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Abstract We study how two self-interested agents that play a sequemeadomly
generated normal form games, each game played once, cavaddoperation
without being exploited. The agent learns if the opponewtliing to cooperate by
tracking the attitude of its opponent, which tells how muuoé dpponent values its
own payoff relative to the agent’s payoff. We present experital results obtained
against different types of non-stationary opponents. Bselts show that a small
number of games is sufficient to achieve cooperation.

1 Introduction

We study cooperation between two self-interested ageriterevan agent may be
hostile but may also be willing to give up part of its expecpegoff to provide a
benefit to its opponent. Following game theory an agent sheelect the action
that provides its own highest expected payoff, without rédar the opponent’s
outcome. However, many forms of cooperation are observedatution [13], and
in iterated games [2]. Social Value Orientation theory [feldognizes that people’s
behaviors depend on their personalities, and that peofteayirosocial orientation
highly regard the payoffs of others they interact with.

We study agents that play a sequence of non-zero-sum noomabfames, each
game played only once by the same two players. Playing e&gh#ssame opponent
enables the agents to observe each other, but since the ¢g@amges each time, it
is harder to detect if the opponent is cooperative. Ounsggeis similar to stochastic
games [15], but to simplify the learning process the payisfridbution is known to
both players and each game is independent of the previdesastd agents actions.

The main contributions of this paper are the use of a reqddrparticle filter to
learn the willingness of the opponent to cooperate and @xpeetal results against
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different types of non-stationary opponents. We show thagent can predict the
behavior of its opponent within the limits implied by thegat which the opponent
changes, and achieve a cooperative outcome without risigimificant exploitation.

2 Background on cooper ation model

We use the model presented in [6] and extend the work in [7]cole-stationary
opponents. In this model an agent adoptsatiitude towards its opponent, which
determines how much weight it attaches to its opponent'sfbaglative to its own
payoff. An attitude is a real number in the range [-1, 1]. Atitadle of 1 means that
the player wants to maximize social welfare, 0 that the ageitdifferent to the
opponent’s payoff, and -1 that the agent is spiteful. Thieuali of the opponent is
private information and must be learned. This model is fianetlly equivalent to
Social Value Orientation theory [11] with a different parnization, using attitude
values instead of an angle representing the ratio of utlitthe agent’s payoff and
the opponent’s payoff.

Let’s call the agents andy, and their attitude#* andAY respectively. To select
its action, each agent computes a modified game. In the modéieme agenthas a
new payoff functiorP* defined asPi/J-X =R} +Ax PRJ' whereR} is the payoffin the
original game for playex andPﬁJf is the payoff for the opponent when they choose
respectively actionsand j. Similarly agenty computes a modified payoff function
using its attitude’Y. Each agent selects an action which maximizes its scoreein th
modified game, but receives its payoff from the original game

An agent acting according to this model uses three paramelter agent'sitti-
tude, an estimate of the opponent’s attitude, which we bdlilef, and amethod of
choosing an action in the modified game. For simplicity weiassthat agents play
a strategy which is part of a Nash equilibrium. This is not dinéy choice, but it
is convenient since it limits the method to a discrete sethi context, method is
simply the choice of which Nash equilibrium is used.

To indicate its willingness to cooperate, an agent first bdedrn the attitude
used by the opponent and then sets its own attitude to bertigge the estimated
attitude of the opponent byraciprocation value. Specifically, a reciprocating agent
X sets its own attitudé* to be equal td*, its estimate of the opponent’s attitude,
plus a reciprocation levé®, A* = B*+ R. If this results in a value below 0 or above
1, the value is set to O or 1. The value is not allowed to dropwe because
attempting to take revenge on an opponent will reduce thetagecore. The value
is not allowed to increase beyond 1 because two agents Withdas higher than
one can result in inefficiencies as each agent attemptsde fisropponent to take a
higher share of the payoff.

Figure 1 shows how different reciprocation levels affeet playoffs. We can see
that any non negative reciprocation level produces codiparand higher payoffs.
The reciprocation level we use in our experimentdissince it limits the potential
loss but is sufficient to lead to full cooperation.
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Fig. 1 Payoffs for various choices & when two reciprocating agents play each other.

3 Learning

In every round the agent observes the payoff matrix of theggaimooses its own
action, and observes the action chosen by its opponent. Braninformation, it
needs to learn a probability distribution over the attituaidief, and method of the
opponent. Due to the complex interactions between thosenters and the game
being played, it is not possible to do this analytically.

Instead we use a particle filter, which represents a prabagistribution with a
number of samples drawn from it (see Algorithm 1). The disttion represented by
the particles is a discrete distribution with probabilifyeach particle proportional
to its weight. When an observation is made, each particleight is updated by
multiplying it by the probability assigned to the obserwatby that particle.

