and air condition-
ing tasks, perhaps because we believed there would be
large numbers of bidders with a wide variation in lead
times. Bid 2 indicates wiring could start at the begin-
ning of week 3, would take 3 days, and the supplier was
willing to shift that out 2 more days to accommodate
our schedule. Bid 3 shows that air conditioning could
start partway through week 2, would take 3 days, and
needed to finish partway through week 3. Clearly these
two bids cannot be combined. Bid 4 shows a more ex-
pensive wiring person who could start earlier, but needs
a week to finish. This can be combined with Bid 3,
but with no slack to accommodate contingencies. Bid 5
gives us a large enough time window for the air condi-
tioning task to be combined with either Bid 2 or Bid 4.
The best combination appears to be Bidl, Bid2, Bid5.

4. SUPPLIER AGENTS

Since our primary interest has been in the workings of
the Customer agent, our Supplier agents are currently
fairly simple-minded entities. They receive RFQs, and
they respond by submitting bids. They do not maintain
resource schedules, and they have no persistent identity.
The basic structure is shown in Figure 7. Each of these
three layers is implemented as an abstraction with mul-
tiple implementations.

A Bid-Set Generator generates sets of bids and returns
them to the Customer agent. Example Bid-Set Genera-
tors include one that always bids on certain task types if
they are present in the RFQ, one that generates a ran-
dom set of bids, and one that extends the random set

RFQ Bid-Set Bid Sets

Generator

Bids

Bid
Generator

Task-Bids

Task-Bid
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Figure 7: Simple Supplier Simulation

generator by attempting to generate a set that covers
all tasks in the RFQ.

A Bid Generator generates a single bid, possibly con-
taining multiple individual task-bids. The average sizes,
and the degree of size variability, of the bids produced
are determined by configuration parameters, and in some
cases by the structure of the plan and the type of Bid
Generator selected. We have implemented Bid genera-
tors that can generate bids for certain types of tasks,
random collections of tasks, or sets of tasks that are
connected by precedence relations. An obvious exten-
sion would be to generate role-based bids in the sense
of [11].

A Task-Bid Generator produces a bid for a single task.
The bid specifies the task to be performed, the expected
duration of the task, and early start and late finish time
window data. In most cases it must also assign a cost to
the task, which the Bid Generator will use in compos-
ing the overall cost for the bid. The duration and cost
are selected from random distributions specified in the
task-type description. The early-start and late-finish
times are also randomly generated from the resource-
availability data in the task-type description. The con-
straints on the time window for the Task-Bid come from
two sources: (1) the time window specified in the RFQ,
and (2) the times already specified in other Task-Bids
for tasks that are immediate predecessors or successors
of the current task. If the Task-Bid generator cannot
fit the requested task into the time window, it fails to
produce a result, and the bid will not include that par-
ticular task.

5. THE MAGNET TESTBED

Experimental research in this area requires a simula-
tion environment that is sufficiently rich to be easily
adapted to a variety of experimental purposes, while
being sufficiently straightforward to support clear con-
clusions. MAGNET is not a complete simulation of
a working market environment. Instead, it is focused
on the process of determining the form and content of
Requests for Quotations (RFQs), on the management



of the bidding process, and on the evaluation of bids
submitted by potential suppliers. It has the ability
to generate plans with well-defined statistics, or to ac-
cept hand-built plans or plans extracted from real-world
data. Bids are generated by a community of abstract
suppliers, again with well-defined statistics. All the ma-
jor decision processes are driven by plug-in components,
with documented APIs and a great wealth of configura-
tion parameters. Data collection capabilities are well-
suited to statistical studies.

5.1 Design Principles

In order to maximize the usefulness of the MAGNET
testbed as a research tool, we have adopted several de-
sign principles that make it easy to plug together and
reconfigure, and that enhance its transparency. Exam-
ples are:

1. The system is written in Java, and has been tested
on multiple platforms. This makes it easy to use
on whatever you happen to be sitting in front of.

