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Abstract We discuss a construction of an evolutionary framework for conduct-
ing large-scale experiments in multi-agent systems for applications in
electronic marketplaces. We describe how the evolutionary framework
could be used as a platform for systematic testing of agent strategies
and illustrate the idea with results from a simple supply-demand model.
We further explain how to integrate the proposed framework in an ex-
isting multi-agent system and demonstrate our approach in the context
of MAGNET, a multi-agent system where agents bid over complex com-
binations of tasks with time and precedence constraints.
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1. Introduction

Online marketplaces are gaining popularity among companies seeking
to streamline their supply chains. For buyers such marketplaces can
significantly ease the process of finding, comparing and coordinating
providers, while for sellers marketplaces provide access to much broader
customer base [21].
Intelligent software agents can significantly reduce the burden of mar-

ket exploration by sifting through the avalanche of information and per-
forming calculations to promptly provide a human decision maker with
a refined list of alternatives. However, we believe that to exploit the true
potential of electronic marketplaces, software agents need to be able to
make their own decisions and adapt their strategies to the current situ-
ation.

∗Work supported in part by the National Science Foundation, awards NSF/IIS-0084202 and
NSF/EIA-9986042.
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A major difficulty that hampers the acceptance of software agents
as decision makers is the lack of systematic and accepted methods to
assess and validate the agents’ decisions in a multi-agent system. We
are not concerned here with the broad issue of software validation. We
assume that proper software design and testing methods are used in the
development of the software agents. Our concern is with the methods
(or lack thereof) to assess and validate the strategic decisions agents
make, and their ability to adapt to changing market situations.
An issue in assessing multi-agent systems is that there is not enough

real-world data available to perform comprehensive testing. At the same
time, analytical modeling for the majority of less than trivial problems
is prohibitively hard.
In this paper we propose to design a large-scale test environment based

on an evolutionary approach to economic simulation. We specifically
address the question of how to assess agent strategies in an ever changing
and heterogeneous market environment.
We start by proposing in Section 2 an evolutionary approach, and we

support the proposal with experimental results obtained from a simple
supply-demand model. We then consider in Section 3 practical issues
of building an evolutionary testing environment on top of an existing
Multi-Agent System (MAS). Finally, in Sections 4 and 5 we compare our
proposed approach with other existing methods and we outline future
work.

2. An Evolutionary Framework for Large-scale
Experimentation

A major obstacle in the way of understanding the properties of multi-
agent systems is the lack of tractable data. Publicly available data are
scarce and insufficient for exhaustive testing, while private data sets are
expensive and not always suitable for research purposes. We propose a
way of employing an evolutionary approach to economic simulation to
make up for the scarcity of data.
The rationale behind our choice of an evolutionary framework is that

it is able of revealing patterns of macroscopic behavior in a society of
agents without requiring a complex theory of agent optimization criteria,
or of strategic interaction [23].
The methodology we propose is essentially derived from the appli-

cation of evolutionary techniques to game theoretical problems [18, 22,
26]. The evolutionary game theory studies equilibria of games played by
populations of players, where players are myopically rational and have
conflicting interests.
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The “fitness” of the players derives from the success each player has in
playing the game governed by the natural selection. Agents which do not
perform well, because of their strategy, will eventually disappear from
the market. In the case of electronic markets the players are customer
and supplier agents, and their fitness is determined by the strategies
they use to secure their profit.

2.1 Reproduction, Mutation, and Introduction
of New Strategies

One of the cornerstones of the evolutionary approach is the need for
a large and diverse population of agents. A common resolution to this
issue is to describe the agents’ strategies in terms of gene sequences and
to use cross-breeding and mutations to ensure the desired diversity.
In large-scale multi-agent systems agents can employ a variety of

methodologies, such as Q-Learning, Neural Networks, Game Theoretic
models, Genetic Algorithms and others. It is hard to imagine that each
and every one of the strategies that are based on the above mentioned
methodologies can easily be encoded in a gene sequence. It is even
harder, if not impossible, to maintain the compatibility between gene
sequences of different strategies. In practice, it is difficult to come up
with an encoding for even well studied problems [13], let alone complex
domains such as electronic markets.
Our proposed approach to the problem described above is to maintain

