
Multi-agent path finding using time-extended graphs using
auctions

Simanta Barman

University of Minnesota

Twin Cities, United States

barma017@umn.edu

Angel Sylvester

University of Minnesota

Twin Cities, United States

sylve057@umn.edu

Ebasa Temesgen

University of Minnesota

Twin Cities, United States

temes021@umn.edu

Michael W. Levin

University of Minnesota

Twin Cities, United States

mlevin@umn.edu

Maria Gini

University of Minnesota

Twin Cities, United States

gini@umn.edu

ABSTRACT
The multi-agent path finding (MAPF) problem considers the prob-

lem of assigning a set of agents to a set of targets and finding

collision free paths to the targets. Even for a discrete environment,

homogeneous agents, and no kinematic constraints the problem is

proven to be NP-hard for minimization of certain objectives. Con-

sidering the complexity of the problem some previous research

has developed sub-optimal solution algorithms to reduce runtime.

We approach the MAPF problem in a similar fashion focusing on

obtaining guaranteed collision free paths for each agent. Our ap-

proach relies on using auction-like mechanisms on a time extended

graph of the environment. We present detailed description of the

construction of the time extended graph, a label setting algorithm

to find the shortest paths in that graph and an auction-like mecha-

nism to ensure collision free paths for each agent. We also prove

that we can exploit several properties of the time extended graph

to reduce both the space complexity of the time extended graph

and the time complexity of finding shortest paths in that graph.

Along with implementation details, we present numerical results on

common metrics to evaluate the quality of the solutions for several

problem instances with changes in the auction mechanism. Our

method is a generalization of the cooperative A* algorithm if we

use a heuristic in our label setting algorithm which has been used

to tackle the MAPF problem for large problem instances.

KEYWORDS
Path planning, multi-agent systems

ACM Reference Format:
Simanta Barman, Angel Sylvester, Ebasa Temesgen, Michael W. Levin,

and Maria Gini. 2024. Multi-agent path finding using time-extended graphs

using auctions. In ACM Conference, Washington, DC, USA, July 2017, IFAA-
MAS, 9 pages.

1 INTRODUCTION
Multi-agent path finding (MAPF) [15] is an important problem in

several domains including Artificial Intelligence (AI), robotics, com-

puter science, and operations research. The general MAPF problem

ACM Conference, , July 2017, Washington, DC, USA. © 2024 International Foundation

for Autonomous Agents and Multiagent Systems (www.ifaamas.org). This work is

licenced under the Creative Commons Attribution 4.0 International (CC-BY 4.0) licence.

. . . $ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

. . . $15.00

Figure 1: A MAPF problem instance with 3 agents (circles)
and 3 targets (stars). (Source: wiki/Multi-agent_pathfinding)

has multiple agents in a shared environment with each agent hav-

ing a unique start location. The goal for each agent is to find the

best paths to their destinations while avoiding collisions with other

agents or obstacles in the environment. For a single agent this prob-

lem just reduces to finding the shortest path in the environment.

However, multiple agents’ presence in the shared environment

and navigating around each other requires better planning and

coordination. Treating the agents as dynamic obstacles causes the

environment to change each time an agent moves. This means that

the shortest path found in the static environment is not sufficient to

solve the MAPF problem. Furthermore, at each time step the paths

need to be recomputed considering the changes in the environment

to avoid collisions. This rerouting can quickly become computa-

tionally expensive, which makes the problem difficult to solve for

large problem instances [10].

https://en.wikipedia.org/wiki/Multi-agent_pathfinding

This problem has many applications in the real world [1, 9, 16].

MAPF is one of the most important problems in robotics and au-

tonomous systems where coordination and navigation of multi-

ple robots is required. Scenarios like warehouse automation, au-

tonomous traffic intersection management, self-driving cars, drone

fleets and anything that requires collaborative robotics, where mul-

tiple agents need to operate concurrently in a shared environment,

requires solving this problem [3, 7]. In transportation systems so-

lutions to MAPF can be used to optimize traffic routing, manage

traffic flows and prevent congestion in a system optimal way. Fur-

thermore, ride sharing services like Uber, Lyft etc. can use MAPF

to dispatch and route vehicles to maximize service coverage in an

area, minimize wait times and maximize profits [4]. Supply chain

operations like moving goods within and between warehouses can

also benefit from MAPF solutions. Several other uses of MAPF in-

clude planetary surface exploration, disaster response, search and

rescue, air traffic control etc.

Companies with warehouse automation needs are particularly

interested in this problem because of the potential savings a col-

lision free MAPF solution can provide. Automating warehouses

reduces the need for human labor just to move items in the ful-

fillment centers. Performing the task with robots frees up human

labor for more complex tasks. The deployment of robots for these

tasks also reduces the risk of injury to human workers, reduces

order fulfillment time resulting in millions of dollars in savings

for companies. Companies like Amazon, Walmart, and Target are

already using robots in their warehouses and are heavily investing

in this technology [11].

Along with continuous environment other important practi-

cal considerations are heterogeneity of agents and kinematic con-

straints which make the problem even more difficult. To simplify

these problems the environment is usually assumed to be discrete.

However, even with discrete environments most variants of MAPF

have been proven to be NP-hard and thus are computationally in-

tractable to solve to optimality when the problem instances are

large [18]. The main objective of this project is to explore whether

an extension and optimization of the cooperative MAPF algorithm

is tractable to solve the MAPF problem for larger problem instances

while guaranteeing collision free paths for each robot.

2 RELATEDWORK
Important considerations for practical implementations of MAPF

solutions include continuous environment, heterogeneous agents,

agent malfunction, unexpected obstacles and being able to resolve

other unforeseen circumstances [6, 20]. In an effort to simplify the

problem the environment is assumed to be discrete. However, even

with that simplification most variants of MAPF are NP-hard prob-

lems and thus computationally intractable to solve to optimality

for large problem instances. Optimality can however be defined

differently based on the context of the problem. Optimality is usu-

ally defined as minimizing the maximum time required to complete

all the tasks for all the agents (makespan) or minimizing the total

time required to complete all the tasks or reach the destinations.