2. All the major behavioral modules are written as
abstract classes, with (at least potentially) multi-
ple implementations that can be “plugged in” to
implement a particular behavioral variant.

3. Virtually every feature of the system is selectable
and configurable from a configuration file, and many
of them can be viewed and changed from a user
interface. This includes the choice of behavioral
plug-ins.

4. The interface between the agents and the Market
is also abstracted. This allows connection with
multiple types of markets (such as one that looks
up price and availability info from a catalog or
timetable) and through multiple communications
protocols.

5. Much of the activity of the agent is agenda-driven,
and development and maintenance of the agenda
is an important activity in its own right. Agenda
items can select plug-ins, update configuration de-
tails, evaluate options, interact with the market
or other agents, update the agenda, and record
results.

6. A pervasive logging and data collection system al-
lows for both detailed examination of behavior and
the generation of experimental data. The level of
logging is a configuration parameter, and the var-
ious logging levels have well-defined meanings.

The system in its current form is useful for several types
of studies. Recent work includes experiments with bid
evaluation performance, and studies of the RFQ com-
position problem. Our longer-term goal is to support
studies of mixed-initiative decision making with experi-
enced human users in realistic market simulations.

5.2 Bid Evaluation
To study bid evaluation, we are able to control a wide
range of conditions, including:

e Composition of the generated plans: number of
tasks, task types (which in turn controls duration

variability and probability of bids), and the den-
sity of the precedence network,

e Structure of the RFQ: Whether it covers the whole
plan, amount of slack in the schedule, and the de-
gree to which bids are allowed to violate prece-
dence relations,

e Number and size of bids, composition of bids: ran-
dom selections, contiguous task sets, role-based
task sets,

e Type of search used, search parameters,

e Bid selectors and evaluators, evaluation parame-
ters.

The testbed supports a number of measurements for
evaluating search performance, including search effort,
anytime performance, and solution quality, along with
counts of solved, unsolved, and known unsolvable prob-
lems encountered. Output is in a form that can be used
by a standard spreadsheet, or Matlab in the case of any-
time performance data.

An important ongoing effort along these lines is learn-
ing how to make bid evaluation work effectively in a
mixed-initiative environment. We have studied the im-
plications of Expected Utility Theory in the MAGNET
environment [3]. We are currently developing and evalu-
ating evaluators to assess risk, and user interface strate-
gies to support collaborative evaluation and decision-
making between a MAGNET agent and its user.

5.3 RFQ Composition

The RFQ composition problem appears to be highly de-
pendent on the characteristics of the market. For that
reason, we are closely studying one particular market,
international shipping, in hopes of developing a set of
data that can support realistic simulation. These data
include numbers of likely bidders, likelihood of bidding,
specialized vs. full-service suppliers, lead times, and
correspondence between bids and actual performance.
Further complications arise from standard practices such
as capacity consolidation, subcontracting, and the vari-
ety of contract terms that are used in a typical supply
chain. We are working with North Star Import-Export,
a local freight forwarding company, to develop our un-
derstanding in this area.

Preliminary results indicate that, given some reasonable
number of bidders, some amount of overlap in the task
time windows between successive tasks gives better re-
sults than a RFQ specification that guarantees that all
bids will combine feasibly. We have implemented several
different plug-in versions of the RFQ Builder in order
to test alternative approaches.

Our goal is to develop a sufficiently realistic simulation
of an actual market to support evaluation of MAGNET
agent performance by personnel who are experienced
in that market. In the shipping domain, some mar-
ket data can be taken from published timetables, and
we will plug in bidders that operate directly from these



timetables. There are also Web-based resources such
as www.freightwise.com that could support supplier-
agent wrappers, and which are a good source of avail-
ability and pricing data.

6. RELATED WORK

Markets play an essential role in the economy, and market-
based architectures are a popular choice for multiple
agents (see, for instance, [2, 19, 23, 20]. Most market
architectures limit the interactions of agents to manual
negotiations, direct agent-to-agent negotiation [18, 6],
or various types of auctions [24].