separate “gene pools” for different types of strategies. For each type of
strategy the system will derive the offsprings by operating on the whole
pool to which they belong. In our test model, which is described and
examined in the following sections, an information pool is derived from
statistical data.
A company, represented by an agent, that receives negative profits

over a certain period of time, is taken out of the market. In return the
system eventually creates a new company with a variant of one of the
existing strategy types. When a new company is created, the probabil-
ity of selecting a particular type of strategy for that new company is
weighted by how represented the strategy is in the current market. The
parameters of a newly created strategy instance are chosen based on the
gene pool of the corresponding strategy.
To make sure that a presently unsuccessful strategy is given a chance

to conquer the market in a more favorable time, the simulation will
maintain a repository of all strategies that were washed away from the
market, and will randomly reintroduce them.

3



Completely new types of strategies can be created by a human. These
new types of strategies enter the market the same way as the “retired”
strategies, i.e. they are added to the list of available strategies, in the
hope of acquiring a noticeable market share as soon as the market con-
ditions become favorable.

2.2 Test Model

Our test model is a continuous time discrete-event simulation of a so-
ciety of suppliers of some service and customers, which live and interact
in a circular city of radius R. Customers appear in the city in intervals
governed by a stationary Poisson process with a fixed frequency λc:

tc
i+1 = tc

i
−

1

λc
logU [0, 1],

where U [x, y] is distributed uniformly on the interval [x, y]. The distri-
bution of customers is intentionally fixed, so that the society of suppliers
had to evolve and match it. Customers appear on the market according
to the following rules expressed in polar coordinates:

r ∼ U [0, R]

α ∼ U [0, 2π)

Several different types of suppliers are modeled by different sizes of their
“factories.” Bigger factories have increasingly lower production costs.
Suppliers are introduced to the market by rule similar to the one used
for customers.
A new supplier enters the market with a fixed price of its service.

Every supplier is audited at regular time intervals and dismissed from the
market if its profit becomes negative. These rules ensure that although
each particular supplier cannot adjust its price, the society of suppliers
employing the same strategy will eventually evolve to find the right price
by loosing its least successful members.
Upon entry, a customer observes a selection of suppliers and chooses

the one that offers the greatest benefit, where the benefit is a linear
function of the supplier’s price, distance to the customer, and time delay
due to scheduling of other customers’ tasks.
The probability that a supplier of a particular type will enter the

market next is proportional to the number of suppliers of its type that
are surviving in the market. Another possibility to enter the market is
through a small noise factor (set at 5% for the experiments in this paper).
With a probability equal to the noise factor a strategy of a newly created
supplier is chosen at random among all present and retired strategies.
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Hence every retired strategy has a chance to enter the market at a more
favorable time. The noise also provides a way for completely new types
to enter the market, as it will be shown later in the experimental results.
Price levels of the same size suppliers are considered to be a gene pool

of the particular suppliers’ type. We also assume that the structure of a
gene pool of some type depends on the distance from the center of the
city. Every once in a while the structure of gene pools is recalculated
as a function of type and distance. At the same time the density of the
population is updated as a function of distance, and a new distribution
of strategies by types is calculated. To smooth the effects of the limited
society population, all changes enter the above described distributions
with a “learning rate” γ.

2.3 Expectations

We expect the simulation to exhibit some patterns of gene pools ad-
justment to the market situation. It is most likely that the relative sizes
of populations of different supplier types will change with time. The
price distribution and the density of the suppliers as functions of the
strategy type and the distance from the center are likely to adapt as
well.
It is reasonable to expect that large size suppliers would perform bet-

ter near the densely populated and therefore highly competitive center
of the city, because of their lower production costs. Smaller suppliers
will survive better on the boundaries, where transportation costs become
increasingly important to compare with the cost advantage of the large
suppliers. Consequently, the higher level of competition should drive the
prices and the profit margins down close to the center.
The reasonably evolving society of suppliers should adapt to the dy-

namic changes in the parameters of the customer distribution. Consis-
tently with the expectations outlined before, the increased frequency of
the customers’ arrival should increase the “habitat” of the large suppli-
ers, while the opposite change should give a leverage to the small ones.
On a final note, new and retired supplier types should be able to

acquire a position in an existing market by the means of noise in the
supplier type selection process.
To verify our expectations we conducted several experiments with a

variety of initial conditions. Two representative experiments are consid-
ered in the following.
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2.4 Simulation Results: Noise Factor

