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Abstract

Traditional approaches to task planning assume that the planner has access to
all of the world information needed to develop a complete, correct plan which
can then be executed in its entirety by an agent. Since this assumption does not
typically hold in realistic domains, we have implemented a planner which can
plan to perform sensor operations to allow an agent to gather the information
necessary to complete planning and achieve its goals in the face of missing or
uncertain environmental information. Naturally this approach requires some
execution to be interleaved with the planning process. In this report we present
the results of a systematic experimental study of this planner’s performance
under various conditions. The chief difficulty arises when the agent performs
actions which interfere with or, in the worst case, preclude the possibility of
the achievement of its later goals. We have found that by making intelligent
decisions about goal ordering, what to sense, and when to sense it, the planner
can significantly reduce the risk of committing to premature action. We have
studied the problem both from the perspective of reversible and irreversible
actions.



1 Introduction

The experiments described in this report constitute part of an ongoing research
project in the area of task planning under uncertainty. Traditional approaches to
task planning assume that the planner has access to all of the world information
needed to develop a complete, correct plan which can then be executed in its
entirety by an agent. Of course, for most complex domains, having all of the
necessary world information at plan time cannot be assumed. For this reason, we
have implemented a planner, BUMP, which is capable of interleaving planning
and execution. BUMP is able to defer portions of the planning process which
depend on unknown or uncertain information until the information in question
can be obtained through sensors. In this case, BUMP inserts sensor operations
directly into the plan which the agent executes to enable further planning.

Alternately, BUMP may choose to assume a default value for the uncertain
information rather than plan to sense it. We have come to call this distinction
the defer /default question, and it has played a central role in guiding our recent
research efforts.

Deferral and defaulting each have strengths and weaknesses. Deferral can be
attractive with good sensors because it reduces planner uncertainty, however,
sensing can become prohibitively expensive. In addition, satisfying precondi-
tions for sensor operations can in itself be time-consuming, and as we will see,
increases the probability of performing premature actions.

Defaulting can be risky, but it allows the planner to complete more of the
plan before execution begins. This allows the planner to see further into the
plan and detect problems which may lie beyond the horizon of the deferral
point. As domain uncertainty increases however, this further planning becomes
increasingly arbitrary.

In general, it is difficult to know whether to defer and sense a given uncertain
value or simply choose a default value and face the risks. Deciding on the
best strategy for a given planning problem consists of computing the tradeoffs
of various strategies, but as we will see, such a computation quickly becomes
intractable for even a modest degree of uncertainty, suggesting the need for
heuristic techniques.

2 Purpose of Experiments

The experiments we performed were aimed at answering general questions about
factors which influence the quality of a plan, and how we can use those factors
when deciding on planning strategies. In this section we will discuss three types



of planning strategies and three measures of plan quality. We have found it
useful to think of the quality measures as functions to minimize or maximize,
and the strategies as means to that end.

Planning Factors

We have identified the following as important factors of task planning with
sensors. OQur studies have shown that by intelligently controlling these factors,
a planner can improve its performance, often dramatically. Thus, we define an
overall planning strategy as a set of algorithms to determine each of the following
parameters for a given problem instance.

Goal ordering: We found it advantageous to carefully order the planner’s ini-
tial goals based on the amount and type of unknown information at the
start of planning. Thus, we varied and examined goal orders to determine
heuristics for a goal ordering strategy.

When to sense: A critical decision when interleaving planning and execution
is when to switch from one to the other. In related research, [0G90] iden-
tified two general strategies to manage the transfer of control between the
planning and execution modules. We examined these two control strate-
gies.

For both strategies if the planner discovers that it needs some unknown
information it inserts a sensor operation into the plan to obtain the infor-
mation. It then plans to satisfy any preconditions of this sensor operation.

In the first strategy, known as Stop and Execute (SE), when the plan-
ner encounters a goal whose achievement depends on information it has
planned to sense, control is transferred to the execution module. The sen-
sor process and all processes ordered before it in the current partial plan
are executed. Control then returns to the planner.

In the second strategy, Continue Elsewhere (CE), goals whose achieve-
ment depend on information to be sensed are deferred. Planning contin-
ues elsewhere. Only when all goals are either planned to completion or
deferred does execution initially commence. Execution halts after each
sensor operation to allow completion of a deferred goal. In general, Con-
tinue Elsewhere allows much more planning, albeit less informed planning,
to occur ahead of the first execution phase.

We believe these two strategies to be of particular interest because they
seem to be the only truly domain independent control strategies which
we have found useful. Any other strategies we have considered are not
general-purpose, and are only useful under rather specific circumstances.



What to sense: Finally, there is the question of which uncertain quantities
to sense and which to default. We will refer to this as our deferral strat-
egy. Choosing a reasonable deferral strategy requires careful consideration
of domain-specific factors such as default reliabilities, sensor reliabilities,
planning costs, execution costs, and the cost of human intervention.

