
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/312538924

Monte Carlo Tree Search with Branch and Bound for Multi-Robot Task Allocation

Conference Paper · July 2016

CITATIONS

18
READS

1,005

4 authors:

Some of the authors of this publication are also working on these related projects:

Swarm robotics View project

TAC SCM (Supply-Chain Management) View project

Bilal Kartal

NVIDIA

23 PUBLICATIONS 324 CITATIONS

SEE PROFILE

Ernesto queiros Nunes

University of Minnesota Twin Cities

14 PUBLICATIONS 257 CITATIONS

SEE PROFILE

Julio Godoy

University of Minnesota Twin Cities

21 PUBLICATIONS 165 CITATIONS

SEE PROFILE

Maria Gini

University of Minnesota Twin Cities

344 PUBLICATIONS 4,888 CITATIONS

SEE PROFILE

All content following this page was uploaded by Bilal Kartal on 19 January 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/312538924_Monte_Carlo_Tree_Search_with_Branch_and_Bound_for_Multi-Robot_Task_Allocation?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/312538924_Monte_Carlo_Tree_Search_with_Branch_and_Bound_for_Multi-Robot_Task_Allocation?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Swarm-robotics-13?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/TAC-SCM-Supply-Chain-Management?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bilal-Kartal?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bilal-Kartal?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/NVIDIA?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bilal-Kartal?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ernesto-Nunes?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ernesto-Nunes?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Minnesota_Twin_Cities2?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ernesto-Nunes?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Julio-Godoy?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Julio-Godoy?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Minnesota_Twin_Cities2?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Julio-Godoy?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria-Gini?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria-Gini?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Minnesota_Twin_Cities2?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria-Gini?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bilal-Kartal?enrichId=rgreq-8cd91beb2dab588429188a34396d04a7-XXX&enrichSource=Y292ZXJQYWdlOzMxMjUzODkyNDtBUzo0NTIzNDQ2MDIyMDYyMDhAMTQ4NDg1ODc2NTA4NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Monte Carlo Tree Search with Branch and Bound for Multi-Robot Task Allocation

Bilal Kartal, Ernesto Nunes, Julio Godoy, and Maria Gini
Department of Computer Science and Engineering

University of Minnesota
(bilal,enunes,godoy,gini)@cs.umn.edu

Abstract
Multi-robot teams are effective in a variety of task
allocation domains such as warehouse automation
and surveillance. Robots in such domains have
to perform tasks at given locations and specific
times. Tasks have to be allocated to optimize given
team objectives, such as minimizing the total dis-
tance traveled. We propose an efficient, satisficing
and centralized Monte Carlo Tree Search (MCTS)
based algorithm which exploits the branch and
bound paradigm with a novel search paralleliza-
tion method to solve the multi-robot task allocation
problem with spatial, temporal and other side con-
straints. Unlike previous heuristics proposed for
this problem, our approach maintains asymptotic
convergence guarantees of MCTS and it has effi-
cient anytime behavior. It finds near-optimal solu-
tions for non-trivial problems in the Solomon data
sets in an hour.

1 Introduction
Autonomous service robots are employed for a variety of of
tasks such as home care for elderly [Portugal et al., 2015], es-
corting visitors on multi-floor buildings [Veloso et al., 2012],
and material transportation within hospitals [Özkil et al.,
2009]. These problems necessitate a high level task allocation
planner for efficiency. In this work, we study the multi-robot
task allocation (MRTA) problem with temporal and capac-
ity constraints with homogeneous robots (henceforth MRTA-
TW). This problem falls under the category single-task robot,
single-robot task, time extended allocation with in-schedule
dependencies ID[ST-SR-TA] [Korsah et al., 2013], although
the constraints herein considered are far more complex than
the ones specified in the taxonomy.

In MRTA-TW, a fixed set of tasks is allocated to a team
of robots such that the total distance traveled by all robots is
minimized, and temporal and other side constraints are sat-
isfied. This problem is NP-hard, even when a single-robot
is considered. The single-robot version of the problem is a
variant of the elementary shortest path problem with resource
constraints, which is a well-known NP-hard problem. For
this reason, optimal methods are not practical for datasets in-
volving tens of robots and hundreds of tasks due to large run

Figure 1: A near-optimal solution generated by MCTS for C101 test
scenario in Solomon benchmark. This solution has an approxima-
tion rate of 1.03 to an optimal one. Ri, i ∈ {0, 1, 2, . . . , 9} indicate
the robots.

times (several hours to days for hundreds of tasks and tens of
robots). Hence, efficient but suboptimal solutions are needed.