In the first experiment the simulation starts out with suppliers of size
1 and 2. After some time suppliers of size 3 enter the market through the
5% noise factor, meaning that initially every new supplier has a chance
of about 1.67% to enter the market with size 3 factory. This experiment
models a situation when a new strategy is designed and some suppliers
try to enter the market with its benefit (or, alternatively, some of the
existing supplier decide to switch).
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Figure 1. City population for different supplier types as a function of milestones.
The vertical lines denote milestones 50 and 250.

Figure 1 displays the population of different supplier types as a func-
tion of milestones. Each milestone (m/s) stands for two million trans-
actions in the market. In the figure the x-axis represents the milestones
and the y-axis represents the population of each particular type. Suppli-
ers of size 3 enter the market at milestone 50 and struggle to find their
place.
After some time in the market, the size 3 supplier type proves itself

to be competitive with size 2 suppliers. The more market share size 2
suppliers gained, the more were lost proportional to that by size 2, until
a dynamic equilibrium with approximately same populations of both
sizes was reached around milestone 250.
To reveal the mechanics of size 3 successful entry we examine the state

of the city at milestones 50 and 250.
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Figure 2. Distribution of the different supplier types in the city at milestone 50.

Figure 2 shows the state of the city just before the introduction of a
strategy to own a factory of size 3 (milestone 50). There are two impor-
tant observations to be made from this figure. Firstly, size 1 suppliers
dominate the market and, indeed, as we expected tend to the rim, while
the larger size 2 suppliers operate mostly in the middle of the city. Sec-
ondly, the distribution of suppliers is quite uneven with dense clusters
and wide open areas situated at the same distance from the center.
Figure 3, in turn, gives a “bird eye” snapshot of the city at milestone

250. We can see that suppliers of size 3 pushed size 2 suppliers out of
the center, while suppliers of size 1 still successfully inhabit the outer
city zones.
The left part of the Figure 4 shows the state of the two gene pools for

factory sizes 1 (top) and 2 (bottom) at milestone 50. The right part of
this figure shows the gene pools for all three sizes, starting with size 1
at the top to size 3 at the bottom at milestone 250.
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Figure 3. Distribution of the different supplier types in the city at milestone 250.

In each of the gene pool graphs the x-axis shows ten concentric city
zones numbered starting from the center, the left y-axis and histogram
bars show the size of the population of the corresponding strategy in
the particular zone relative to the whole population, and, finally, the
right y-axis and error bar graph represent average values and standard
deviations of profit margins.
It can be seen from Figure 4 that size 2 suppliers tend to operate near

the center of the city, while size 1 suppliers prefer outer city zones. This
behavior is similar to what we expected, although a picture of profit
margins is not very clear. To get a better picture of the prices and profit
margins we consider the state of gene pools at milestone 250 in the right
part of Figure 4.
The introduction of size 3 suppliers caused the suppliers of size 1 and

2 to decrease the average price in all zones. Size 3 supplier agents have
found their appropriate niche in zones one to three. We observe that size
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Figure 4. Structure of the gene pools of the city simulation as a function of city
zones at milestone 50 (left) and at milestone 250 (right). Supplier size: 1 (top), 2
(middle) and 3 (bottom).

1 and 2 suppliers converged to stable averages prices for their services
in all zones, as the variance is very low.
It is also important to note that, although the gene pools reached a

relatively stable state, the population shares continuously fluctuate, as
shown in Figure 1. Also, the high variance of size 3 profit margin implies
that the market state may change in a future as this strategy try to find
the right price distribution.