We use a regularized particle filter [12], which resamplesifia continuous in-
stead of a discrete distribution. As observations are nthdeglative probability of
the particles changes. At the extreme, if one particle Hakaiveight, the distribu-
tion is effectively represented by a single particle. Toidthis, when the effective
number of particles drops below a threshold, a new set ofgbestis drawn by
sampling from the existing distribution and adding noise.

Noise is drawn from a Gaussian distribution with 0 mean aaddsird deviation
equal toN~%/® times the standard deviation of the particle set, wheisethe number
of particles. This is an improvement over the approach inb@}ause it doesn’t
require knowledge of the distribution from which games at@ath and increases
accuracy. Method is a discrete value, so it cannot be pextiwmtith Gaussian noise.
Instead, with some probability we change it to a random nethaotke The optimal
probability is found using a technique called Leave-One;@here we select the
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Algorithm 1 Regul arizedParticleFilter

1: Generate initial sé® of N particles
2: for particlep € Pdo
Assign attitudeattp, beliefbel ,, and methodnethod, of particle p from prior
Assign weightveight, = 1/N
end for
while presented with datdo
Observe opponent’s actidvh in gameG
Compute effective number of particles
Nef = 1/[3 pep Weightp?]
9:  if Ngss > thresholdthen

N R ®

10: for particlep € Pdo

11: Compute probability of opponent’s actithin gameG, proby, givenatt,, bel,, and
method,

12: Updateweight,=weight, x probp

13: end for

14: edse

15: Compute standard deviati@uds; of att, and standard deviatid®dyg of bel

16: h=N"%6

17: Compute perturbation probabilipp for methody,

18: while accepted particles total particlesdo

19: Select particlep from P with probability proportional toveight, and create new
particlep/

20: Assign attitude and belief adding Gaussian noise
atty = attp +hx N(O, Stdg); bely = belp +h x N(0, Stdpe )

21: With probabilitypp, method,y = random method els@ethod,y = method,

22: Computeproby = probability of opponent’s actioM in G given att,, bely, and
methody

23: Acceptp’ with probability probyy

24: end while

25:  endif

26: end while

probability that gives the highest likelihood of resamglime current distribution
from a distribution created by removing one particle from tlurrent set.

We use 400 patrticles with attitude and belief drawn from asSeun distribution
centered at 0 with the identity matrix as a covariance magind method drawn
from a uniform distribution over the list of methods undensialeration. We assign
each particle a weight of .0025 and resample if the effeatmmber of particles
goes below 200.

4 Experimental Results

We now present experimental results obtained againstalelasses of non-stationary
opponents. Experiments against a stationary opponenhaadfiplay have been re-
ported in [7]. We measuneodel accuracy, i.e. the Euclidean distance between the
estimate of attitude and belief of the opponent and theé& Walues, angrediction
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accuracy, i.e. the Jensen/Shannon divergence between the predicttbthe actual
probability distribution used by the opponent.

We use randomly generated normal form games with 16 actienplpyer, and
payoffs uniformly distributed between 0 and 1, as in [6]. VEedrfound experimen-
tally that 16 actions provide a good balance between modigbeadiction accuracy.
Model accuracy increases with the number of actions, siach action is more in-
formative as more alternatives are rejected, but prediaitcuracy decreases be-
cause the space of the predicted distribution increases.
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Fig. 2 Model accuracy when learning a randomly drifting targetsires aggregated over 100
sequences of games. Learning targets drawn from a 0 measi&aus

We have explored two types of non-stationary opponentsy beparately and
in combination. The first type changes its values for atdtadd belief according to
randomdrift with a Gaussian distribution. This models an agent whicdga#ly ad-
justs its strategy. The second type changesetigawing values from the prior with a
fixed probability. This models an agent which changes adogitd some threshold,
or which may be replaced without notice. The third type carebiandomdrift and
redrawing.

Figure 2 and Figure 3 show the effect of various levels oftdnif model and
prediction accuracy. Unsurprisingly, as drift increasesuracy decreases. An odd
effect is that the accuracy for the method increases for h iit. This occurs
because there are regions in the model space in which metrexirbt affect the
agent’s actions. With a high drift rate, the opportunity &t gut of those regions
outweighs the difficulty caused by the rapid change in valliae model error in-
creases as drift increases, but still provides a reasoeakieate of the opponent’s
intentions. With a .5 drift, the prediction accuracy is e@lent to being able to
correctly identify one action out of sixteen 55% of the time.
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Effect of Target Drift on Prediction Accuracy
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.3 Prediction accuracy when learning a randomly drifting éargResults aggregated over 100

sequences of games. Learning targets drawn from a 0 measi&aus
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. 4 Payoffs of agent against a randomly drifting target.