Approximate centralized and decentralized methods have
been proposed for MRTA-TW problems (e.g. [Gombolay
et al., 2013; Ponda et al., 2010; Nunes and Gini, 2015;
McIntire et al., 2016]). While there exist some efficient
schedulers (e.g. [Gombolay et al., 2013]) for problems in
which distances are small enough to be subsumed into tasks’
durations, little attention has been given to solvers for prob-
lems in which routing and scheduling problems have to be
solved simultaneously. Our approach tackles the latter prob-
lem and provides a solver that achieves asymptotic optimality,
while attaining optimal or near-optimal results for non-trivial
number of tasks and robots within practical runtimes.

Our main contribution is a centralized heuristic that bal-
ances between efficiency and solution quality by employing a
modified Monte Carlo Tree Search (MCTS) approach. MCTS
is an anytime sampling based technique employing Upper
Confidence Bounds (UCB) [Auer et al., 2002] to balance ex-
ploration vs. exploitation. MCTS with UCB has been proven

Root

A

B

(a)

Root

A

B

C

(b)

Rollout

Root

A

B

C

(c)

Root

A

B

C

(d)

Figure 2: Overview of Monte Carlo Tree Search: (a) Selection:
UCB equation is used recursively until a node with an unexplored
action is selected. Assume that nodes A and B are selected. (b)
Expansion: Node C is added to the tree. (c) Random Rollout: A
sequence of random actions is taken from node C to complete the
partial path. (d) Back-propagation: Full path is evaluated and the
score is back-propagated from node C to the root.

to converge to an optimal solution for finite horizon problems
[Kocsis and Szepesvári, 2006].

The main motivation for extending MCTS stems from the
method’s recent success in handling problems with large state
spaces [Enzenberger et al., 2010]. To apply MCTS to MRTA-
TW, we improve upon MCTS in three fundamental ways: (1)
We design a multi-objective evaluation function that balances
between minimizing the distance traveled by all the robots
and maximizing the task completion rate. (2) We propose a
customized root parallelization scheme that helps the algo-
rithm better explore the solution space. (3) We use branch
and bound to prune parts of the search tree that do not im-
prove upon the incumbent solution.

Our solution’s quality is assessed empirically using the
Solomon data set [Solomon, 1987] for vehicle routing prob-
lems with time-windows (VRPTW), and compared with
many optimal results from VRPTW. Our method finds solu-
tions that are at most 1.6 away from optimal ones, and achieve
an average of 98% task completion rate across all data sets.

2 Background
Our work draws knowledge from the multi-robot task alloca-
tion (MRTA) with time windows and the MCTS literature.

2.1 Centralized Methods for MRTA-TW
There have been previous attempts to deal with variants of
our problem in the MRTA literature. Alighanbari et al. [2003]
studied the allocation of tasks that have to be done at a certain
location and have constraints on their start time. They offer
a Mixed Integer Linear Programming (MILP)-based solution
and a more scalable tabu-search algorithm. Unlike our prob-
lem, they only consider precedence ordering of tasks, and not
hard temporal constraints on tasks.

Koes and colleagues [2005] proposed a MILP-based
heuristic for allocating tasks with deadline constraints to het-
erogeneous robots. They consider only problems where task
types and robot capabilities have to match. Like in [Alighan-
bari et al., 2003], their MILP-based approach does not scale
to large number of tasks and robots.

More recently, Gombolay et al. [2013] studied allocating
tasks with spatiotemporal constraints to robots, and offered a
MILP-based efficient heuristic that performed well for up to

100 tasks. Their work considers location constraints that pre-
vent robots from working too close together. Task allocation
with resource contention has been recently studied in [Nam
and Shell, 2015] as well. The closest work to ours is by Ko-
rsah et al. [2010], who explore the vehicle routing problem
with location choice. The main difference between the lat-
ter work and ours is that they include precedence constraints.
Precedence constraints impose structure on the ordering of
tasks. With pre-processing, the ordering would reduce the
size of our search space.

Our problem can also be cast as a VRPTW [Solomon,
1987]. There is a rich literature of centralized methods for
VRPTW [Bräysy and Gendreau, 2005a; 2005b]. Most of the
heuristic methods that yield good quality solutions efficiently
require modeling and parameter tuning specific to a data set,
which makes these methods hard to generalize. Instead, our
approach, which is based on Monte Carlo Tree Search, is
more general and is guaranteed, given enough time, to con-
verge to an optimal solution.

2.2 Monte Carlo Tree Search
Monte Carlo Tree Search, illustrated in Figure 2, is a best
first search algorithm that has gained traction after its break-
through performance in the game Go [Coulom, 2006]. Re-
cently an MCTS based distributed approach combined with
deep neural networks defeated the strongest Go player in the
world on a full size Go board [Silver et al., 2016]. Other
than games [Lisỳ et al., 2015], MCTS has been employed
for a variety of domains such as demand management for
smart grid systems [Galvan-Lopez et al., 2014], single ve-
hicle transportation planning [Edelkamp and Gath, 2014],
multi-robot patrolling [Kartal et al., 2015], multi-agent nar-
rative generation [Kartal et al., 2014], and Sokoban puzzle
generation [Kartal et al., 2016]. Our use of MCTS follows
the approach in [Kocsis and Szepesvári, 2006], which em-
ploys the UCB (Upper Confidence Bounds) technique to bal-
ance exploration vs. exploitation during planning.