2.5 Simulation Results: Changing Environment

In the second experiment we reduced the frequency of customers’ ar-
rival by 1/3 of its initial value half way through the simulation. This was
meant to emulate the loss of interest in the supplied service due some
economic factor, such as depression or introduction of the alternative
service.
One of the results of the experiment is depicted in Figure 5. The

figure shows the entry probabilities for each of the three supplier types.
In this figure we can observe two important effects. First and foremost
we see that the market reaches a relatively stable state shortly both
after the beginning of the simulation and after the change of conditions.
Secondly, we observe that after the change the size 3 suppliers loose a
sizable part of their market share to size 1 suppliers. Lower frequency
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Figure 5. Probabilities of a new supplier entry for different types as a function of
milestones. The customer frequency was reduced by a factor of 1/3 from its initial
value at milestone 250.

of customer arrival resulted in the disadvantage for large suppliers in
accordance with our expectations.

3. Integration of the Evolutionary Approach
into an Existing MAS

In this section we demonstrate a way to add an evolutionary frame-
work to an existing MAS. For the example purposes we use MAGNET,
a multi-agent system we have designed to study agents in auctions for
combinations tasks with time and precedence constraints [9]. In essence,
MAGNET is a mixed-initiative system, in which intelligent software
agents facilitate the deliberation process of human decision makers. It
is possible, however, for research purposes, to exclude a human from the
loop and let the agents select autonomously the best course of actions.

3.1 MAGNET Architecture

In MAGNET we distinguish between two trading agent roles, cus-

tomer and supplier (see Figure 6). The customer has a set of tasks to
be performed and needs to solicit resources from suppliers by issuing
Request for Quotes (RFQs) through an agent-mediated market.
MAGNET agents participate in a first-price sealed-bid reversed com-

binatorial auction over combinations of tasks with precedence relations
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Figure 6. The mixed-initiative MAGNET architecture.

and temporal constraints. After the auction ends, the customer agent
solves the winner determination problem and awards bids.
The market agent is responsible for coordination of tasks, i.e. dis-

tributing customers’ RFQs among an appropriate selection of suppliers,
collecting and timing bids, monitoring interactions during task execu-
tion phase, etc. The data warehouse agent collects information on the
transactions, and makes it available in form of statistical data to agents
and their owners.

3.2 A Practical Example

The following example of a house construction illustrates how MAG-
NET handles problems in its domain. Figure 7 (left) shows the tasks
needed to complete the construction. The tasks are represented in a task

network, where links indicate precedence constraints.
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Figure 7. A task network example (left) and the corresponding RFQ (right).

11



The first decision the customer agent is faced with is how to sequence
the tasks in the RFQ and how much time to allocate to each of them. For
instance, the agent could reduce the number of parallel tasks, allocate
more time to tasks with higher variability in duration or to tasks that
are in short supply in the market. Presently MAGNET uses a simple
CPM-based algorithm for generating RFQs [8]. An alternative approach
based on the Expected Utility Theory is being actively researched by our
group [3, 4].
A sample RFQ is shown in Figure 7 (right). Note that the time

windows in the RFQs do not need to satisfy the precedence constraints;
the only requirement is that the accepted set of bids satisfies them.

3.3 Introduction of Evolutionary Components

Data
warehouse

agent

Market
agent

Customer
agent

PlansFailures
information

Manager

Factory

Supplier
agent

Profit
information

Selection
criteria

Production
process

Auditor

Failures
information

(new strategies)

Resource
information

Mutations

Figure 8. The MAGNET architecture adjusted to the evolutionary paradigm. The
rounded boxes show specific evolutionary components.

In order for MAGNET to operate in the evolutionary framework, we
need to add components that will manage evolutionary aspects of the
system and exclude human decision makers from the loop. Figure 8
shows the resulting architecture and the following list summarizes the
required changes:

The Manager generates and distributes tasks to customer agents. It
observes the rate of customers’ and suppliers’ failures to complete
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their evaluations of RFQs and bids during specified deliberation
periods.The manager adjusts the frequency of issuing RFQs to
keep the rate of failures reasonably low, yet not zero. Having a
rate of failures greater than zero puts some pressure on agents that
use computationally overly intensive strategies. The frequency of
generating the RFQs determines the size of the market population.