Plan Quality Criteria

Before it makes sense to further discuss the strategies above, we must be clear
as to the objectives they are intended to serve. We have come to call such
objectives plan quality criteria, and have identified and gathered data on a
number of them, each of which could stand alone, or be used in conjunction
with other criteria as a measure of plan quality.

Success Rates: For this measure of planner performance, we computed the
percentage of problems in which BUMP was able to construct plans in
which no processes needed to be undone as a result of being executed
prematurely. One of the major difficulties in interleaving planning and
execution is to keep the robot from performing actions which may interfere
with goals not yet considered. The most common example of this in our
experiments occurred when the robot bolted closed a tool box only to
discover that it contained a wrench (or bolt) needed to accomplish a later
goal. Under this criterion we considered such plans failures, in effect
assuming the agent was unable to recover from such premature actions.

Execution Cost: For this criterion we measured plan length, that is, the cost
of all actions to be performed in the final plan when the planner is allowed
to recover from premature actions (i.e. undo and redo these actions). This
provided us with some indication of how inefficient the inferior solutions
were to previously unsuccessful problems. For these experiments, we sim-
ply counted each instantiated process (action) in the plan as having unit
cost, although it would be trivial to assign varying costs to various types
of actions.

Planning Cost: Finally, in some experiments we tracked the amount of plan-
ning work done by the planner. Since BUMP is an agenda-based planner,
a reasonably accurate indication of planning work is the number of items
it placed on its agenda.



3 The Experiments

In this section we will outline the experiments we conducted. Each experiment
consisted of running the planner, BUMP, on a number of carefully controlled
planning problems. In most cases we attempted to decide on the most chal-
lenging subset of problems in the domain, generate them in turn, and measure
BUMP’s performance in solving each of them.

All of the experiments consisted of problems in the tool boz world. In the tool
box world, the robot is in a room with n tool boxes ¢, ta, .. . t,, each containing
wrenches and bolts of various sizes. The robot knows the initial locations of the
wrenches and bolts. Bolts are identified by a unique name, and wrenches are
identified by size. The robot has been instructed to close and bolt one or more
tool boxes with particular bolts. To perform each bolting operation, the robot
must use a wrench of a size that matches the bolt. A sensor is available that
can classify bolts by their size (e.g., a number from 1 to 10). For simplicity,
the bolts sizes are indicated along the same scale as the wrench sizes. We also
assume the robot has a tool belt into which it can put an unlimited number
of bolts and wrenches.! Finally, we assume the robot’s starting location to be
distinct from the location of any of the tool boxes. Since the planner’s goals
are strongly associated with particular tool boxes, this assumption was meant
to avoid any bias in our results.

The test set for our experiments varied slightly from one experiment to the
next, but there are a number of characteristics shared by most of them. We
describe these commonalities here and then specify modifications with the indi-
vidual studies. The majority of the studies deal with a three-box world. These
boxes are called s,t, and u, and they are to be bolted with bolts b, b; and b,,,
respectively. Each of these three bolts has a different size—b, has size 4, b; size
5, and b, size 6. The bolts are initially in their respective boxes (e.g., b, is
in box 5).2 All of the tool boxes are initially open. In all of the experiments
described in this paper the robot begins at a neutral site (one unrelated to any
work that it must do). Several of the experiments described here use a four-box
world adding an extra box v and an extra bolt b,. In other respects they are
similar to the three-box experiments.

Each experiment consists of hundreds or thousands of planner runs using system-
atically defined sets of initial conditions, goal orderings and planning strategies.
The variables defining these test sets are the following;:

1We are not concerned here with the arm-empty conditions as used in typical definitions
of the blocks world. Our main goal in defining this domain is to study how sensor use can be
interleaved with planning.

2This causes the robot to see less of the world while solving its early goals since it need
not go anywhere to get a bolt.



Control Goal Num of
Exp | Boxes | Quality | Strategy | Orders | Unknowns

1 3 success SE all all

2 3 success CE all all

3 3 ecost SE all all

4 3 ecost CE all all

5 3 pcost SE all all

6 3 pcost CE all all

7 4 ecost SE 4 1

8 4 pcost SE 4 1

9 4 ecost SE 4 2
10 4 pcost SE 4 2

Table 1: Summary of experiments conducted.

Wrench Location: Each of the wrenches may initially be in any toolbox. For
three box experiments this gives 27 possible wrench placement scenarios.

Goal Ordering: In several of the experiments we were interested in the effect
that reordering the initial goals might have on the performance of the
planner.

Control Strategy: Stop and Execute versus Continue Elsewhere.

Defer /Default Decisions: The size of each bolt is either known or unknown
at the start of the first planning phase. For three bolts there are 8 com-
binations.