3 MCTS for Multi-Robot Task Allocation
We formalize the MRTA-TW problem and describe how we
adapt MCTS to address it. We introduce our proposed eval-
uation function and present how branch and bound paradigm
can be applied within the MCTS algorithm, along with a sim-
ple but novel search parallelization method.

3.1 Problem Formulation
In the MRTA-TW problem, there are m tasks which need to
be allocated to n robots. The objective is to minimize the total
distance that the robots must travel to reach them tasks while
satisfying the temporal and capacity constraints. We assume
n ≤ m. Each task has a x-y location, service time, capacity
demand, and time window. Demand is the number of capac-
ity units consumed. A time window specifies the temporal
constraints for task execution, by specifying the earliest time
to start the task, and the latest time to end it. Time windows
can have different lengths and are allowed to overlap.

We assume point mass robots, each with an x-y coordinate,
a capacity, and a global deadline by which it has to return to a

Algorithm 1: MCTS with Search Parallelization
Input : Budget
Output: Policy
D(ˆπbest) =∞ ;
ThreadId = get thread num();
bestLocalScore[ThreadId] =∞ ;
while timeElapsed ≤ Budget do

Expanded Node← ucbSelection(root[ThreadId]) ;
π̂← rollout(Expanded Node) ;
if f(π̂) >bestLocalScore[ThreadId] then

bestLocalScore[ThreadId] = f(π̂);
bestLocalPolicy[ThreadId] = π̂;
if m′ = m AND D(π̂) <D(ˆπbest) then

set lock(&writelock);
if D(π̂) <D(ˆπbest) then

D(ˆπbest) = D(π̂);
ˆπbest = π̂;

end
unset lock(&writelock);

end
end
backpropagate(f(π̂)) ;

end

designated depot. We assume that a task needs only one robot
to be executed, and a robot can perform several tasks, one at a
time. Hence, the ultimate goal is to compute a route for each
robot that starts and ends at the depot. A robot assigned to
a route should be able to execute each task within the task’s
time window, and have enough time to travel between tasks
and return to the depot. Each task should be included in only
one route, and routes should cover all the tasks.

The problem is modeled as a directed graph, G = (V,E),
where the vertices V are the locations of the tasks and the
depot. The set of weighted edges E includes only feasible
edges obtained from pairing vertices in V . Edge eba ∈ E is a
feasible edge if and only if task b can be completed after task
a without violating the time-window constraints. The weight
on the edges represent the distance between the pair of tasks.
In our MCTS model routes are turned into allocation policies.

Let πi = {{ri, t1i }, {ri, t2i },, {ri, t
|πi|
z }} denote the in-

dividual task allocation policy of robot ri, where tji corre-
sponds to the j-th allocated task in the policy of robot ri
and tz corresponds to the depot. For each employed robot,
the return to depot action is included as a dummy task. Let
π̂ = {π1 ∪ π2 ∪ ∪ πn} denote the global task allocation
policy for the entire set of robots, where each task is allocated
to a single robot. In addition, let D(π̂) represent the total
distance traveled by the robots while following the policy π̂.
A complete policy is one where all tasks are allocated, i.e.,
|π̂| = m + n′, while in an incomplete policy some tasks re-
main unallocated, i.e., |π̂| < m+n′ where n′ ≤ n is the num-
ber of robots that performed at least one task. Our objective
is to find a complete policy π̂ such that D(π̂) is minimized.
Once the search is over, the solution π̂ is decomposed into n
individual robot policies to be executed simultaneously.

3.2 Approach Overview
We formulate the MRTA-TW problem as a tree search and
propose an MCTS based method as outlined in Alg. 1. In our
tree structure, robots are employed sequentially, i.e., the route
for robot ri+1 will be computed once robot ri returns to the
depot.

At each level of the tree, a single robot is assigned one of
the remaining tasks or returns to the depot. Once a robot re-
turns to the depot it cannot be allocated any other task. This
creates unbalanced allocations, however it keeps the branch-
ing factor at a manageable size.

During the search, the UCB algorithm is used to choose
which task to allocate to each robot, as shown in Eqn. 1. Each
parent node p chooses its child s with the largest UCB(s)
value. Here, w(.) denotes the average evaluation score ob-
tained by Eqn. 2, π̂s is the parent’s policy, which is updated
to include child node s; pv is visit count of parent node p, and
sv is visit count of child node s.