The Auditor evaluates the performance of supplier agents’ strategies
based on suppliers’ average profit over a specified period of simula-
tion time. Agents that make negative profit are removed from the
market. Whenever the average profit in the market exceeds some
specified value, the auditor introduces a new supplier agent with
a strategy that is chosen from the pool of all the strategies in the
market, weighted by the number of suppliers that execute them.
The auditor maintains a pool of “retired” strategiesand eventually
tries to put them back in the market.

TheCustomer agentmakes all market decisions without help from its
human supervisor and reports the rate of failures to the manager.

The Supplier agent also operates without human supervision and
reports on its computational failures to the manager. The supplier
agent coordinates its resource commitments with its own factory.

One instance of the Factory is assigned to each supplier agent to keep
track of resource availability and existing commitments. The size
and types of products produced in a factory are determined by the
auditor upon creation of the corresponding supplier agent.

Human participants submit new strategies to the pool of possible mu-

tations. “Mutant” strategies are introduced to the market after
it reaches its dynamic steady state, i.e. after the rate of issuing
RFQs by the manager eventually stabilizes.

The Data warehouse agent collects data the same way as in the
mixed-initiative configuration. In addition, it replies to data queries
from the manager, the auditor and, possibly, human observers
whenever it is required.

The choice of this particular architecture is determined by the need
to stabilize the size of the market and by our specific interest in supply-
side strategies. To satisfy these requirements we fix the population of
customer agents and let the supplier agents evolve to meet the demand.
The demand, in turn, is limited from above by the computational ca-
pacity of a system that runs agents’ software. In case the load is overly

13



high, the rate of agents’ failures to complete calculations will signal the
manager to decrease the rate of issuing RFQs, thus effectively shrinking
the market.
Whether we decide to study the demand-side strategies, the archi-

tecture might be changed to make the auditor manage the evolving
population of customer agents, while the manager governs the resource
availability on the supply-side. The exact choice and composition of the
evolutionary components is not formalized at present, however we plan
to improve the methodology as we study other prospective domains.
Some of such candidate domains are considered in the following section
along with the approaches that are currently used to study them.

4. Experimentation in an Evolutionary
Environment

The proposed evolutionary approach to large-scale simulations is not
the only possibility to makeup for the lack of readily accessible real-
world data. Two other methods that are widely used in the research
community are analytical modeling and competitions of software agents.
The major drawback of analytical modeling lies in its failure to em-

brace the complexity of the real world to any significant degree. It is
often useful to employ analytical methods to study some specific and
usually global properties of the highly simplified models, however, they
are not very helpful when the domain of interest involves many different
types of agents and possible agents’ strategies.
A comprehensive review of successes and pitfalls of competitions based

on experiences from the Trading Agent Competition (TAC) and RoboCup
can be found in [24]. In short, the competitions of intelligent software
agents proved to be a dynamic and valuable source of research mate-
rial. The problematic properties include overly restrictive rules, domain-
specific solutions (i.e. strategies that exploit peculiar properties of the
simulation environment or wordings of the rules) and invalid evaluation
criteria.
In the following we focus on the important properties of the evolu-

tionary methodology:

A heterogeneous multi-agent system is commonly governed by a
magnitude of parameters, many of which are continuous variables.
The search space of the system is immense, thus rendering any sys-
tematic testing by far impossible. Using an evolutionary approach
allows us to search the space of parameters in an efficient way.
A thorough study of agent strategies requires information about
the behavior of other agents in the system. The evolutionary ap-
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proach solves this problem by enclosing all the agents in a self-
sufficient system, where they can observe each other’s behavior.
The evolutionary approach allows for formation of complex spatio-
temporal patterns of behavior on the level of groups of agents.
Examples range from the emergence of cooperation in an other-
wise selfish society [1, 2] with possible formation of spatial pat-
terns of strategic interaction [17] to natural phenomena, like fish
schools [15].
Finally, a simulated evolutionary environment, like most simula-
tions, offers facilities for controllable experimentation and system-
atic data collection.