Minimization of the total traveled distance, energy expenditure, etc.

can also be considered while measuring optimality. Existing MAPF

methods use a variety of techniques like reductions to problems

from satisfiability, mixed integer linear programming, or answer

set programming, all of which are computationally intractable for

problems of large instances where the number of agents and the en-

vironment size are large. Existing methods include extensions of the

A
∗
algorithm [14], increasing cost tree search [13], conflict-based

search [12], constraint programming [2] and other.

The multi-agent path finding (MAPF) problem is a fascinating

problem with many applications in robotics, logistics, and trans-

portation [8]. The proposed research will advance the state of the

art in MAPF and in the field of AI. Different variants of this prob-

lem exist, but a general solution method may not be sufficiently

efficient for all variants. For example, if the environment is con-

tinuous the collision detection problem can be solved differently

(e.g., in real-time as in [5]). By projecting a ray in time from each

robot to their goals and checking for intersections, collisions can

be detected and the trajectories of the robots changed accordingly.

This time-to-collision (TTC) method is more efficient but requires

a continuous environment. The proposed method in this paper is

similar, however, unlike a TTC force based method, this proposed

method can be applied to discrete environments.

Since most MAPF problem variants for discrete environments are

NP-hard, it is important to develop and test different solution meth-

ods. Adding other constraints, such as limitations on the energy

usage for each robot, and considering their kinematic constraints,

such as vertical movements of the robots in a 3D environment,

would make the problem even more challenging but applicable to

a larger set of problems. All these variants of the problem are of

great interest to the robotics field and the industry. Furthermore,

another interesting research direction is to study how communica-

tion between robots and learning-based techniques can be used to

improve the performance of the solution methods. However, first,

we need an efficient and guaranteed collision avoidance method.

This project will explore that direction.

3 METHODOLOGY
3.1 Problem Statement
Consider the problem of navigating a team of agents represented by

the set 𝑅 of size |𝑅 | from some initial positions to their destinations

in a grid. The agents have already been assigned their destinations

on a one-to-one basis. After each robot reaches its destination, it

will be assigned a new destination automatically. The problem is to

find a collision-free path for each agent from its current position to

its destination. While collision avoidance is an important constraint,

the main objective is to plan paths for the agents so that they can

reach their destinations as soon and efficiently as possible. The grid-

world can have static obstacles that the agents need to consider

while planning their paths. The agents are restricted to certain

movements.

Define the set of actions for each agent as 𝐴 = {↑, ↓,→,←,𝑊 }
where the straight arrows represent the actions that move an agent

to its neighboring cell. 𝑊 is the wait action at the current cell.

Each of these actions takes 1 time step. Since other robots also

move in the environment and no collision is allowed, the robots

are considered to be dynamic obstacles to each other.

Let 𝐺 = (𝑉 , 𝐸) be the graph representation of the 2D grid-world

environment where 𝑉 is the set of all vertices and 𝐸 is the set of all

edges. The set of vertices 𝑉 can further be divided into two sets of

vertices:

(1) Usable vertex 𝑉𝑢 ,

(2) Vertex where a static obstacle is present 𝑉𝑠 .

We can reduce the size of the graph by removing the vertices in

𝑉𝑠 since they are always impassable. We redefine the set of vertices

to have only the usable vertices,𝑉 = 𝑉𝑢 . In other words we remove

the impassable vertices from the original environment. Define a

function 𝑃 : (𝑟, 𝑡) → 𝑣 ∈ 𝑉 that returns the vertex robot 𝑟 occupies

at time 𝑡 . Vertex collision then can be represented as the existence

of a robot pair (𝑟1, 𝑟2) ∈ 𝑅 × 𝑅 such that 𝑃 (𝑟1, 𝑡) = 𝑃 (𝑟2, 𝑡) at
𝑡 ∈ 𝑇 where 𝑇 is the set of timesteps until the planning horizon

|𝑇 |. Edge collision can be represented as 𝑃 (𝑟1, 𝑡) = 𝑃 (𝑟2, 𝑡) and
𝑃 (𝑟1, 𝑡 + 1) = 𝑃 (𝑟2, 𝑡 + 1) for some robot pair (𝑟1, 𝑟2) ∈ 𝑅 × 𝑅 at

𝑡 ∈ 𝑇 . Vertex and Edge collisions are not allowed. An action 𝑎 ∈ 𝐴 is

considered valid if action 𝑎 can be performed without any static or

dynamic collision. To summarize, the problem is to find a sequence

of actions 𝜋𝑟 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) for each agent 𝑟 ∈ 𝑅 such that

the actions do not result in any collision and minimizes

∑
𝑟 ∈𝑅 |𝜋𝑟 |

and the agents reach their destinations as efficiently as possible.

Here, efficiency means using the least amount of actions. Since each

action require 1 time step, the number of actions is the number of

timesteps required to reach the destination. More concisely, the

optimal solution would minimize the size of the sequence of actions

|𝜋𝑟 | for each robot 𝑟 ∈ 𝑅 while ensuring that no collision occurs.

3.2 Solution quality and metrics
Themetrics used tomeasure the quality of a solution for this specific

variant of Multi-agent Path Finding (MAPF) problem are either the

sum (flow-time) or the maximum (makespan) of the number of

actions required by each robot to reach their destinations. Since

each robot is assigned a new task or destination as soon as they

reach their current destination and the number of these destinations

are infinite for each robot, using the makespan or flowtime as a

metric is not appropriate in their usual definitions. Because the

definition of both makespan and flowtime require a fixed number

of tasks or destinations for each robot. We will consider the first |𝑅 |
destinations for the |𝑅 | robots as the first MAPF problem instance. In

this problem instance, each robot 𝑟 ∈ 𝑅 will have their own unique

start and goal vertice. After a robot reaches its destination, the

robot will be assigned a new destination which will be considered

the next instance of the MAPF problem for which route planning

will be done for all the robots.

