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Abstract We study how two self-interested agents that play a sequenceof randomly
generated normal form games, each game played once, can achieve cooperation
without being exploited. The agent learns if the opponent iswilling to cooperate by
tracking the attitude of its opponent, which tells how much the opponent values its
own payoff relative to the agent’s payoff. We present experimental results obtained
against different types of non-stationary opponents. The results show that a small
number of games is sufficient to achieve cooperation.

1 Introduction

We study cooperation between two self-interested agents, where an agent may be
hostile but may also be willing to give up part of its expectedpayoff to provide a
benefit to its opponent. Following game theory an agent should select the action
that provides its own highest expected payoff, without regard for the opponent’s
outcome. However, many forms of cooperation are observed inevolution [13], and
in iterated games [2]. Social Value Orientation theory [11]recognizes that people’s
behaviors depend on their personalities, and that people with a prosocial orientation
highly regard the payoffs of others they interact with.

We study agents that play a sequence of non-zero-sum normal form games, each
game played only once by the same two players. Playing against the same opponent
enables the agents to observe each other, but since the game changes each time, it
is harder to detect if the opponent is cooperative. Our setting is similar to stochastic
games [15], but to simplify the learning process the payoff distribution is known to
both players and each game is independent of the previous state and agents actions.

The main contributions of this paper are the use of a regularized particle filter to
learn the willingness of the opponent to cooperate and experimental results against
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different types of non-stationary opponents. We show that an agent can predict the
behavior of its opponent within the limits implied by the rate at which the opponent
changes, and achieve a cooperative outcome without riskingsignificant exploitation.

2 Background on cooperation model

We use the model presented in [6] and extend the work in [7] to non-stationary
opponents. In this model an agent adopts anattitude towards its opponent, which
determines how much weight it attaches to its opponent’s payoff relative to its own
payoff. An attitude is a real number in the range [-1, 1]. An attitude of 1 means that
the player wants to maximize social welfare, 0 that the agentis indifferent to the
opponent’s payoff, and -1 that the agent is spiteful. The attitude of the opponent is
private information and must be learned. This model is functionally equivalent to
Social Value Orientation theory [11] with a different parametrization, using attitude
values instead of an angle representing the ratio of utilityof the agent’s payoff and
the opponent’s payoff.

Let’s call the agentsx andy, and their attitudesAx andAy respectively. To select
its action, each agent computes a modified game. In the modified game agentx has a
new payoff functionP

′x defined asP
′x
i j = Px

i j +Ax
×Py

i j, wherePx
i j is the payoff in the

original game for playerx andPy
i j is the payoff for the opponent when they choose

respectively actionsi and j. Similarly agenty computes a modified payoff function
using its attitudeAy. Each agent selects an action which maximizes its score in the
modified game, but receives its payoff from the original game.

An agent acting according to this model uses three parameters, the agent’satti-
tude, an estimate of the opponent’s attitude, which we callbelief, and amethod of
choosing an action in the modified game. For simplicity we assume that agents play
a strategy which is part of a Nash equilibrium. This is not theonly choice, but it
is convenient since it limits the method to a discrete set. Inthis context, method is
simply the choice of which Nash equilibrium is used.

To indicate its willingness to cooperate, an agent first has to learn the attitude
used by the opponent and then sets its own attitude to be higher than the estimated
attitude of the opponent by areciprocation value. Specifically, a reciprocating agent
x sets its own attitudeAx to be equal toBx, its estimate of the opponent’s attitude,
plus a reciprocation levelR, Ax = Bx +R. If this results in a value below 0 or above
1, the value is set to 0 or 1. The value is not allowed to drop below 0 because
attempting to take revenge on an opponent will reduce the agent’s score. The value
is not allowed to increase beyond 1 because two agents with attitudes higher than
one can result in inefficiencies as each agent attempts to force its opponent to take a
higher share of the payoff.

Figure 1 shows how different reciprocation levels affect the payoffs. We can see
that any non negative reciprocation level produces cooperation and higher payoffs.
The reciprocation level we use in our experiments is.1, since it limits the potential
loss but is sufficient to lead to full cooperation.
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Fig. 1 Payoffs for various choices ofR when two reciprocating agents play each other.