Results of the experiments will often be broken down to show the effects of
goal ordering, control strategy and defer/default decisions. A summary of the
experiments we conducted can be found in Table 1.

3.1 3-Box Success-Based

In our first experiment, we measured plan success by computing the percentage
of problems in which BUMP was able to construct plans in which no processes
needed to be undone as a result of being executed prematurely. In each problem
there are three top level goals. Each goal is of the form (bolted ¢ b;), where
t denotes a tool box instance, and b; a bolt instance. For simplicity, we will
identify goals by the tool box they refer to (e.g., the T-goal for the above goal).

Table 2 provides the results of this experiment. The standard test set described
earlier was used. The headings along the horizontal axis indicate which of
the three bolt sizes are known in the order bs, b;, and b, respectively. So,



Stop and Execute

456 | 45- 46 -56 | 4-- -5- --6|---
STU || 100 | 63 63 100 | 37 63 63| 37
TSU || 100 | 63 100 63| 63 37 63| 37
TUS || 100 | 63 100 63| 63 37 63| 37
SUT || 100 | 63 63 100 | 37 63 63| 37
UST || 100 | 100 63 63| 63 63 37| 37
UTS || 100 | 100 63 63 | 63 63 37| 37
Avg (| 100 | 75 75 75| 54 54 54| 37

Continue Elsewhere

456 | 45- 46 -56 | 4-- -5- --6|---
STU || 100 | 63 74 100 | 30 44 67| 22
TSU || 100 | 63 100 74| 44 30 67| 22
TUS || 100 | 74 100 63| 67 30 44| 22
SUT || 100 | 74 63 100 | 30 67 44 | 22
UST || 100 | 100 63 74| 44 67 30| 22
UTS || 100 | 100 74 63| 67 44 30| 22
Avg (| 100 | 79 79 79| 47 47 47| 22

Table 2: Success Rates, 3 box, All Goal Orderings

for instance, 4-6 indicates that bolt by is of size 4, bolt by is of unknown size,
and bolt b, is of size 6. Vertical lines separate columns into groups with the
same number of unknowns. The headings above each table indicate the control
strategy used, either Stop and Execute or Continue Elsewhere.

In the following sections we informally describe observations and principles
based on the results of the success-based experiments. We conclude this sec-
tion with a more formal analysis and propose an overall planning strategy for
maximizing success.

More information means increased success

The results of experiments 1 and 2 are broken down by goal ordering and aver-
aged in Table 2. They suggest a number of things. Let us look at the summary
line of the SE portion of this table. As we move to the right in the table, the
success rates get worse, as expected. Certainly the planner will be more likely
to commit to premature action with less a priori information.



Get unknown information early

Again consider the SE table. Average success rates in columns with the same
number of unknowns are identical, however, the percentages in each column
are distributed differently by goal ordering. For instance, consider the three
columns with one unknown. In each column, there are two goal orderings which
produce 100% success, and four which produce only 63% success, but the goal
orderings are different in each column. In fact, each goal ordering produces
100% success in ezactly one place in those three columns. The same applies to
Continue Elsewhere.

It appears as though we can achieve the highest success rates in the one unknown
case by considering the goal involving that unknown first. For example, we can
achieve 100% success in column 45- by ordering the U-goal first (either as UST
or UTS) because b, is the bolt of unknown size. To explain the unknown
b, phenomenon we hypothesized that in the cases where the size of b, was
unknown, it was crucial to BUMP’s success to know the size of b, early in the
planning process. This could be accomplished by reordering goals so that the
U-goal was attacked first. If this was not done, the goal involving b, would be
one of the last two BUMP would try to accomplish. Therefore, it would not
sense the size of b, until later in the planning process, increasing the chances
that satisfying that goal would involve undoing some actions which had already
been executed. Keep in mind that planning and execution are interleaved, and
that some execution is very likely to have been performed by the time BUMP
encounters its later goals. If any of the executed actions involve bolting closed a
box containing a needed wrench for b, the plan will no longer be successful. 3
This experiment confirmed our suspicions that it is possible to improve average
performance by controlling the goal ordering based on which information is
missing for a particular problem.

Quantum Levels

In the case of Stop and Execute, it is clear that for a given problem pair of
goal ordering and bolt size scenario, BUMP can perform at one of only 3 levels
of success, 100, 63, or 37 percent. We will refer to these as quantum levels or
quanta. Similar quanta can be seen in the Continue Elsewhere case, although
there are 7 instead of 3 quanta. It seems from this experiment that we can

31t is useful to note here that more specialized strategies are probably necessary to avoid
such problems. We have performed some experiments using a strategy called Sense Before
Closing, in which all sensor processes are ordered before any closing operations are performed.
This solves the problem, but carries with it often severe costs of its own. In the worst case,
each tool box would have to be visited twice instead of once, so Sense Before Closing basically
trades bolting/unbolting operation costs with transportation costs. Whether this is a good
trade of course depends on the domain.



move up a quantum level by ordering initial goals properly. The following two
examples serve as evidence of this.