Definition 3.1 (Makespan). The makespan of a solution is the

maximum number of actions required by any agent to reach its

destination.

makespan = max

𝑟 ∈𝑅
|𝜋𝑟 | (1)

Definition 3.2 (Flow-time). The flow-time of a solution is the

sum of the number of actions required by each agent to reach its

destination.

flowtime =
∑︁
𝑟 ∈𝑅
|𝜋𝑟 | (2)

Definition 3.3 (Optimal solution). An optimal solution is a com-

bination of collision-free paths for each agent that minimizes the

makespan or the flow-time.

Solving this problem to optimality is computationally intractable

because of the proven strong NP-hardness of the MAPF problem

[17, 19]. The NP-hardness of the MAPF problem is proven in the lit-

erature by reducing the boolean satisfiability problem to the MAPF

problem. There exist somemethods in the literature that can find op-

timal solutions using mixed integer linear programs or SAT solvers.

Custom algorithms like conflict-based search or increasing cost tree

search can also produce optimal solutions. They are special cases of

constrained optimization programs and can be implemented inside

an MILP. However, due to the NP-hardness of the problem, the

computational time increases exponentially with the number of

agents and the size of the environment. Intuitively, what makes

the problem hard is the fact that one agent’s path can influence the

optimal path of another agent. Therefore, combinations of paths for

all the agents need to be evaluated. This requires enumerating all

the possible combinations of paths for all the agents which becomes

computationally expensive. Even though the current literature can

prune the search space of the combination of paths for some paths,

the problem is still computationally intractable for large problem

instances.

In this paperwewill only focus on finding a collision free solution

quickly without enumerating all combinations of paths.

3.3 Solution approach
The original graph 𝐺 = (𝑉 , 𝐸) can be extended in the time di-

mension and the new space-time graph can be represented as

𝐺𝑒 = (𝑉 𝑒 , 𝐸𝑒). Then the time-extended graph 𝐺𝑒
can be used to

plan paths for the agents. Paths in the time-extended graph can

be used to check for collisions. If a collision is detected, then the

paths can be replanned to avoid them. Reserving nodes and edges

for different agents in the time-extended graph can also guarantee

that no collision occurs.

3.4 Construction of the time-extended graph
First |𝑇 | copies of the graph will be made. For each copy the vertices

will be labeled with a unique label that consists of the vertex id and

the timestep. Then the edges will be created between the vertices

of the same id in different timesteps.

(1) Create |𝑇 | copies of the graph 𝐺 . Let the set of copies be

𝐺𝑐 = {𝐺𝑡 ∀𝑡 ∈ 𝑇 }.
(2) For each copy 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡) ∈ 𝐺𝑐

, label each vertex 𝑣 ∈ 𝑉𝑡
by (𝑣, 𝑡). Construct a set containing all these vertices ∪ |𝑇 |

𝑡=1
𝑉 𝑡

and call it 𝑉 𝑒
.

(3) If there is an edge (𝑢, 𝑣) ∈ 𝐸 in the original graph 𝐺 , then

create an edge (𝑢𝑡 , 𝑣𝑡+1) and insert it in 𝐸𝑡 to represent using
the edge will take 1 time step in the time extended graph.

Also, create another edge from the vertex (𝑢, 𝑡) to the ver-

tex (𝑢, 𝑡 + 1) in 𝐺𝑡 to represent waiting in the same vertex.

Construct a set containing all these edges ∪ |𝑇 |
𝑡=1

𝐸𝑡 and call it

𝐸𝑒 .

Notice that for a naive implementation of graph storage, the

space complexity of the time-extended graph 𝐺𝑒
is O(𝑇 (2|𝑉 | +

A B

C D

(a) 2D grid environment

C D

A B

(b) Directed graph,𝐺 created from the 2D
grid

A B CD

(c) Another representation of the directed
graph,𝐺

Figure 2: Original graph, 𝐺

|𝐸 |)) where the original graph 𝐺 has |𝑉 | vertices and |𝐸 | edges
and the planning horizon is 𝑇 . This is because the time extended

graph 𝐺𝑒
has 𝑇 copies of the original graph vertices 𝑉 and edges

𝐸. Additionally, each copy has |𝑉 | extra edges from a vertex from

the previous time step to itself at the next time step. However, this

space complexity can be reduced further for our purposes which

will be discussed later in the paper.

3.4.1 Useful properties of the time-extended graph.

Theorem 3.4. The time-extended graph 𝐺𝑒 is a Directed Acyclic
Graph (DAG).

Proof. Since in the time extended graph 𝐺𝑒
, the edges exist

only from timestep 𝑡 to the next timestep 𝑡 +1. Therefore, the graph
is only traversable in the direction of time which make the edges

directed. Therefore, the time extended graph is a Directed Acyclic

Graph (DAG). □

Since the time-extended graph 𝐺𝑒
is a DAG and the nodes are

connected in the forward direction of time, a natural topological

ordering of the nodes based on the time labels exist. This topological

ordering can be exploited to find a shortest path without the use of

a priority queue to store unvisited nodes.

Theorem 3.5. There exists a path from any vertex (𝑢, 𝑡) ∈ 𝑉 𝑒

to any other vertex (𝑣, 𝑡 +𝑚) ∈ 𝑉 𝑒 in the time-extended graph 𝐺𝑒

where𝑚 is greater than or equal to the shortest path length from 𝑢 to
𝑣 in the original graph 𝐺 assuming a path from 𝑢 to 𝑣 exists in the
original graph 𝐺 .