UCB(s) = w(π̂s) + C ×
√

ln pv
sv

(1)

If a node with at least one unexplored child is reached
(sv = 0), a new node is created for one of the unexplored
action sets. After the rollout and back-propagation steps, the
selection step is restarted from the root again. This way, the
tree can grow in an uneven manner, biased towards better so-
lutions. The value of C determines the rate of exploration,
where smaller C implies less exploration. C =

√
2 is neces-

sary for search completeness of MCTS.
Given that our problem formulation is completely deter-

ministic, we can store the best found solution during the
search and optionally halt the search with some solution qual-
ity threshold by exploiting the anytime property of MCTS.

3.3 Policy Evaluation Function
The MCTS algorithm needs an evaluation function to esti-
mate the true rewards of tree actions by measuring the quality
of full policies extended with random rollout actions. Eval-
uation functions are straightforward in most games where
the player gets a payoff of 1, 0.5, and 0 for winning, ty-
ing, and losing, respectively. Evaluation is more complex for
MRTA-TW because neither the value of the optimal solution
is known nor most candidate solutions allocate all the tasks.
The evaluation function in (2) helps find complete allocations
that take distance and allocation percentage into account.

Let m′ represent the number of allocated tasks for task al-
location policy π̂. Due to the nature of highly constrained
properties of tasks, most candidate solutions fail to allocate
all the tasks. However, MCTS still needs to direct the search
to find better solutions. In this work, we propose an anytime
policy evaluation function which guarantees that given more
planning time, MCTS will find better solutions. Let α de-
note a loose upper bound on the total traveled distance D(π̂),
and Ê be a sorted version of E (in descending order of their
distances). Then, α = 2×

∑m+n
i=1 ei where ei ∈ Ê. Let δ

denote task completion of the candidate policy where δ = 1
if m′ = m, and δ = 0.5 otherwise.

To discourage incomplete policies, we define a nega-
tive reward parameter, ψ, which is computed as follows:
ψ = 2×

∑m−m′

i=1 ei, ei ∈ E′, where E′ ⊂ E is the set of
edges directed from completed to uncompleted tasks, from
uncompleted to uncompleted tasks, and from uncompleted
tasks to the depot sorted in descending order of distances.
While calculating ψ, we use the simple observation that no
edge in graph G will be traveled twice.

Based on these definitions, we propose an evaluation func-
tion f(π̂), to assess policy π̂, as follows:

f(π̂) =
α− (D(π̂) + ψ)

α
× δ (2)

Our evaluation function considers the worst case insertion
cost of the unfulfilled tasks from the remaining feasible edges
for penalty term. This helps MCTS to avoid getting trapped
by partial policies with small total distances which are un-
likely to complete all tasks.

Properties of the Policy Evaluation Function
Our evaluation function guarantees that f(π̂a) > f(π̂b) holds
if π̂a completes all the tasks and π̂b misses at least one task.
To show this, we can simply show bounds of f(π̂a) and f(π̂b)
separately, which would imply our claim.
Case 1: 0.5 ≤ f(π̂a) < 1. We can observe that D(π̂) ≤ α/2
is true as α is accumulated from the longest m + n edges on
graph G and multiplied by 2, while |π̂| ≤ m + n depending
on the number of robots utilized. Therefore, ψ = 0 and δ =
1 holds by completion of all the tasks which completes our
claim for case 1.
Case 2: 0 < f(π̂b) < 0.5. This holds true because by missing
at least one task δ will be set to 0.5, and D(π̂) +ψ > 0 holds
for any policy. The δ parameter behaves like a step function.

Lastly, our evaluation function returns monotonically in-
creasing values along any path from the tree root as more
tasks are allocated. For every allocated task, the actual trav-
eled distance increases by some c ≥ 0, while ψ decreases by
at least c; this guarantees that the evaluation score of the pol-
icy never decreases for any sequence of actions in the tree as
more tasks are completed.

3.4 Application of Branch and Bound
Branch and bound is used to prune nodes during search, based
on the incumbent solution that allocates all the tasks. A sim-
ple observation is that no matter how many robots are uti-
lized, each edge in E will be traveled at most once. We let
D(ˆπbest) denote the total distance traveled corresponding to
the best solution found so far that completes all the tasks.

Given a partial task allocation policy πp which completes
mp tasks using np robots with a total distance ofD(π̂p), there
are two cases to consider. First, let’s assume that all remain-
ing robots, n − np, are at the depot. Then we generate a
possible edge list, Erest ⊂ E by considering all edges from
the depot to the uncompleted tasks, from uncompleted to un-
completed tasks, and from uncompleted tasks to the depot.
Second, if there is a robot that completed a task but did not
return to depot yet, we also consider edges from the robot lo-
cation to uncompleted tasks and to depot for Erest. In case
there is no robot at depot, we neglect edges directed from

the depot. During bounding tree branches, if there are fewer
robots than tasks, we assume that each robot has to complete
at least one task while a lower-bound on the future distance
to travel is computed along tree branches.