Consider the SE table again, in particular experiments STU 45- and STU 6. In
the former, there is only one unknown, b,. In the latter, there are two, by and
b;, however BUMP performs at the same 63% quantum level for both. Why? In
the first case, the goal involving the unknown is considered last. In the second
case, the two goals involving unknowns are considered first.

Consider a second example: STU 4 performs at the 37% quantum level and TSU
4 at 63%, although the bolt sizes for b; and b, are the unknowns in both cases.
This difference makes sense when we consider the following. In STU the S-goal
is tackled first. Since the size of bolt by is known the entire goal is finished,
and then the T-goal is considered. It requires a sensor operation which will be
ordered after the S-goal steps. (Since the bolt b; is in box t, the robot must
leave s and go to t.) That causes problems. With TSU, the T-goal is considered
first and the sensor operation done immediately. This raises the success rate to
the same as TSU 45-. In effect, by reordering intelligently it appears we can
reduce the number of unknowns by one, but as we will see, the improvement is
not quite that dramatic.

Continue Elsewhere

We see the same pattern with the CE control strategy.* Here however, it appears
the CE strategy is more susceptible to small changes in degrees of uncertainty,
performing better than SE with one unknown, usually worse but sometimes
better with two unknowns, and markedly worse with three unknowns. Such a
sensitivity to unknown information makes sense when one considers that BUMP
commits to far more of the plan in general when using the CE strategy, which
works to its advantage when there is little uncertainty, but causes many prob-
lems as the degree of uncertainty increases.

A useful heuristic

A very useful heuristic seems evident here: Try to consider the goals that you
know the least about first. Sort the goals in increasing order of knowledge.?
Using this heuristic should yield the predicted success rates in Table 3. It seems

4The CE 456 experiments were not actually run since they are, by definition, identical to
SE 456. In the full information case, both strategies exhibit the same behavior.

51t is important to note that this heuristic depends critically on the assumption that the
planner can identify connections between its top-level goals and the unknown domain propo-
sitions in the problem. In these experiments there is a one-to-one correspondence between
goals and potential unknowns, so such issues are not addressed.



| 456 | 45- 46 -56 | 4-- -5- -6 | ---
SE |[100 [ 100 100 100 | 63 63 63 | 37
CE || 100 | 100 100 100 | 67 67 67 | 22

Table 3: Potential Success Rates, 3 Boxes, Correct Ordering

from this experiment that SE and CE perform at close to the same level. CE is
slightly better on average in the 2 unknown case (by 4%).6 SE is 12 percentage
points better in the zero information case. CE performs quite badly in the
zero information case because it constructs nearly an entire plan before any
information is ascertained through sensors.

A Success-Based Overall Strategy

Let us now make a first attempt at our goal of finding a good overall planning
strategy. In addition to the ordering heuristic we must have a method for
selecting a control strategy and a deferral strategy. We will try to maximize
success through our selection of a strategy. We will assume here that once a
control strategy and a deferral strategy have been selected that the top-level
goals are reordered to obtain the highest success rate for the given number of
unknowns.

As can be seen from Table 3 we can always improve success rates by having
additional known information. Thus, if our default information were 100%
reliable, it would always make sense to use it and obtain a 100% success rating
(with either control strategy). Of course, default information is rarely, if ever
100% reliable. If incorrect default information is used, the robot will most likely
encounter an execution time error. This will necessitate some sort of execution
time error recovery, and the resulting execution will certainly be inefficient. So,
the increased success with extra “known” information must be adjusted by the
reliability of that information. Of course, a similar point can be made regarding
sensor reliability. The data in Table 3 assumes that all sensor readings are
correct, and this is clearly fictional.

3.2 Analysis

To make this discussion more concrete, let us analyze the expected success rates
given the reliability of our default values and our sensors. Let r1, r2 and r3 be
the reliabilities of our three defaults, d;, d> and ds and let s;, so and s3 be

SCE does better than SE in 4-6 and -56 when it can avoid locking wrench 6 in box S by
planning past the b; sensing to look at the U-goal. The same advantage can be seen in 4 and
-5-.



the reliabilities of the associated sensor readings. Also, assume r; > 72 > r3.
(d1, do, and ds are in no particular order relative to the planning process.)
When a bolt size is known at the start of planning, this corresponds to a default
reliability of 100%. Let qo, ¢1, g2 and g3 be the maximum potential success rates
for cases with 0, 1, 2 and 3 unknowns respectively. From our experiments, these
values are 1.0, 1.0, 0.67 (with CE), and 0.37 (with SE).