Proof. Consider any path from vertex 𝑢 to vertex 𝑣 in the origi-

nal graph𝐺 . Let the path be 𝑃 = (𝑢, 𝑣1, 𝑣2, . . . , 𝑣𝑛, 𝑣). The described
construction procedure for the time-extended graph has all the

edge connection only in the time direction (𝑡 → 𝑡 + 1). There-
fore, the equivalent path in the time-extended graph 𝐺𝑒

will be

𝑃𝑒 = ((𝑢, 𝑡), (𝑣1, 𝑡 + 1), (𝑣2, 𝑡 + 2), . . . , (𝑣𝑛, 𝑡 + 𝑛), (𝑣, 𝑡 + 𝑛 + 1)). In
this path no waiting is considered therefore it is the shortest path

from (𝑢, 𝑡) to (𝑣, 𝑡 + 𝑛 + 1). The length of the shortest path from

vertex 𝑢 to 𝑣 in the original graph 𝐺 is 𝑛 + 1 which is equal to

the length of the shortest path from vertex (𝑢, 𝑡) to (𝑣, 𝑡 + 𝑛 + 1)
in 𝐺𝑒

. Since waiting in the same vertex is also allowed, other

valid paths from vertex 𝑢 to 𝑣 exist. Let waiting at some vertex

results in a path in the time extended graph 𝐺𝑒
represented by

𝑃𝑒𝑤 = ((𝑢, 𝑡), (𝑣1, 𝑡+1), (𝑣2, 𝑡+2), . . . (𝑣𝑛, 𝑡+𝑛), (𝑣𝑛, 𝑡+𝑛+1), (𝑣, 𝑡+𝑚)).
Here, the vertex 𝑣𝑛 is the vertex where waiting occurs which results

in a longer path of length𝑚 where𝑚 > 𝑛 + 1. □

Now since multiple paths from the same vertex to the same

vertex exist in the time-extended graph𝐺𝑒
, even if we reserve some

path for an agent, other paths can still be used by other agents.

However, careful reservation of the paths needs to be performed.

Theorem 3.6. A valid topological ordering of the vertices 𝑉 𝑒 in
the time-extended graph 𝐺𝑒 can be constructed by using any random
ordering of the vertices 𝑉 from the original graph 𝐺 while ensuring
that the vertices at time 𝑡 ′ > 𝑡 always appear after the vertices in
time 𝑡 in the topological ordering.

Proof. At time 𝑡 = 0, the number of incoming edges or in degree

of any vertex is 0. Therefore, any random vertex from time 𝑡 = 0

can be inserted in the topologically ordered list. After inserting all

the vertices from time 𝑡 = 0, the vertices at 𝑡 = 0 and the outgoing

edges from the vertices can be deleted from the graph 𝐺𝑒
. This

results in all the vertices at time 𝑡 = 1 to have an indegree of 0.

Therefore, we can repeat the same process and insert any random

vertex from time 𝑡 = 1 until all the vertices from time 𝑡 = 1 are

inserted in the topologically ordered list. We can repeat this process

to create a valid topological ordering until some time horizon 𝑇 is

reached. □

3.4.2 Shortest paths in the time-extended graph. Since the time-

extended graph 𝐺𝑒
is a DAG, a topological ordering of the vertices

exists based on the time labels. Multiple paths also exist between

the same pair of vertices. The source of an agent is given by the

vertex 𝑃 (𝑟, 0) for all 𝑟 ∈ 𝑅. The following algorithm can be used to

find the shortest path from the source vertex to all other destination

vertices in the time-extended graph 𝐺𝑒
in linear time.

Note that Algorithm 1 does not require the use of a priority

queue to store the unvisited vertices. Instead, a topological ordering

of the vertices is used to update the labels and the predecessors

of the vertices. Any vertex that has the time label 𝑡 has a lower

topological ordering than any vertex that has the time label greater

than 𝑡 . Additionally, the vertices at time 𝑡 = 0 does not have any

incoming edges. Therefore, any random ordering of the vertices

at time 𝑡 = 0 is a valid topological order. However, the vertices at

time greater than 𝑡 need to appear later in the topological ordering.

This is ensured in line 9 of the algorithm 1 where all the nodes

in one time step are visited before moving to the next time step.

A, 0 B, 0 D, 0 C, 0

A, 1 B, 1 D, 1 C, 1

A, 2 B, 2 D, 2 C, 2

A, 3 B, 3 D, 3 C, 3

A, 4 B, 4 D, 4 C, 4

Figure 3: Time-extended graph, 𝐺𝑒

Algorithm 1 Shortest path in the time-extended graph 𝐺𝑒

1: procedure LabelSetting(𝐺𝑒 , 𝑃 (𝑟, 0))
2: for (𝑖, 𝑡) ∈ 𝑉 𝑒 do
3: 𝑞 (𝑖,𝑡) ← (−1,−1) ⊲ Predecessor of vertex (𝑖, 𝑡)
4: 𝐿(𝑖,𝑡) ←∞ ⊲ Label of vertex (𝑖, 𝑡)
5: end for
6: 𝐿𝑃 (𝑟,0) ← 0 ⊲ Label of the source vertex

7: 𝑉 ← {𝑣 : ∀(𝑣, _) ∈ 𝑉 𝑒 } ⊲ 𝑉 = original graph vertices

8: 𝑡 ← 0

9: while 𝑡 < 𝑇 do
10: for 𝑖 ∈ 𝑉 do
11: for ((𝑖, 𝑡), (𝑗, 𝑡 + 1)) ∈ outgoingEdges(𝑖, 𝑡) do
12: if 𝐿(𝑗,𝑡+1) > 𝐿(𝑖,𝑡) + 1 then
13: 𝐿(𝑗,𝑡+1) ← 𝐿(𝑖,𝑡) + 1
14: 𝑞 (𝑗,𝑡+1) ← (𝑖, 𝑡)
15: end if
16: end for
17: end for
18: Terminate if a path to (sink(𝑟), 𝑡) is found
19: 𝑡 ← 𝑡 + 1
20: end while
21: end procedure

Lines 9 and 10 together iterate over all the time expanded nodes

in a topological order only once. For each node (𝑣, 𝑡) ∈ 𝑉 𝑒
the

outgoing edges are visited only once as well to update the labels

and the predecessors. Therefore, the time complexity of the label

setting algorithm is O(|𝑉 𝑒 | + |𝐸𝑒 |) which is linear in the size of the

time-extended graph 𝐺𝑒
.