We branch new nodes if the following condition holds
D(ˆπbest)−D(π̂p) >

∑q
i=1 ei where ei ∈ Erest andErest is

sorted in ascending order. Here, q is the minimum number of
edges to cover to complete a partial allocation policy, which
is computed as follows; if n < m, then q = (m+ n)− |πp|,
otherwise q = m−mp.

3.5 Parameterized Root Parallelization for MCTS
Several different search parallelization methods have been
proposed for MCTS, such as tree parallelization, leaf par-
allelization and root (or single run) parallelization, as sum-
marized in [Browne et al., 2012]. Among these different
approaches, root parallelization has been shown to perform
best for the game Go [Chaslot et al., 2008]. Fern at al.
[2011] show the effectiveness of root parallelization by ex-
haustive experiments over different problems. Root paral-
lelization simply creates multiple search trees, one per thread,
and merges the search trees once the search budget is com-
plete to generate policies. It has minimal overhead as the
threads do not communicate until the merging step.

We propose a novel variant of root parallelization, hence-
forth parameterized root parallelization. Each tree is given a
different UCB exploration parameter so that they can explore
the search space in different ways. Similar to pure root par-
allelization, our approach also creates multiple independent
search trees per thread. There is a globally shared variable,
D(ˆπbest), keeping the best complete solution distance found
by any tree. The design idea for our approach is that finding
a locally optimal solution early can better calibrate the search
direction for all threads given the very large state space. This
also improves memory efficiency as we can prune existing
nodes that are guaranteed to not beat the best found so far.

For k cores, we assign exploration parameters as fol-
lows; Ĉ = { 2Ck ,

4C
k , . . . , C, 2C, 3C . . . , (

k
2 + 1)C} where

C =
√
2. The first half of the cores are assigned smaller ex-

ploration parameters so that they can search deeper early to
find a complete solution to expedite pruning in all trees, while
the second half of the cores will explore more so as not to get
trapped by a local maximum. In cases where none of the
threads is able to find a task allocation policy which com-
pletes all the tasks, the result of our parallelization approach
is identical to running MCTS k times with different C values
with a single core and returning the best found solution.

4 Experimental Setup and Results
We assessed our MCTS method using the Solomon dataset
for vehicle routing on commodity hardware. We used 8 logi-
cal cores on an Intel Core i7-4790 3.6 GHz Quad-Core com-
puter with 32GB RAM. The algorithm is run once for each
data instance with search times set to 1 hour. We present a
near-optimal solution generated by our approach in Figure 1.
We show how branch and bound improves our results for all
categories in Figure 3. Overall anytime behavior of our ap-
proach is presented in Figure 4.

C R RC ALL
1.1

1.2

1.3

1.4

1.5

1.6

With Branch and Bound

Without Branch and Bound

Solomon Dataset Scenarios

D
is

ta
n

ce
 r

a
tio

 to
 th

e
 b

e
st

 k
n

o
w

n

Figure 3: Smaller is better. Embedding branch and bound in the
MCTS algorithm improves the overall distance ratio to the best
known solutions 11% across all instances in the Solomon data set.

The Solomon dataset provides a rich variety of problem
scenarios for task locations and time windows. Tasks are ei-
ther clustered (C), randomly scattered (R), or a mix of clus-
tered and randomly scattered (RC). Each of these categories
has either tight time windows (type 1) or large time windows
(type 2). The individual spatiotemporal categories (e.g. C1,
R2) have between 8-12 individual instances.

Each instance has 100 tasks, each task has a uniformly
generated demand drawn from U(1, 50), and service times
of either 10 (C and RC data instances) or 90 (R data in-
stances). The earliest start time for the time windows is drawn
from U(1, 1000) and U(1, 3400) for types 1 and 2 data in-
stances, respectively. The latest finishing times are drawn
from U(20, 1000). The x-y coordinates of the tasks and
robots are uniformly drawn from U(0, 100). The global dead-
lines for the robots have values between ∼ 200 and ∼ 3500.

4.1 Comparison to other methods
As no single method produces the best results for all prob-
lem instances in Solomon benchmark, we compare our re-
sults with the best known results [Solomon, 2005] obtained
from up to 16 methods including metaheuristics, local search,
ant-based, and genetic algorithms. While these methods are
more efficient, unlike our method, they neither generalize
well across data sets nor do they provide any guarantees. We
summarize our results in Table 1 and Table 2.

4.2 Fixed number of robots
In this set of experiments the number robots used is upper
bounded by the number of robots used in the best known so-
lutions from the VRPTW literature.

Task allocation percentage results for type 1 and 2 data in-
stances are presented in Figure 4. Our algorithm allocates
more than 40% of the tasks after 5 minutes; it allocates nearly
all tasks across all datasets within one hour. The average task
allocation rate and the percentage of instances in which all
tasks are allocated are reported in Table 2. The algorithm
yields high average allocation rates across all datasets, and
it attains relatively lower percentages of instances in which
100% of tasks are allocated.

Scenario MCTS Optimal Task % Ratio to Opt.