3 Learning

In every round the agent observes the payoff matrix of the game, chooses its own
action, and observes the action chosen by its opponent. Fromthat information, it
needs to learn a probability distribution over the attitude, belief, and method of the
opponent. Due to the complex interactions between those parameters and the game
being played, it is not possible to do this analytically.

Instead we use a particle filter, which represents a probability distribution with a
number of samples drawn from it (see Algorithm 1). The distribution represented by
the particles is a discrete distribution with probability of each particle proportional
to its weight. When an observation is made, each particle’s weight is updated by
multiplying it by the probability assigned to the observation by that particle.

We use a regularized particle filter [12], which resamples from a continuous in-
stead of a discrete distribution. As observations are made,the relative probability of
the particles changes. At the extreme, if one particle has all the weight, the distribu-
tion is effectively represented by a single particle. To avoid this, when the effective
number of particles drops below a threshold, a new set of particles is drawn by
sampling from the existing distribution and adding noise.

Noise is drawn from a Gaussian distribution with 0 mean and standard deviation
equal toN−1/6 times the standard deviation of the particle set, whereN is the number
of particles. This is an improvement over the approach in [6]because it doesn’t
require knowledge of the distribution from which games are drawn and increases
accuracy. Method is a discrete value, so it cannot be perturbed with Gaussian noise.
Instead, with some probability we change it to a random new method. The optimal
probability is found using a technique called Leave-One-Out, where we select the
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Algorithm 1 RegularizedParticleFilter
1: Generate initial setP of N particles
2: for particlep ∈ P do
3: Assign attitudeattp, beliefbelp, and methodmethodp of particlep from prior
4: Assign weightweightp = 1/N
5: end for
6: while presented with datado
7: Observe opponent’s actionM in gameG
8: Compute effective number of particles

Ne f f = 1/[∑p∈P weightp
2]

9: if Ne f f > threshold then
10: for particlep ∈ P do
11: Compute probability of opponent’s actionM in gameG, probp , givenattp, belp, and

methodp

12: Updateweightp=weightp × probp

13: end for
14: else
15: Compute standard deviationStdatt of attp and standard deviationStdbel of belp

16: h = N−1/6

17: Compute perturbation probabilitypp for methodp

18: while accepted particles< total particlesdo
19: Select particlep from P with probability proportional toweightp and create new

particlep′

20: Assign attitude and belief adding Gaussian noise
attp′ = attp +h×N(0,Stdatt); belp′ = belp +h×N(0,Stdbel)

21: With probabilitypp, methodp′ = random method elsemethodp′ = methodp

22: Computeprobp′ = probability of opponent’s actionM in G given attp′ , belp′ , and
methodp′

23: Acceptp′ with probability probp′

24: end while
25: end if
26: end while

probability that gives the highest likelihood of resampling the current distribution
from a distribution created by removing one particle from the current set.

We use 400 particles with attitude and belief drawn from a Gaussian distribution
centered at 0 with the identity matrix as a covariance matrix, and method drawn
from a uniform distribution over the list of methods under consideration. We assign
each particle a weight of .0025 and resample if the effectivenumber of particles
goes below 200.

4 Experimental Results

We now present experimental results obtained against several classes of non-stationary
opponents. Experiments against a stationary opponent and in self-play have been re-
ported in [7]. We measuremodel accuracy, i.e. the Euclidean distance between the
estimate of attitude and belief of the opponent and their true values, andprediction
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accuracy, i.e. the Jensen/Shannon divergence between the prediction and the actual
probability distribution used by the opponent.

We use randomly generated normal form games with 16 actions per player, and
payoffs uniformly distributed between 0 and 1, as in [6]. We have found experimen-
tally that 16 actions provide a good balance between model and prediction accuracy.
Model accuracy increases with the number of actions, since each action is more in-
formative as more alternatives are rejected, but prediction accuracy decreases be-
cause the space of the predicted distribution increases.
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Fig. 2 Model accuracy when learning a randomly drifting target. Results aggregated over 100
sequences of games. Learning targets drawn from a 0 mean Gaussian.