Algorithm 2 Constructing the shortest path from the predecessors

and the final 𝑡

1: function ConstructPath(𝐺𝑒 , 𝑃 (𝑟, 0), 𝑡)
2: 𝑝𝑎𝑡ℎ ← 𝑉𝑒𝑐𝑡𝑜𝑟 ()
3: 𝑣 ← sink(𝑟)
4: while 𝑣 ≠ 𝑃 (𝑟, 0) do
5: 𝑝𝑎𝑡ℎ ← path.pushBack((𝑣, 𝑡))
6: 𝑣 ← 𝑞𝑣
7: 𝑡 ← 𝑡 − 1
8: end while
9: 𝑝𝑎𝑡ℎ ← path.pushBack((𝑃 (𝑟, 0), 𝑡))
10: return 𝑝𝑎𝑡ℎ.𝑟𝑒𝑣𝑒𝑟𝑠𝑒 ()
11: end function

3.4.3 Collision-free path planning in the time-extended graph. Now
for each agent 𝑟 ∈ 𝑅, the path planning can be done in the time

extended graph 𝐺𝑒
. Each agent 𝑟 ∈ 𝑅 at time 𝑡 ∈ 𝑇 will occupy

the vertex 𝑃 (𝑟, 𝑡). We are given the assignment of the agents to

their destinations. Therefore, we already know the destinations

of the robots. Let the destination of robot 𝑟 be the vertex sink(𝑟).
Then the path planning problem simplifies to just finding the short-

est paths for agent 𝑟 ∈ 𝑅 from the vertex 𝑃 (𝑟, 0) to the vertex

(sink(𝑟),min𝑡 ∈𝑇 (𝑡)) in the time extended graph𝐺𝑒
while ensuring

no collisions. Collision-free paths can be ensured by reserving the

paths for each agent 𝑟 ∈ 𝑅.
For each agent 𝑟 ∈ 𝑅, finding the shortest path from its origin

𝑃 (𝑟, 0) to its destination (sink(𝑟),min𝑡 ∈𝑇 𝑡) and then deleting the

vertices and edges of the shortest path from the time extended graph

𝐺𝑒
will let other agents to plan paths using the new graph. This

process will ensure that no collision can occur. Even though this

algorithm ensures that no collision will occur, it does not guarantee

that the solution is optimal. This problem can be formulated as a

mixed integer linear program (MILP). However, solving the MILP

for a large instance of the problem is computationally intractable.

We will explore whether an auction mechanism can be used to find

a better ordering for the agents to plan their paths.

This reservation procedure require maintaining a set of reserved

vertices𝑉𝑟 and a set of reserved edges 𝐸𝑟 that cannot be used while

trying to find shortest paths for the other agents. To determine

which robot gets to reserve paths first we will use an auction like

mechanism. Each agent will submit their bids without knowing

the bids of the other agents. For the bids, each agent will submit

their shortest path length. Then based on the type of auctioneer,

the winner will be decided. The advantage of using an auction-like

mechanism is that if we just change the type of the auctioneer, the

result of the auction will be different. This will result in different

orderings of the agents based on which the agents would get to

reserve their paths. This reservation ordering can have significant

impact on the quality of the solution because reserving a path for

some agent can end up removing a better path for another agent. For

this project, the following types of auctioneers were implemented:

(1) Random auctioneer: The random auctioneer will randomly

select a winner from the set of bidders. This will ensure that

the ordering of the agents will be random.

(2) Bid minimizer auctioneer: The bid minimizer auctioneer will

select the agent with the minimum bid as the winner.

(3) Bid maximizer auctioneer: The bid maximizer auctioneer

will select the agent with the maximum bid as the winner.

Note that this auction mechanism can be interpreted as general-

ized version of the prioritized planning [14] where orderings of the

robots depends on the type of auctioneer.

The following algorithm can be used to find the shortest paths

for each agent 𝑟 ∈ 𝑅 in the time extended graph 𝐺𝑒
and then to

reserve the paths.

Algorithm 3 Collision-free path planning in the time-extended

graph 𝐺𝑒

1: procedure Auction(𝐺𝑒 , 𝑅, 𝜃) ⊲ 𝜃 is the type of auctioneer

2: 𝑄𝑎 ← 𝑅

3: while𝑄𝑎 ≠ ∅ do
4: for 𝑟 ∈ 𝑄𝑎 do

5: LabelSetting(𝐺𝑒 , 𝑃 (𝑟, 0)) ⊲ Update labels and predecessors

6: 𝑡 ′𝑟 ← the shortest path length for agent 𝑟

7: Find a shortest path from 𝑃 (𝑟, 0) to (sink(𝑟),min
𝑇

𝑡=𝑡 ′𝑟
{𝑡 })