C101 853.5 827.3 1 1.03
C102 1287.7 827.3 1 1.55
C103 1320.5 826.3 1 1.59
C104 1249.9 822.9 1 1.51
C105 1038.2 827.3 1 1.25
C106 982.6 827.3 0.99 -
C107 1117 827.3 0.98 -
C108 1076.1 827.3 0.99 -
C109 1173.9 827.3 1 1.42
R101 1820.8 1637.7 1 1.11
R102 1716.5 1466.6 1 1.17
R103 1593.4 1208.7 1 1.31
R104 1303.1 971.5 1 1.34
R105 1640.9 1355.3 1 1.21
R106 1532.9 1234.6 1 1.24
R107 1363.9 1064.6 0.99 -
R108 1051 960.9 0.96 -
R109 1428.6 1146.9 1 1.25
R110 1381.8 1068 1 1.29
R111 1436.5 1048.7 1 1.37
R112 1055.2 982.1 0.93 -

RC101 1515.2 1619.8 0.96 -
RC102 1851.4 1457.4 1 1.27
RC103 1554.2 1258 0.98 -
RC104 1373.7 1135.5 0.94 -
RC105 1973 1513.7 1 1.30
RC106 1520.8 1424.7 0.91 -
RC107 1614.1 1207.8 0.99 -
RC108 1515.2 1114.2 0.99 -

Table 1: Comparison of our MCTS solutions to the best known so-
lutions (found by 16 different methods) on Solomon Benchmark

We observe that our approach in general is more success-
ful for test instances where the number of robots is large and
time windows are not very large. For example, the algorithm
struggles to fully allocate tasks in C2 test instances, where the
number of robots is 3 for all instances, while it does better in
all type 1 instances where there are 9 or more robots. In type
2 instances each robot performs many more tasks. Having
more robots enable random rollouts to complete more tasks.
As shown in Figure 4, in 5 minutes we obtain much higher
completion rates in type 1 scenarios. Also, we obtain best so-
lutions for RC2 in type 2 instances as shown in Table 2. Our
observation is also supported by the fact that in average RC2
has at least 50% more robots than other type 2 scenarios.

Detailed distance ratio results are reported in Table 1 and
Table 2. The results reported in Table 1 show that our algo-
rithm yields solutions with quality at most 1.59 away from
the best-known for completed instances. These results are
corroborated by the average distance ratio results in Table 2.

Similar to the completion results, our algorithm yields
larger distance ratio values in type 2 data instances compared
to type 1 ones. As stated before, the larger time windows
cause the algorithm to evaluate more policies. Hence, we

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

C100

R100

RC100

Search time (in minutes)

Ta
sk

 c
o

m
p

le
tio

n
 r

a
te

 (
%

)

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

C200

R200

RC200

Search time (in minutes)

Ta
sk

 c
o

m
p

le
tio

n
 r

a
te

 (
%

)

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

C average

R average

RC average

Search time (in minutes)

Ta
sk

 c
o

m
p

le
tio

n
 r

a
te

 (
%

)

Figure 4: Task completion rates versus search time with MCTS for problems from the Solomon dataset. On average, MCTS achieves 50%
task completion rate in 5 minutes. With more planning time, we achieve up to 98% completion rate over all categories.

C1 R1 RC1 C2 R2 RC2 Avg.

Completion
Rate Avg. 0.99 0.99 0.97 0.97 0.97 0.98 0.98
% Instances
all completed 0.67 0.75 0.25 0.00 0.27 0.63 0.43
Ratio to
Opt. Distance 1.39 1.25 1.28 - 1.51 1.48 1.38

Table 2: Summary of results for MCTS using the same number of
robots of the best known solutions for Solomon benchmark.

Scenarios C R RC All
Distance Ratio 2.01 1.41 1.58 1.67

Team-size Ratio 2.65 2.11 1.92 2.23

Table 3: The ratio of found solutions to the best known are presented
for MCTS with free number of robots within Solomon data set.

argue that larger run times would improve solution quality,
given that the algorithm would be able to eventually focus the
search away from allocations with larger distances.

4.3 Free number of robots

Given that it is challenging to complete all the tasks through
random sampling with the tight robot team sizes we obtained
from the best known solutions, we have experimented our ap-
proach by keeping everything the same but only changing the
number of robots to be the same as the number of tasks to
guarantee task completion with random rollouts. This setup
also simplifies our evaluation function as ψ = 0 and k = 1
both hold. However, as expected, using more robots causes
extra distance cost of leaving the depot and coming back.

We present a summary of the results obtained in this ex-
periment in Table 3. This approach overall uses 123% more
robots with an overall solution quality within 1.67 of the best
known ones. Our first observation is that within each category
as the time windows get tighter, MCTS finds solutions us-
ing more robots resulting in large team travel distances. Sec-
ondly, we obtain worst results for the clustered test cases as
multiple robots are possibly assigned to the same clusters in-
flicting large distance costs, and lastly we obtain best results
for the R-type scenarios, the one with no clusters.