We have explored two types of non-stationary opponents, both separately and
in combination. The first type changes its values for attitude and belief according to
random drift with a Gaussian distribution. This models an agent which gradually ad-
justs its strategy. The second type changes byredrawing values from the prior with a
fixed probability. This models an agent which changes according to some threshold,
or which may be replaced without notice. The third type combinesrandom drift and
redrawing.

Figure 2 and Figure 3 show the effect of various levels of drift on model and
prediction accuracy. Unsurprisingly, as drift increases,accuracy decreases. An odd
effect is that the accuracy for the method increases for a high drift. This occurs
because there are regions in the model space in which method does not affect the
agent’s actions. With a high drift rate, the opportunity to get out of those regions
outweighs the difficulty caused by the rapid change in values. The model error in-
creases as drift increases, but still provides a reasonableestimate of the opponent’s
intentions. With a .5 drift, the prediction accuracy is equivalent to being able to
correctly identify one action out of sixteen 55% of the time.
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Fig. 3 Prediction accuracy when learning a randomly drifting target. Results aggregated over 100
sequences of games. Learning targets drawn from a 0 mean Gaussian.
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Fig. 4 Payoffs of agent against a randomly drifting target.

Figure 4 shows the payoffs, which remain high even with a large drift. Omni-
scient payoff is the expected payoff when the agent knows theopponent’s attitude,
belief, and method. Payoff without learning is the expectedpayoff when the agent
best responds to the prior over the opponent’s attitude, belief, and method. Both
values were found empirically.

Figure 5 shows the effect of randomly redrawing the target from the prior. Ran-
dom resets make learning considerably more difficult. No learning is possible with a
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Fig. 5 Prediction accuracy when learning a randomly resetting target. Results aggregated over
100 sequences of games.

10 20 30 40 50 60 70 80 90 100
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8
Payoff Achieved

Pa
yo

ff

Games Played

 

 

Reset Probability 0
Reset Probability .01
Reset Probability .05
Reset Probability .25
Payoff without Learning
Omniscient Payoff

Fig. 6 Payoffs of agent against a randomly resetting target.

reset probability greater than .05. This is because the agent does not have sufficient
time to learn between resets. For example, with a reset probability of .25, on aver-
age there are 4 games between resets, which is not sufficient to fully learn the target.
Figure 6 shows the corresponding payoffs. As expected, higher reset probabilities
result in lower payoffs.

Figure 7 shows the effect of combining both types of nonstationarity. Unsurpris-
ingly, it is much harder to learn when the parameters are changing slightly in ev-
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Fig. 7 Prediction accuracy when learning a randomly drifting and resetting target. Results aggre-
gated over 50 sequences of games.
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Fig. 8 Payoffs against a randomly drifting and resetting target.

ery game, and occasionally radically. However, it still possible to make reasonable
predictions. This is particularly valuable because it implies the ability to track the
behavior of much more sophisticated agents by modelling their changes in attitude
and belief as random behavior. Figure 8 shows the corresponding payoffs. Despite
the large prediction error, the payoffs of the agents are higher than if no learning had
occurred.
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5 Related Work

Our model of cooperation is based on models developed to explain human coop-
eration in normal form games. Valavanis [16] proposed a modification of a normal
form game to reflect an agent’s preferences over its opponent’s utility. Frohlich [9]
pointed out that this can lead to an ill-defined utility function, and proposed restrict-
ing an agent’s preferences to its opponent’s consumption instead of utility. Fitzger-
ald [8] introduced a utility which is linear in the opponent’s payoff, and pointed out
that positive attitudes will not necessarily reduce the level of contention between
agents. An overview of some of the many different models which have been used to
explain human behavior can be found in [3]

Reciprocation is recognized as an effective way to motivatean opponent to coop-
erate, as demonstrated in the Tit-for-Tat strategy for iterated prisoner’s dilemma [2].
However, Tit-for-Tat does not perform well in noisy environments. One way to han-
dle that [1] is to track deviations from a learned opponent policy, resetting when it
becomes apparent that the learned policy is inaccurate. This problem is similar to the
one we deal with, where the environment is the source of noisein the observations,
instead of nonstationarity of the opponent.