With one unknown we have two possible defaulting scenarios: default on that
unknown or sense it. In the first case the expected success is 11qo. In the second
case it is sy;q;- Since go = g1 = 1.0, we should take the default if ; > s;. We
would normally not expect this to be the case, so with one unknown it is usually
better to use a sensor. (This ignores the additional execution cost of sensing.
This will be taken into account in our later cost based analyses.)

More generally, the best overall strategy in any particular instance of the three
box problem can be found by computing the maximum of the following set of
values:

{rirorsqo,T1r283q1,715273q1, S1727341

T18283¢2, $1T253¢2, S15273¢2, 515253¢3 }

Once the maximum is found, the associated deferral strategy consists of the
default/defer decisions indicated. For example, sqrarsq; corresponds to using
defaults dy and d3 and getting a sensor reading for the other unknown. (Either
control strategy would be acceptable here.)

It is interesting to examine the default reliabilities required in the three box
domain. For example, consider a case with two initial unknowns (i.e., 1 = 1.0).
Let us also assume 100% reliable sensors. The expected success rates are now

{TQT’g, ro,Tr3,Tr2rs3, 067, 0.677“2, 0.677’3, 037}

Assuming 1 > ro (recall ro > r3), the optimal strategy is clearly either the
second (take dx but not d3) or the fifth (take neither default). The former is
preferred if ro > 0.67. That means a default that is correct two thirds of the
time is better than a 100% reliable sensor reading. If the sensors are unreliable
the default information looks even better.

A similar analysis for three unknowns (again assuming perfect sensors) gives
the following strategy:

If ro > 0.67 take d; and d»
elseif r; > 0.55 take d;
else sense everything

Here again, even mediocre defaults look attractive. Considering more realistic
sensors with an 80% accuracy rate, we obtain the strategy

10



If T3 2 0.8 take dl,d2 and d3
elseif ro > 0.54 take dy and d»
elseif r1 > 0.44 take d;

else sense everything

3.3 3-Box Cost-Based

Execution Cost

After our initial experiments concerning control strategy and goal ordering,
we ran the same experiments using a different plan quality criterion, namely
execution cost. With this new measure of plan quality however, we must now
allow the planner to produce inefficient plans if necessary, by adding redundant
actions, or planning to undo and redo actions to achieve its goals.

With this new ability, BUMP was able to find a valid solution to each of the
2592 experiments we conducted.” Table 4 shows execution cost data broken
down into individual goal orderings and summarized.

Both the SE and CE execution cost tables mirror the results obtained when
performing the same experiments from a success standpoint. The average costs
in each column within a given unknown group are identical. However, with
this new quality criterion, more quanta are obtained. For SE, 8 quanta can
be identified rather than 3. For CE, 8 quanta are also present, rather than 7.
This suggests that a cost-based approach is more useful to us in revealing the
true quality of plans that BUMP produces. For instance, groups of experiments
which appeared equivalent from a success standpoint are distinguished from each
other here. Plans which committed to premature action were all considered
failures when measuring success, but can now be distinguished by how much
inefficiency is introduced by premature action.

It is somewhat surprising just how much additional execution is introduced by
premature actions caused by missing information. For SE, exactly 50% more
processes are necessitated in the 3 unknown case than in the full information
case. This number is nearly 61% for CE.

From a cost perspective, it is not possible however, to achieve the same quality
rating as a case with one fewer unknown, as was the case with success rates. In
other words, reordering doesn’t quite eliminate the effect of one of the unknowns,
as suggested by our success rate experiments. For instance, in the 3 box problem,
optimal reordering shortened plans by an average of about 10%.

72592 = 2 control strategies x 8 bolt scenarios x 6 goal orderings x 27 wrench placement
scenarios.

11



Stop and Execute

456 45- 4-6 -96 4-- -9- -6 ---
SE STU || 20.52 | 24.48 24.78 22.07 | 29.11 26.15 26.44 | 30.78
SE TSU || 20.52 | 24.48 22.07 24.78 | 26.15 29.11 26.44 | 30.78
SE TUS || 20.52 | 24.78 22.07 24.48 | 26.44 29.11 26.15 | 30.78
SE SUT || 20.52 | 24.78 24.48 22.07 | 29.11 26.44 26.15 | 30.78
SE UST || 20.52 | 22.07 24.48 24.78 | 26.15 26.44 29.11 | 30.78
SE UTS || 20.52 | 22.07 24.78 24.48 | 26.44 26.15 29.11 | 30.78
Avg 20.52 | 23.78 23.78 23.78 | 27.23 27.23 27.23 | 30.78