4.4 Analysis
When the number of robots is fixed, the random trajecto-
ries during rollouts fail to accomplish all the tasks due to
the highly constrained nature of the problem. Our evaluation
function punishes task allocation policies with uncompleted
tasks to direct the search towards regions where the robots are
likely to complete more tasks with smaller distances.

Our approach performs better for problems where n is not
very small. We think that this might be due to a weak-
ness caused by our evaluation function and our tree struc-
ture model which uses robot ri+1 once robot ri returns to
the depot. Although our evaluation function punishes incom-
plete policies with an additional distance cost, the search can
be biased towards individual robot routes with smaller dis-
tances for test instances with small n. As each robot route
contains many tasks for small n, MCTS can only recognize
late that it cannot generate a policy which completes all the
tasks through a good looking branch.

In our approach even a single sub-optimal allocation made
early in the plan diminishes the quality of a fully complete
policy. The main challenge is that the delayed rewards for
actions resulting from earlier allocations can be understood
much later. Test cases with smaller n further increase the
delay of acquiring less noisy rewards due to longer routes.

5 Conclusions
We proposed an MCTS based anytime centralized approach
to solve the multi-robot task allocation problem with time
windows and capacity constraints. The proposed MCTS
heuristic combines branch and bound pruning and a param-
eterized root parallelization to obtain high quality solutions
while maintaining relatively low computation times. We
experimentally show that our approach can generate near-
optimal task allocation policies in an hour using the Solomon
benchmark for vehicle routing with 100 tasks. We found so-
lutions that are at most 1.59 away from the best-known solu-
tions, while completing nearly all tasks. Our method main-
tains asymptotic completeness guarantees of the MCTS algo-
rithm as we employ no biasing or domain-dependent heuristic
during the search.

Acknowledgments: Work supported in part by the Uni-
versity of Minnesota Informatics Institute and the Graduate
School.

References
[Alighanbari et al., 2003] M. Alighanbari, Y. Kuwata, and J. P.

How. Coordination and control of multiple UAVs with timing
constraints and loitering. In Proc. American Control Conf., pages
5311–5316, June 2003.

[Auer et al., 2002] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fis-
cher. Finite-time analysis of the multiarmed bandit problem. Ma-
chine Learning, 47(2-3):235–256, 2002.

[Bräysy and Gendreau, 2005a] Olli Bräysy and Michel Gendreau.
Vehicle routing problem with time windows, part I: Route con-
struction and local search algorithms. Transportation Science,
39(1):104–118, February 2005.

[Bräysy and Gendreau, 2005b] Olli Bräysy and Michel Gendreau.
Vehicle routing problem with time windows, part II: Metaheuris-
tics. Transportation Science, 39(1):119–139, February 2005.

[Browne et al., 2012] Cameron B Browne, Edward Powley, Daniel
Whitehouse, Simon M Lucas, et al. A survey of Monte Carlo Tree
Search methods. IEEE Trans. on Computational Intelligence and
AI in Games, 4(1):1–43, 2012.

[Chaslot et al., 2008] Guillaume MJ-B Chaslot, Mark HM
Winands, and H Jaap van Den Herik. Parallel Monte-Carlo Tree
Search. In Computers and Games, pages 60–71. Springer, 2008.

[Coulom, 2006] Rémi Coulom. Efficient selectivity and backup op-
erators in Monte-Carlo tree search. In H. Jaap van den Herik,
Paolo Ciancarini, and Jeroen Donkers, editors, Computers and
Games, volume 4630 of LNCS, pages 72–83. Springer, 2006.

[Edelkamp and Gath, 2014] Stefan Edelkamp and Max Gath. Solv-
ing single vehicle pickup and delivery problems with time win-
dows and capacity constraints using nested monte-carlo search.
In ICAART, volume 1, pages 22–33, 2014.

[Enzenberger et al., 2010] Markus Enzenberger, Martin Müller,
Broderick Arneson, and Richard Segal. Fuego – an open-source
framework for board games and Go engine based on Monte Carlo
tree search. IEEE Trans. on Computational Intelligence and AI
in Games, 2(4):259–270, 2010.

[Fern and Lewis, 2011] Alan Fern and Paul Lewis. Ensemble
Monte-Carlo planning: An empirical study. In Proc. Int’l Conf.
on Automated Planning and Scheduling, 2011.

[Galvan-Lopez et al., 2014] Edgar Galvan-Lopez, Colin Harris,
Leonardo Trujillo, Katya Rodriguez-Vazquez, Steven Clarke, and
Vinny Cahill. Autonomous demand-side management system
based on Monte Carlo tree search. In Proc. IEEE Int’l Energy
Conference, pages 1263–1270, 2014.