Existing architectures for multi-agent virtual markets
typically rely on the agents themselves to manage the
details of the interaction between them, rather than pro-
viding explicit facilities and infrastructure for managing
multiple negotiation protocols. In our work, agents in-
teract with each other through a market. The market
infrastructure provides a common vocabulary, collects
statistical information that helps agents estimate costs,
schedules, and risks, and acts as a trusted intermediary
during the negotiation process.

Auctions are becoming the predominant mechanism for
agent-mediated electronic commerce [9]. AuctionBot [24]
and eMEDIATOR [17] are well known examples of multi-
agent auction systems.

The determination of winners of combinatorial auctions [14]

is hard. Methods for improving the efficiency of com-
binatorial auctions have been developed in the last few
years, among others, by Sandholm [17] and Fujishima [7].
Mixed integer programming has been demonstrated to
work extremely well even on large problems by Ander-
sson [1].

Most work in supply-chain management is limited to
strict hierarchical modeling of the decision making pro-
cess, which is inadequate for distributed supply-chains,
since each organization is self-interested, not coopera-
tive. Walsh et al [21] study combinatorial auctions for
problems in supply chain, but ignore time constraints.
When they study decentralized scheduling [22] they limit
their study to the scheduling of a single resource. MAG-
NET agents have to deal with multiple resources, the
bidding process is used as a way of obtaining the use
of resources an agent does not have. Customer agents
have also to ensure the scheduling feasibility of the bids
they accept, and must evaluate risk as well.

Agents in MASCOT [16] coordinate scheduling with the
user, but there is no explicit notion of payments or con-
tracts, and the criteria for accepting/rejecting a bid are
not explicitly stated. Their major objective is to show
the advantage of using lateral coordination policies that
focus on optimizing schedules locally through exchange
of temporal constraints. Our objective is to negotiate
contracts with suppliers that optimize customer’s util-
ity.

Andersson [1] proposes integer programming for win-
ner determination in combinatorial auctions. The ma-
jor difference is that in the cases studied for combinato-
rial auctions, bid allocation is determined solely by cost.
Our setting is more general. Our agents have to cover
all the tasks, ensure feasibility of the bids they accept,
and reduce scheduling risk.

Because the search space for combination bids with tem-
poral constraints is huge, we have chosen to explore a
simulated annealing framework. Since the introduction
of iterative sampling [12], a strategy that randomly ex-
plores different paths in a search tree, there have been
numerous attempts to improve search performance by
using randomization. Randomization has been shown
to be useful in reducing the unpredictability in the run-
ning time of complete search algorithms [8]. Our exper-
imental results [4] show that our bid selection algorithm
performs very well on a variety of problem types.

7. CONCLUSIONS

The MAGNET automated contracting environment is
designed to support negotiation among multiple, het-
erogeneous, self-interested agents over the distributed
execution of complex tasks. The MAGNET testbed is
a prototype implementation of a Customer agent, along
with a population of simulated Supplier agents. It is
highly configurable and extensible, and has been used
for several statistical studies aimed at understanding the
decision processes for a Customer agent.

The current system has proven to be very useful for
the types of statistical studies we have pursued so far.
Future plans call for more focus on mixed-initiative in-
teraction, and our current user interface is too primitive
to support that work.

Some domains, notably the International Shipping do-
main we are currently studying in collaboration with
North Star Import-Export, will require an enhanced
plan representation to deal with the fact that alternate
routes or shipping modalities may be acceptable.

A major need in this area of research is the establish-
ment of a set of benchmark problems by which different
strategies can be compared. Leyton-Brown et al [13]
have proposed a test suite called CATS for testing com-
binatorial auction systems. It solves part of the prob-
lem; but it only deals with bids, not the RFQ, and it
does not handle the precedence relations needed in the
MAGNET environment.
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