Continue Elsewhere

456 45- 4-6 -96 4-- -5- --6 ---
CE STU || 20.52 | 24.78 24.11 22.44 | 29.33 28.00 26.67 | 33.00
CE TSU || 20.52 | 24.78 22.44 24.11 | 28.00 29.33 26.67 | 33.00
CE TUS || 20.52 | 24.11 2244 24.78 | 26.67 29.33 28.00 | 33.00
CE SUT || 20.52 | 24.11 24.78 22.44 | 29.33 26.67 28.00 | 33.00
CE UST || 20.52 | 22.44 24.78 24.11 | 28.00 26.67 29.33 | 33.00
CE UTS || 20.52 | 22.44 24.11 24.78 | 26.67 28.00 29.33 | 33.00
Avg 20.52 | 23.78 23.78 23.78 | 28.00 28.00 28.00 | 33.00

Table 4: Execution Costs, 3 Box, All Goal Orderings

Planning Cost

At the same time, we gathered data on our third quality criterion, planning
cost. Here we simply kept track of the number of items placed on the agenda
throughout the entire process of plan formulation and execution as our measure
of planning cost. The average planning costs are shown in Table 5.

While plan length increased by 50% for SE as less information was available,
planning cost increased more slowly. For SE, about 39% more agenda items are
necessitated in the 3 unknown case than in the full information case. However,
this number was 65% for CE. As stated previously, CE does very poorly when
it has very little information to begin with, because it still constructs a large
percentage of the plan prior to any sensing. This translates into large numbers
of premature actions, which implies more planning and execution to recover
from them.

Finally, when examining the two cost tables together a peculiar fact appears. In
SE, cases that appeared symmetrical with respect to the success criterion (e.g.,

12



Stop and Execute

456 45- 4-6 -56 4-- -5- --6 ---
SE STU || 104.00 | 122.85 122.59 105.04 | 142.89 124.19 123.93 | 144.22
SE TSU || 104.00 | 122.85 105.04 122.59 | 124.19 142.89 123.93 | 144.22
SE TUS || 104.00 | 122.59 105.04 122.85 | 123.93 142.89 124.19 | 144.22
SE SUT || 104.00 | 122.59 122.85 105.04 | 142.89 123.93 124.19 | 144.22
SE UST || 104.00 | 105.04 122.85 122.59 | 124.19 123.93 142.89 | 144.22
SE UTS || 104.00 | 105.04 122.59 122.85 | 123.93 124.19 142.89 | 144.22
Average || 104.00 | 116.83 116.83 116.83 | 130.33 130.33 130.33 | 144.22

Continue Elsewhere

456 45- 4-6 -56 4-- -5- --6 ---
CE STU || 104.00 | 127.63 123.85 112.89 | 152.89 144.33 136.44 | 172.00
CE TSU || 104.00 | 127.63 112.89 123.85 | 144.33 152.89 136.44 | 172.00
CE TUS || 104.00 | 123.85 112.89 127.63 | 136.44 152.89 144.33 | 172.00
CE SUT | 104.00 | 123.85 127.63 112.89 | 152.89 136.44 144.33 | 172.00
CE UST | 104.00 | 112.89 127.63 123.85 | 144.33 136.44 152.89 | 172.00
CE UTS | 104.00 | 112.89 123.85 127.63 | 136.44 144.33 152.89 | 172.00
Average || 104.00 | 121.46 121.46 121.46 | 144.56 144.56 144.56 | 172.00

Table 5: Planning Costs, 3 Box, All Goal Orderings

SE TSU 4 and SE TUS 4) demonstrate a small difference in execution cost.
Furthermore, it is not the TUS ordering that is shortest, as we might expect
since the T and U goals involve unknown information, it is TSU. Moreover,
when considering planning cost TUS takes less work! This may at first seem
surprising, as one would expect more agenda items would generally imply more
process nodes.

After investigating this phenomenon on a more detailed level, we found that
the slight increase in execution cost for TUS was largely due to the fact that
7 plans contained one extra goto process. We saw examples of extra gotos in
both recovery and non-recovery cases.® Thus it seems that ordering the only
goal with known information last is slightly worse than ordering it second to
last, since the planner does not make use of the known information in time to
avoid a redundant action.

81t is possible for the plan to contain more goto processes than is strictly necessary without
recovering. In this particular case, it occurs because, by considering the goal involving the
known information last, it loses an opportunity to reorder actions in such a way as to avoid
returning to a box it had been at previously.

13



Plan Cost Execution Cost

SE STUV : 205.44 41.19
SE TSUV 190.75 38.76
SE TUSV 186.24 38.18
SE TUVS 188.80 38.84

Table 6: Planning and Execution Costs, 4-box, 3 unknowns, All Goal Orderings,
Stop and Execute

3.4 4-box Cost-Based

The main purpose of extending the study to four tool box experiments was to
determine the proper position for the one goal involving known information.
Based on prior experiments, we suspected it wouldn’t be first or last. This
suspicion was confirmed.