[Gombolay et al., 2013] Matthew Gombolay, Ronald Wilcox, and
Julie Shah. Fast scheduling of multi-robot teams with tem-
porospatial constraints. In Robotics: Science and Systems, 2013.

[Kartal et al., 2014] Bilal Kartal, John Koenig, and Stephen J Guy.
User-driven narrative variation in large story domains using
Monte Carlo Tree Search. In Proc. Int’l Conf. on Autonomous
Agents and Multi-Agent Systems, pages 69–76, 2014.

[Kartal et al., 2015] Bilal Kartal, Julio Godoy, Ioannis
Karamouzas, and Stephen J Guy. Stochastic tree search
with useful cycles for patrolling problems. In Proc. IEEE Int’l
Conf. on Robotics and Automation, pages 1289–1294, 2015.

[Kartal et al., 2016] Bilal Kartal, Nick Sohre, and Stephen Guy.
Generating sokoban puzzle game levels with monte carlo tree
search. In The IJCAI-16 Workshop on General Game Playing,
page 47, 2016.

[Kocsis and Szepesvári, 2006] Levente Kocsis and Csaba
Szepesvári. Bandit based Monte-Carlo planning. In Proc.
European Conf. on Machine Learning (ECML), pages 282–293.
Springer, 2006.

[Koes et al., 2005] Mary Koes, Illah R. Nourbakhsh, and Katia P.
Sycara. Heterogeneous multirobot coordination with spatial and
temporal constraints. In Proc. AAAI Conf. on Artificial Intelli-
gence, pages 1292–1297, 2005.

[Korsah et al., 2010] G. Ayorkor Korsah, Anthony Stentz,
M. Bernardine Dias, and Imran Aslam Fanaswala. Opti-
mal vehicle routing and scheduling with precedence constraints
and location choice. In Workshop on Intelligent Autonomous
Systems at IEEE ICRA, 2010.

[Korsah et al., 2013] G. Ayorkor Korsah, Anthony Stentz, and
M. Bernardine Dias. A comprehensive taxonomy for multi-robot
task allocation. The International Journal of Robotics Research,
32(12):1495–1512, 2013.

[Lisỳ et al., 2015] Viliam Lisỳ, Marc Lanctot, and Michael Bowl-
ing. Online Monte Carlo counterfactual regret minimization for
search in imperfect information games. In Proc. Int’l Conf.
on Autonomous Agents and Multi-Agent Systems, pages 27–36,
2015.

[McIntire et al., 2016] Mitchell McIntire, Ernesto Nunes Nunes,
and Maria Gini. Iterative auction for non-overlapping task
scheduling. In Proc. Int’l Conf. on Autonomous Agents and
Multi-Agent Systems, 2016.

[Nam and Shell, 2015] Changjoo Nam and Dylan Shell. Assign-
ment algorithms for modeling resource contention in multirobot
task allocation. IEEE Trans. on Automation Science and Engi-
neering, 12(3):889–900, 2015.

[Nunes and Gini, 2015] Ernesto Nunes and Maria Gini. Multi-
robot auctions for allocation of tasks with temporal constraints.
In Proc. AAAI Conf. on Artificial Intelligence, pages 2110–2116,
2015.

[Özkil et al., 2009] Ali Gürcan Özkil, Zhun Fan, Steen Dawids,
H Aanes, et al. Service robots for hospitals: A case study of
transportation tasks in a hospital. In Proc. IEEE Int’l Conf. on
Automation and Logistics, pages 289–294, 2009.

[Ponda et al., 2010] S. S. Ponda, J. Redding, Han-Lim Choi, J.P.
How, M. Vavrina, and J. Vian. Decentralized planning for com-
plex missions with dynamic communication constraints. In Proc.
American Control Conf., pages 3998–4003, 2010.

[Portugal et al., 2015] David Portugal, Paulo Alvito, Jorge Dias,
George Samaras, Eleni Christodoulou, et al. Socialrobot: An in-
teractive mobile robot for elderly home care. In 2015 IEEE/SICE
Int’l Symposium on System Integration, pages 811–816, 2015.

[Silver et al., 2016] David Silver, Aja Huang, Chris J Maddison,
et al. Mastering the game of go with deep neural networks and
tree search. Nature, 529(7587):484–489, 2016.

[Solomon, 1987] Marius M. Solomon. Algorithms for the vehicle
routing and scheduling problems with time window constraints.
Operations Research, 35(2):254–265, 1987.

[Solomon, 2005] Marius M. Solomon. VRPTW benchmark
problems. http://web.cba.neu.edu/˜msolomon/
problems.htm, 2005.

[Veloso et al., 2012] Manuela Veloso, Joydeep Biswas, Brian
Coltin, Stephanie Rosenthal, Tom Kollar, Cetin Mericli, et al.
Cobots: Collaborative robots servicing multi-floor buildings. In
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pages 5446–5447, 2012.

View publication statsView publication stats

https://www.researchgate.net/publication/312538924