8: Bid the length of the shortest path as 𝑏𝑟

9: end for

10: 𝑟𝑤 ← selectWinner({𝑏𝑟 ∀𝑟 ∈ 𝑅} , 𝜃) ⊲ Depends on auctioneer type 𝜃

11: reservePath(𝐺𝑒 , 𝑟𝑤)
12: 𝑄𝑎 ← 𝑄𝑎 \ {𝑟𝑤 }
13: end while

14: end procedure

The reservePath(·, ·) procedure require some additional con-

siderations. In addition to reserving used vertices and edges, an

additional edge needs to be reserved to ensure the avoidance of

swap collisions. For example, consider the environment with ver-

tices 𝐴 and 𝐵 where an agent wants to move from 𝐴 to 𝐵 and

another agent wants to move from 𝐵 to𝐴. If the first agent reserves

the edge ((𝐴, 0), (𝐵, 1)) the second agent can still use the edges

((𝐵, 0), (𝐴, 1)) which results in a swap collision. To avoid this type

of collision, for reservation of an edge ((𝑢, 𝑡), (𝑣, 𝑡 + 1)) we also

reserve the edge ((𝑣, 𝑡), (𝑢, 𝑡 + 1)) which ensures the avoidance of

such collisions.

3.4.4 Space complexity of the time-extended graph. The time ex-

tended graph can be constructed in polynomial time since we only

need to create𝑇 copies of the original graph and then connect edges

using the procedure described in a previous section. However, the

space complexity of the time extended graph can beO(𝑇 (2|𝑉 |+|𝐸 |))
with a naive implementation. However, this space complexity can

be reduced to O(|𝑉 | + |𝐸 | + (|𝑅 | − 1)𝑃𝑚) by using a more efficient

implementation where 𝑃𝑚 = max𝑟 ∈𝑅 |𝜋𝑟 |.
For the reserved nodes and edges, we need to maintain two hash

sets 𝑉𝑟 and 𝐸𝑟 that will contain all the reserved nodes and edges.

Other than that we only need to store the original graph𝐺 and use

that as an implicit representation of the time extended graph 𝐺𝑒
.

Using an adjacency list (we will implement it using a set adjSet(𝑣)
because we do not need to preserve any ordering of the nodes)

representation of the original graph 𝐺 , we can store the original

graph in O(|𝑉 |+ |𝐸 |) space. We only need to store the original graph

𝐺 and the sets of reserved nodes𝑉𝑟 and 𝐸𝑟 . The reserved nodes and

edges will also have a time associated with them to indicate which

node or edge is reserved at what time. Each robot can reserve only

reserve at most the time indexed nodes and edges in its path. If the

maximum path length of all robots is 𝑃𝑚 = max𝑟 ∈𝑅 |𝜋𝑟 | then the

total number of reserved nodes and edges must be asymptotically

equal to the number of robots times 𝑃𝑚 . The last robot will not

need to reserve it’s path Therefore, the total reserved nodes and

edges would have the size asymptotically equal to (|𝑅 | − 1)𝑃𝑚 .

Therefore, the space complexity of storing the time extended graph

𝐺𝑒
is O(|𝑉 | + |𝐸 | + (|𝑅 | − 1)𝑃𝑚). Note that we are assuming that

the path lengths for each robots path are the same and equal to

the largest path. However, in practice different robots may have

different path lengths making the storage slightly more efficient.

Both adding and removing a vertex and an edge to the original

graph require inserting or removing an element in an unordered

set which takes O(1) time. We will only need to be careful while

iterating over the outgoing edges of a node in the time-extended

graph. For a given node (𝑣, 𝑡) ∈ 𝑉 𝑒
to find the outgoing edges, we

can iterate over all of node 𝑣 ’s outgoing edges (𝑣,𝑢) ∈ 𝐸 in the

original graph𝐺 and check whether the edge ((𝑣, 𝑡), (𝑢, 𝑡 + 1)) is in
the set of reserved edges 𝐸𝑟 which can be done in O(1) time. We

will only need to iterate over all node 𝑣 ’s outgoing edges and check

whether they are in 𝐸𝑟 . Since the maximum number of adjacent

edges of a node in a 2𝐷 grid is 4 this check can be done in O(1)
time. If the edge is not in the set of reserved edges 𝐸𝑟 , then we can

add the edge to the set of outgoing edges of the node (𝑣, 𝑡) and
return the set. Therefore, more precisely the outgoing edges of a

node (𝑣, 𝑡) ∈ 𝑉 𝑒
can be found in O(|𝐸 |) using the following:

outgoingEdges(𝑣, 𝑡) = {(𝑒 = (𝑣, 𝑡) (𝑢, 𝑡 + 1)) :
(𝑒 ∉ 𝐸𝑟) ∀(𝑣,𝑢) ∈ adjSet(𝑣)}

(3)

Similarly, outgoing vertices or the forward star Γ+ (𝑣, 𝑡) can be

found using the following:

Γ+ (𝑣, 𝑡) = {(𝑢, 𝑡 + 1) :
(𝑣, 𝑡) ∉ 𝑉𝑟 ∧ (𝑢, 𝑡 + 1) ∉ 𝑉𝑟 ∀(𝑣,𝑢) ∈ adjSet(𝑣)}

(4)

Instead of iterating over all the edges and vertices in the original

graph before checking whether they are reserved, we use the stored

information in adjacency sets about outgoing edges for a vertex in

𝐺 . By using the adjacency sets of the orignal graph’s nodes that

contain the information about which vertices are connected we

can use eq. (3) and eq. (4) to find the outgoing edges and vertices

efficiently.

4 NUMERICAL RESULTS
A random 2D grid environment was generated with 20 rows and

20 colums. The number of agents was selected to be 20. A planning

horizon of 40 seconds was chosen. The three implemented auc-

tioneers were used to find different ordering of the agents before

reserving their paths. The following results show the quality of

the results based on the type of auctioneer used. For the quality

metrics, the makespan and the flowtime were used. There were no

collisions in any of the solutions

Figure 4: A 20 × 20 2D grid environment with 20 robots and
a planning horizon of 40 seconds. The circles are the robots
and the lines are the planned collision-free paths.