4.1 The Role of Evolutionary Experimentation
in Application Science

(discrete−event)

(asynchronous)

ZIP

Citysim

Cytisim

TAC’03

MAGNET

management

and demand

Application space

models

supply−chain

models

simple supply

Technology space

TAC’02
TAEMS

Figure 9. The division of the technology space by the degree of compatibility with
the evolutionary approach.

We divide the technology space in three parts by degree of compati-
bility of each known or future technology to our evolutionary approach.
The first subspace includes technologies that are based on one or an-
other evolutionary methodology, such as Genetic Algorithms or Celluar
Automata. Examples of such technologies include ZIP [6], our pilot
discrete-event Citysim model or, perhaps, its possible asynchronous im-
plementation.
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The second collection of technologies can be restructured to be com-
patible with the evolutionary paradigm. MAGNET [9], as it was demon-
strated in the previous section, is one perspective member of this sub-
space, and the new 2003 revision of TAC [25] is another.
In the third part of the space we count those technologies that are not

easily convertable to the evolutionary setup, such as the older versions
of TAC. Also in this subspace are technologies whose compatibility was
not yet examined, e.g., TAEMS framework [11, 16].

5. Related Work

Much research has been done in the last few years in designing pricing
strategies for agents, assessing their performance, and adapting to chang-
ing situations [5]. Understanding collective interactions among agents
that dynamically price services or goods is discussed in [14], where sev-
eral pricing strategies are compared. Examples of price-wars caused
by agents that dynamically change their posted price for information
bundles are described. Because of the complexity of the problem, exper-
iments are limited to a small number of agents.
A simulation based approach to study dynamic pricing strategies in

finite time horizon markets is described in [12]. The study uses a market
simulator and simple strategies. The results are evaluated in terms of
overall profit, but there are so many variables in the simulation that it
is hard to assess the generality of the results obtained.
Continuous double auctions have been the subject of multiple stud-

ies. Cliff’s [6] Zero-Intelligence Plus trader agents have minimal intel-
ligence, yet they have been successfully used in continuous double auc-
tions, where they performed very well even when compared to human
traders [10].
The use of evolutionary methods for continuous double auctions is

proposed in [19], who simulates the evolution of the agent population as
they adapt their strategy by observing what happens in the environment.
Cliff [7] uses genetic algorithms to learn the parameters that control how
his trader agents evolve their pricing strategies. Along similar lines, an
evolutionary system based on Genetic Programming is presented in [20].
The major difference with these and the work presented here, is that

we are interested in understanding how strategies of individual agents
interact in the market, as opposed to study specific types of auctions
to learn auction rules. We are also interested in providing a methodol-
ogy for studying effectively multi-agent systems with a large number of
agents.
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6. Conclusions and Future Work

Complex system with many parameters and with stochastic properties
are difficult to assess. Multi-agent marketplace systems, where agents
can enter and leave the market at any time are specially hard to analyze
because the agent strategies depend on the behavior patterns of other
agents. Yet, there is no standard method for supporting systematic
experiments in such systems.
We have proposed building an evolutionary system with a setup that

helps the system reach a dynamically stable condition.In evolutionary
systems there is no fitness function, instead there is a rule which governs
survival of society members based on their success. In our case, when an
agent fails to make any profit for a period of time, the agent will leave
the market to be eventually replaced with a more fit entity.
The outcome of using an evolutionary system around a MAS could

produce several different strategies, not only an optimal one. Strate-
gies that survive could vary from some strategies that are very fast but
expensive for the customer, to inexpensive strategies with long delivery
delays, to strategies that depend on the size of the company, etc. The
design of the framework allows for new behavior patterns to evolve over
time and for new strategy types to be introduced seamlessly.
Our future plans include examination of conditions that allow for the

introduction of the evolutionary framework in other MAS and formal-
ization of the integration procedures. We are considering applying the
evolutionary framework to the year 2003 revision of the Trading Agent
Competition [25], to experiment with strategies for manufacturer agents
under different market conditions. We will also use the proposed ap-
proach to study strategies and patterns of strategy interaction in the
context of the MAGNET system.
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