Table 6 shows average planning and execution costs for planning problems in-
volving four tool boxes. Because of the computational explosion of possible
problems involving four tool boxes, we limited this experiment to problems in
which only one bolt size is known (b, = 4), and only four goal orderings are
used.

From a planning cost and execution cost standpoint, the TUSV goal ordering
seems to be the best, slightly better than TUVS and TSUV. This means attack-
ing the known goal third gives the best average results. Goal ordering STUV
is clearly the worst, as was expected, since the fact that the planner gets its
first sensor operation for free is not taken advantage of by attacking the S-goal
goal first. In the four box problems we conducted, attacking the known goal
first results in an extra 19.2 agenda items (10.3% more planning) and 3.01 more
processes (7.9% more execution) than the optimal ordering on average.

3.5 4-Box, 2 Unknowns, Cost-Based

To flesh out our understanding of the effects of goal ordering in the four box
world we performed a comparative study of six goal orderings (see Table 7)
using all 256 possible placements of wrenches in the four box world. We used
the Stop and Execute strategy and took the sizes of bolts bs and b; to be known.
We selected six goal orderings (from a possible 24) by noting that the S and T
goals were symmetric (the bolt size was known for both of them) and so were
the U and V goals. Thus, we selected the 6 orderings that have S before T and
U before V.

As we hypothesized it was clearly better to have a goal with an unknown bolt
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Plan Cost Execution Cost
SE STUV 189.25 37.01
SE SUTV 184.74 36.43
SE SUVT 187.30 37.09
SE USTV 163.68 32.98
SE USVT 169.78 34.25
SE UVST 162.96 33.39

Table 7: Planning and Execution Costs, 4 Box, 2 Unknowns, All Goal Orderings,
Stop and Execute

size first. Given that we start with an unknown what is the best order for the
remaining three goals? As noted in our earlier ordering experiments there are
competing principles at work here. It is good to encounter unknowns early in
the planning process, but it is also good to save one unknown for the end. These
competing principles explain the data from this experiment too. Goal orderings
USTYV and UVST are roughly equivalent in performance with USVT performing
slightly worse. USVT obeys neither principle: It finishes with a known and it
has another known before an unknown. This suggests the following heuristic:

Ordering Heuristic: When there are goals with known information and goals
with unknown information,
1. place one unknown in the first position,
2. if there are more unknowns, place one in the final position,
3. place any other unknowns in sequence following the first one.
4.

all knowns go in the remaining positions.

4 A Cost-Based Overall Strategy

When the robot is able to detect at some point that a default value or a sensor
reading was erroneous and then take corrective actions, it makes more sense to
use cost as the quality criterion. As described earlier, cost can be measured
either in terms of execution cost of planning effort. We will focus on execution
cost since we believe this is generally the more significant aspect. A similar
analysis could be developed for planning effort.
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4.1 Analysis

The analysis in this case is a good deal more complicated since many more
options come into play. For example, if a decision is made to try a default
which later turns out incorrect, the robot could then try to recover by using
a sensor. If the sensor reading also turns out to be incorrect, it might still be
possible to recover with human intervention (presumably at a very high cost).?

As before, let r; be the reliability of a default value and s; the reliability of
the sensor reading. In place of the success rates g; that we used in our previous
analysis, we need the average execution costs under various scenarios. We define
the function C; to return these costs when there are ¢ unknowns. C; takes i
arguments where each argument is a sequence of one, two or three of the letters
D, S and I. This sequence reflects which of the resources — default, sense and
intervene — were used for the given unknown as well as the order in which they
were tried. It is assumed that the last resource is always successful and that
intervention is always successful. For example, DS means an incorrect default
followed by a correct sensor operation. SDI means an incorrect sensor reading
followed by an incorrect default value followed by successful human intervention.
Cy(SDI) would be the expected execution cost under this scenario when there
is one unknown.

Given this information we can develop formulas for the expected costs of various
attempted solutions. For example, with one unknown the expected cost of
defaulting with sensing and intervention as backup actions is expressed by the
following weighted sum:

r1C1(D) + (1 —r1)s1C1(DS) + (1 —r1)(1 — 51)C1(DST)

Assuming the C; values shown in Table 8 and the reliabilities 1 = 0.7 and
s1 = 0.8 the expected cost is 24.2.

An alternative strategy would try sensing first followed by defaulting and then
intervention. The weighted sum cost formula for this strategy is

8101(5) + (]. - sl)ﬁCl(SD) + (1 - 81)(1 - Tl)Cl(SDI)

There are three other strategies in which one or more of the resources is not
tried. The expected costs are

9Some other options that we do not consider in this analysis are
1. to try a different sensor, or
2. to continue trying the same sensor.