Figure 5 shows the different makespans and flowtimes for 15

different environments for the bid minimizer auctioneer. We also

ran the same scenarios with bid maximizer and random auction-

eer. Figure 6 shows the average makespans and the flowtimes for

different types of auctioneers averaged over 15 different environ-

ments. Figure 6 shows that the average flowtime is minimum for the

bid minimizer auctioneer compared to the other two auctioneers.

However, the bid minimizer auctioneer can create an ordering of

agents following which may result in deletion of valid paths for

other agents. Because the bid minimizer auctioneer chooses the

Figure 5: Makespans and flowtimes for the bid minimizer
auctioneer for different environments

(a) Average makespans (b) Average flowtimes

Figure 6: Average makespans and flowtimes for different
types of autioneer. (Averaged over 15 different environ-
ments.)

agent with the minimum bid as the winner, that agent will reserve

its shortest path first. This reservation may result in removal of

paths for other agents. To deal with this problem, the bid maximizer

auctioneer can be considered. The idea is that the agent with the

maximum bid or shortest path size does not have many options

which is why it’s bid is the highest. Therefore, securing the path for

the agent with the highest bid or shortest path length may help with

this problem. Figure 6 shows that the average flowtime increases

for the whole system when the bid maximizer auctioneer is used.

Bid maximizer also managed to minimize the average makespan

the most in the generated scenarios. The reason bid maximizer

auctioneer may have performed better than bid minimizer may be

that using bid minimizer reserving shortest path or making locally

greedy choices lead to worse performance. However, more environ-

ments should be tested before reaching any concrete conclusion.

The other auctioneer that was implemented is the random auction-

eer. The random auctioneer does not have any bias towards any

agent and randomly selects an agent as the winner. The average

makespan and the flowtime for the random auctioneer is higher

than both of the other auctioneers. Therefore, random ordering of

the agents may not be a good idea.

We also tested several warehouse like environments shown in

Figure 7. The environments here are 30 × 30 2𝐷 grids. For these

scenarios we used 30 agents in the problem instance and randomly

generated valid start and goal positions for these robots. Valid start

and end locations only mean that there exist at least one path from

the start to the end position. This ensures that each robot has at least

one path that it can use to reach its goal. We extended the graph

in the time dimension for 50 seconds for these problem instances.

Using the proposed approach we were able to find collision free

paths for all the robots.

(a) Warehouse A (b) Warehouse B

(c) Warehouse C (d) Warehouse D

Figure 7: Collision-free path planning in warehouse-like 30×
30 grid environments with 30 robots.

5 CONCLUSIONS AND FUTUREWORK
The main objective of this project was to develop a collision free

and optimized approach to solve a variant of the MAPF problem.

The proposed approach using time-extended graphs ensures no

collision. Extending the graph in the time dimension requires the

storage of a larger graph. This project explored whether better stor-

age and more efficient computation schemes for the time-extended

graph are possible. The time-extended graph was found to have

certain properties. Properties of the time-extended graph like it

being a DAG, guarantee the existence of paths, if paths exist in

the original graph. An efficient way to find a topological order of

the vertices was proved. These properties were exploited to find

the shortest paths more efficiently using a label setting algorithm.

The time complexity of the label setting algorithm is shown to be

in linear time. The space complexity of the time-extended graph

was also explored. Compared to just a naive implementation of the

time-extended graph, a more efficient data-structure was proposed

that has the space complexity equivalent to the space complexity

of storing the original graph and sum path lengths of all robots.

Additionally, whether auction-like mechanisms can be used to find

higher-quality solutions was also explored. This project found that

the bid minimizer auctioneer minimized the average flowtime the

most compared to the other auctioneers. However, the bid mini-

mizer auctioneer may result in deletion of valid paths for other

agents. To address this problem, a bid maximizer auctioneer was

also implemented. A random auctioneer was also implemented and

found to perform worse than both of the other auctioneers in terms

of the makespan and the flowtime minimization.

For future work, several improvements can be considered. For ex-

ample, certain portions of the grid can be ignored before expanding

the original graph if those portions are too far from an agent and

its target. The currently proposed label setting algorithm expands

all nodes and acts like uniform cost search. However, adding an

admissible heuristic to expand nodes in the direction of the sink

vertices can speed up the label setting algorithm, which in turn

will speed up the shortest path finding. Using a heuristic, an A*

algorithm can be designed. Insights were obtained into whether

learning techniques and heuristics may also help solve the problem

more efficiently with collision-free guarantees. Further, reinforce-

ment learning can be used to find better combinations of paths.

After selecting the next action for an agent, the reward can be

immediately calculated if there is a collision. Otherwise, a rollout-

like approach can be used to find the makespan or the flowtime,

which can be used as the reward. Another way to use reinforcement

learning would be find the optimal solution for smaller portions

of the grid using an optimal solver like MILP or CBS. Then using

the optimal solution, the RL agent can be trained. Even though the

problem is NP-hard, an approximation algorithm may be developed

to find better solutions with guarantees close to 𝜖 optimality based

on the environment and the number of agents. Furthermore, how

well the agents can do with selfish planning can also be explored.

Analysis of similar techniques already exist in the transportation

engineering literature. Applying those techniques in this context

could be a new research direction that has not been explored in the

MAPF literature as far as the authors are aware.

REFERENCES
[1] Anton Andreychuk and Konstantin Yakovlev. 2018. Two techniques that en-

hance the performance of multi-robot prioritized path planning. arXiv preprint
arXiv:1805.01270 (2018).

[2] Roman Barták, Neng-Fa Zhou, Roni Stern, Eli Boyarski, and Pavel Surynek. 2017.