Most research on learning for agents which play normal form games has fo-
cused on repeated play of a single game against a stationary opponent with the goal
of finding either an equilibrium or a Pareto-optimal outcomein self-play. Fuden-
berg [10] provides a good overview of fictitious play, which explores the effects
when agents attempt to learn their opponents actions and then choose the best re-
sponse. Reinforcement learning is a popular technique for dealing with normal form
games. Unlike the techniques presented in this paper, it does not require a complete
description of the game, however it requires repeated interactions within a single
game in order to learn the optimal actions. M-Qube [5] is a reinforcement learning
algorithm which balances best response, cautious learningto bound losses, and op-
timistic learning by looking for strategies with potentially high returns even if risky.
The algorithm provably bounds losses in repeated games but it requires playing
thousands of times.

AWESOME [4] is the first algorithm guaranteed to learn to playoptimally against
stationary opponents and to converge to a Nash equilibrium in self play. It also learns
to play optimally against opponents that eventually becomestationary. To guarantee
convergence in self-play, it assumes all agents play the same Nash equilibrium. By
limiting the history the opponent can use, the algorithm described in [14] learns
against non-stationary opponents by playing thousands of repeated games. We are
interested in methods that learn much more rapidly.

6 Conclusions and Future Work

We have described a regularized particle filter to learn model parameters and we
have evaluated the performance of the learning algorithm against non-stationary
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opponents. The model is effective for achieving cooperation in situations where
cooperative actions are not obvious.

This paper shows results for random non-stationary opponents. It would be inter-
esting and useful to examine the performance of this model when applied to other
types of non-stationary opponents. Another point to investigate is a method to com-
pute appropriate reciprocation levels from the game and from the probability distri-
bution over the model parameters of the opponent, instead ofusing a preset level.

References

1. Au, T.C., Kraus, S., Nau, D.: Symbolic noise detection in the noisy iterated chicken game and
the noisy iterated battle of the sexes. In: Proceeding of theFirst International Conference on
Computational Cultural Dynamics (ICCCD-2007) (2007)

2. Axelrod, R.M.: The evolution of cooperation. Basic Books(1984)
3. Camerer, C.F.: Progress in behavioral game theory. The Journal of Economic Perspectives

11(4), 167–188 (1997)
4. Conitzer, V., Sandholm, T.: AWESOME: A general multiagent learning algorithm that con-

verges in self-play and learns a best response against stationary opponents. Machine Learning
67(1–2), 23–43 (2007)

5. Crandall, J.W., Goodrich, M.A.: Learning to compete, cooperate, and compromise using rein-
forcement learning. Machine Learning (2010)

6. Damer, S., Gini, M.: Achieving cooperation in a minimallyconstrained environment. In: Proc.
of the Nat’l Conf. on Artificial Intelligence, pp. 57–62 (2008)

7. Damer, S., Gini, M.: Extended abstract: Friend or foe? detecting an opponent’s attitude in
normal form games. In: Proc. Int’l Conf. on Autonomous Agents and Multi-Agent Systems
(2011)

8. Fitzgerald, B.D.: Self-interest or altruism. Journal ofConflict Resolution19, 462–479 (1975)
9. Frohlich, N.: Self-Interest or Altruism, What Difference? Journal of Conflict Resolution18(1),

55–73 (1974)
10. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT Press (1998)
11. McClintock, C.G., Allison, S.T.: Social value orientation and helping behavior. Journal of

Applied Social Psychology19(4), 353–362 (1989)
12. Musso, C., Oudjane, N., Legland, F.: Improving regularized particle filters. In: A. Doucet,

N. de Freitas, N. Gordon (eds.) Sequential Monte Carlo Methods in Practice, pp. 247–271.
Springer-Verlag, New York (2001). URL citeseer.ist.psu.edu/musso01improving.html

13. Nowak, M.A.: Five rules for the evolution of cooperation. Science314, 1560–1563 (2006)
14. Powers, R., Shoham, Y., Vu, T.: A general criterion and analgorithmic framework for learning

in multi-agent systems. Machine Learning67(1–2), 45–76 (2007)
15. Shapley, L.S.: Stochastic games. Proceedings of the NAS39, 1095–1100 (1953)
16. Valavanis, S.: The resolution of conflict when utilitiesinteract. The Journal of Conflict Reso-

lution 2(2), 156–169 (1958). URL http://www.jstor.org/stable/172973