If the sensor is working at all (i.e., there is a non-zero probability of a correct reading),
then with persistence the second option should eventually produce a correct reading. The
probability of n readings all being incorrect goes to 0 as n — co. This might also have a very
high cost. The same analysis technique could be used to characterize the cost of both these
options.
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D 20 | S 22
DS 30 |SD 30
DI 40 | SI 42
DSI 50 | SDI 50
I 35

Table 8: Sample C; values.

r = 0.7 r = 0.2

Strategy s1=08 | s =0.8
default, sense, intervene 24.2 31.2
sense, default, intervene 24.8 26.8
sense, intervene 26.0 26.0
default, intervene 26.0 36.0
intervene 35.0 35.0

Table 9: Expected costs.

no default: s1C1(S) + (1 — $1)C1(SI)
no sensing: 1 Cy(D) + (1 —r1)C1(DI)

neither default nor sense: C;(I)

One of these strategies might be appropriate if sensing or defaulting is particu-
larly unreliable and the cost of intervention is light.

Given the C] cost estimates and the reliabilities we can calculate the optimal
strategy for one unknown by evaluating the five above formulas and finding
the minimum. The expected costs under the five strategies, assuming the costs
in Table 8 and the reliabilities 11 = 0.7 and s; = 0.8, are shown in the second
column of Table 9. In this case, the best strategy is default, sense then intervene.
If on the other hand the reliability of the default is 0.2 we get the costs shown
in column 3. Here, the best strategy is to sense then intervene. Note that it is
better in this case to ask immediately for intervention than to try a default and
then request help if there is a problem. The default is not reliable enough to risk
the extra cost associated with an incorrect guess and the cost of intervention is
small.

Let us next consider the formulas for expected cost with two unknowns. One
scenario would try both defaults first, backed up by sensing and intervention.
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The resulting formula is

r1r2C2(D, D) +
(1 — T1)7‘2$102 (DS, D) +
7“1(1 — TQ)SQCQ(D,DS) +
(]. - 7’1)(1 - 7‘2)813202(DS,DS) +
(L —=r1)r2(1 = 51)C2(DSI, D) +
7‘1(1 - 7‘2)(1 - 82)02(D,DSI) +
(1 — 7‘1)(1 - TQ)(]. - Sl)SQCQ(DSI,DS) +
(1 — 7‘1)(1 - T2)81(1 - SQ)CQ(DS, DSI) +
(1 — 7‘1)(1 - TQ)(]. - 81)(1 - SQ)CQ(DSI,DSI)

This formula is certainly much more complicated than the formulas for one
unknown. In fact the number of terms to be summed in a formula that con-
siders all three resources — default, sense and request intervention — grows
exponentially (3" for n unknowns). The number of factors in the longest term
is 2n + 1. Thus, calculating the expected cost of just one scenario is O(n3").
Even the amount of cost data that must be collected grows exponentially in the
number of unknowns. There are many other scenarios that must be evaluated
and compared to this one to find the optimal strategy of sensing and defaulting.

Clearly, we cannot effectively calculate this optimal strategy unless the number
of unknowns is quite small. Rather, we need heuristic techniques that will help
us find an approximately optimal strategy. Finding such techniques will be a
subject of our future research.

5 Discussion

Interleaving of planning and execution has been used and discussed extensively
in robotics [McD78, DL86, Cha91] but few researchers have addressed the more
specific problem of deciding what to sense and when. Our work has been in-
spired, among others, by the work of [TS89], who alternate between improvising
and planning. Since sensing is assumed to be expensive, the system prefers ac-
tions with the fewest sensor requests first. The results they obtained show the
importance of good heuristics over sophisticated planning strategies.

Brooks [Bro82] verifies the feasibility of a plan in light of uncertainties and errors
and decides when sensors are needed to reduce the amount of error. Doyle
[DADS86] uses sensors to verify the execution of a plan. The sensor requests
are generated after the plan has been produced by examining the preconditions
and postconditions of each action in the plan. Domain dependent verification
operators map assertions to perception requests and expectations. The entire
process is done before executing the plan. Hager and Mintz [HM91] have more
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recently proposed methods for sensor planning based on probabilistic models of
uncertainty.

The need to plan with incomplete information raises important theoretical is-
sues. A number of authors have proposed decision theoretic approaches to plan-
ning and control. Horvitz et al. [HCH89] propose a general model for reasoning
under scarce resources that is based on decision theory. Boddy [Bod91] has
studied time-dependent problems and proposed a framework based on decision
models for constructing solutions to time-dependent problems. Chrisman and
Simmons [CS91] produce near optimal cost plans by using Markov Decision Pro-
cesses to decide what to sense. Hsu [Hsu90] proposes to plan with incomplete
information by generating a “most general partial plan” without committing to
any choice of actions not logically imposed by the information available at that
point. An anytime algorithm [DB88] is used to choose the appropriate action
on the current partial plan when the system has to act.
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