Modeling and Solving the Multi-agent Pathfinding Problem in Picat. In 2017 IEEE
29th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE,
Boston, MA, USA, 959–966. https://doi.org/10.1109/ICTAI.2017.00147

[3] S.-H. Chan, J. Li, G. Gange, D. Harabor, P. Stuckey, and S. Koenig. 2022. Flex Dis-

tribution for Bounded-Suboptimal Multi-Agent Path Finding. In AAAI Conference
on Artificial Intelligence (AAAI). AAAI, Washington, DC 20004, 9313–9322.

[4] Shushman Choudhury, Kiril Solovey, Mykel J. Kochenderfer, and Marco Pavone.

2021. Coordinated Multi-Agent Pathfinding for Drones and Trucks over Road

Networks. CoRR abs/2110.08802 (2021).

[5] Julio Godoy, Stephen Guy, Maria Gini, and Ioannis Karamouzas. 2020. C-Nav:

Distributed Coordination in Crowded Multi-Agent Navigation. Robotics and
Autonomous Systems 133 (Nov. 2020), 103631.

[6] Florence Ho, Ana Salta, Ruben Geraldes, Artur Alves Gonçalves, Marc Cavazza,

and Helmut Prendinger. 2019. Multi-Agent Path Finding for UAV Traffic Man-

agement.

[7] C. Leet, J. Li, and S. Koenig. 2022. Shard Systems: Scalable, Robust and Persistent

Multi-Agent Path Finding with Performance Guarantees. In AAAI Conference on
Artificial Intelligence (AAAI). AAAI, Washington, DC 20004, 9386–9395.

[8] C. Leet, C. Oh, M. Lora, S. Koenig, and P. Nuzzo. 2023. Task Assignment, Sched-

uling, and Motion Planning for Automated Warehouses for Million Product

https://doi.org/10.1109/ICTAI.2017.00147

Workloads. In IEEE International Conference on Intelligent Robots and Systems
(IROS). IEEE, 7362–7369.

[9] Hang Ma, Jingxing Yang, Liron Cohen, TK Kumar, and Sven Koenig. 2017. Fea-

sibility study: Moving non-homogeneous teams in congested video game envi-

ronments. In Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, Vol. 13. 270–272.

[10] Mike Phillips and Maxim Likhachev. 2011. SIPP: Safe interval path planning for

dynamic environments. 2011 IEEE International Conference on Robotics and Au-
tomation (2011), 5628–5635. https://api.semanticscholar.org/CorpusID:16210040

[11] Oren Salzman and Roni Stern. 2020. Research Challenges and Opportunities in

Multi-Agent Path Finding and Multi-Agent Pickup and Delivery Problems. In

Proceedings of the 19th International Conference on Autonomous Agents and Multi-
Agent Systems (Auckland, New Zealand) (AAMAS ’20). International Foundation
for Autonomous Agents and Multiagent Systems, Richland, SC, 1711–1715.

[12] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. 2015. Conflict-

based search for optimal multi-agent pathfinding. Artificial Intelligence 219 (2015),
40–66. https://doi.org/10.1016/j.artint.2014.11.006

[13] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. 2013. The increasing

cost tree search for optimal multi-agent pathfinding. Artificial Intelligence 195
(2013), 470–495. https://doi.org/10.1016/j.artint.2012.11.006

[14] David Silver. 2021. Cooperative Pathfinding. Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment 1, 1 (Sep. 2021),

117–122. https://doi.org/10.1609/aiide.v1i1.18726

[15] R. Stern, N. R. Sturtevant, A. Felner, S. S. Koenig, H. Ma, T. Walker, J. Li, D.

Atzmon, L. Cohen, T. K. S. Kumar, E. Boyarski, and R. Bartak. 2019. Multi-

Agent Pathfinding: Definitions, Variants, and Benchmarks. In Proceedings of the
International Symposium on Combinatorial Search (SoCS). AAAI, Washington, DC

20004, 151–159.

[16] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. 2008. Coordinating

Hundreds of Cooperative, Autonomous Vehicles in Warehouses. AI Magazine 29,
1 (Mar. 2008), 9. https://doi.org/10.1609/aimag.v29i1.2082

[17] Jingjin Yu. 2016. Intractability of Optimal Multirobot Path Planning on Planar

Graphs. IEEE Robotics and Automation Letters 1, 1 (2016), 33–40. https://doi.org/

10.1109/LRA.2015.2503143

[18] Jingjin Yu and Steven LaValle. 2013. Structure and Intractability of Optimal Multi-

Robot Path Planning on Graphs. Proceedings of the AAAI Conference on Artificial
Intelligence 27, 1 (Jun. 2013), 1443–1449. https://doi.org/10.1609/aaai.v27i1.8541

[19] Jingjin Yu and Steven LaValle. 2013. Structure and intractability of optimal multi-

robot path planning on graphs. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 27. AAAI, Washington, DC 20004, 1443–1449.

[20] Lifeng Zhou and Pratap Tokekar. 2021. Multi-robot Coordination and Planning

in Uncertain and Adversarial Environments. Current Robotics Reports 2, 2 (April
2021), 147–157. https://doi.org/10.1007/s43154-021-00046-5

https://api.semanticscholar.org/CorpusID:16210040
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1016/j.artint.2012.11.006
https://doi.org/10.1609/aiide.v1i1.18726
https://doi.org/10.1609/aimag.v29i1.2082
https://doi.org/10.1109/LRA.2015.2503143
https://doi.org/10.1109/LRA.2015.2503143
https://doi.org/10.1609/aaai.v27i1.8541
https://doi.org/10.1007/s43154-021-00046-5

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Statement
	3.2 Solution quality and metrics
	3.3 Solution approach
	3.4 Construction of the time-extended graph

	4 Numerical results
	5 Conclusions and future work
	References