Figure 4 shows the payoffs, which remain high even with adaigft. Omni-
ent payoff is the expected payoff when the agent knowspip@nent’s attitude,

belief, and method. Payoff without learning is the expegayoff when the agent
best responds to the prior over the opponent’s attitudeefbeind method. Both

val

ues were found empirically.
Figure 5 shows the effect of randomly redrawing the targehfthe prior. Ran-

dom resets make learning considerably more difficult. Noliea is possible with a



Cooperation without exploitation between self-interdsigents

Effect of Random Reset on Prediction Accuracy
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Fig. 5 Prediction accuracy when learning a randomly resettingetaiResults aggregated over

100 sequences of games.
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Fig. 6 Payoffs of agent against a randomly resetting target.

100

reset probability greater than .05. This is because thetalpas not have sufficient
time to learn between resets. For example, with a reset pilitgaf .25, on aver-
age there are 4 games between resets, which is not suffigiriytlearn the target.
Figure 6 shows the corresponding payoffs. As expected ghiggset probabilities

result in lower payoffs.

Figure 7 shows the effect of combining both types of nonstaiity. Unsurpris-
ingly, it is much harder to learn when the parameters areghgrslightly in ev-
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Effect of Target Drift and Reset on Prediction Accuracy
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Fig. 7 Prediction accuracy when learning a randomly drifting ssktting target. Results aggre-
gated over 50 sequences of games.
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Fig. 8 Payoffs against a randomly drifting and resetting target.

ery game, and occasionally radically. However, it still fibke to make reasonable
predictions. This is particularly valuable because it ieplthe ability to track the

behavior of much more sophisticated agents by modellinig thenges in attitude

and belief as random behavior. Figure 8 shows the correspgpayoffs. Despite

the large prediction error, the payoffs of the agents arkdrithan if no learning had
occurred.
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5 Related Work

Our model of cooperation is based on models developed t@aexplman coop-
eration in normal form games. Valavanis [16] proposed a fieadion of a normal
form game to reflect an agent’s preferences over its oppngility. Frohlich [9]
pointed out that this can lead to an ill-defined utility funat and proposed restrict-
ing an agent’s preferences to its opponent’s consumptiteaa of utility. Fitzger-
ald [8] introduced a utility which is linear in the opponenayoff, and pointed out
that positive attitudes will not necessarily reduce thelef contention between
agents. An overview of some of the many different models tvhiave been used to
explain human behavior can be found in [3]

Reciprocation is recognized as an effective way to motigatepponent to coop-
erate, as demonstrated in the Tit-for-Tat strategy foatest prisoner’s dilemma [2].
However, Tit-for-Tat does not perform well in noisy envirants. One way to han-
dle that [1] is to track deviations from a learned opponetitgoresetting when it
becomes apparent that the learned policy is inaccurate problem is similar to the
one we deal with, where the environment is the source of rioiges observations,
instead of nonstationarity of the opponent.

Most research on learning for agents which play normal foemes has fo-
cused on repeated play of a single game against a statiopponent with the goal
of finding either an equilibrium or a Pareto-optimal outcomeself-play. Fuden-
berg [10] provides a good overview of fictitious play, whickpkres the effects
when agents attempt to learn their opponents actions amdctieose the best re-
sponse. Reinforcement learning is a popular techniquesfalirty with normal form
games. Unlike the techniques presented in this paper, & Koerequire a complete
description of the game, however it requires repeatedadntems within a single
game in order to learn the optimal actions. M-Qube [5] is aftecement learning
algorithm which balances best response, cautious leataibgund losses, and op-
timistic learning by looking for strategies with potenlyahigh returns even if risky.
The algorithm provably bounds losses in repeated games beguires playing
thousands of times.

AWESOME [4] s the first algorithm guaranteed to learn to mayimally against
stationary opponents and to converge to a Nash equilibricsalf play. It also learns
to play optimally against opponents that eventually becstatonary. To guarantee
convergence in self-play, it assumes all agents play the $éamsh equilibrium. By
limiting the history the opponent can use, the algorithmcdbed in [14] learns
against non-stationary opponents by playing thousandspefated games. We are
interested in methods that learn much more rapidly.

6 Conclusions and Future Work

We have described a regularized particle filter to learn rhpdeameters and we
have evaluated the performance of the learning algorithainaty non-stationary
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opponents. The model is effective for achieving coopenaiiosituations where
cooperative actions are not obvious.

This paper shows results for random non-stationary opgsnkmvould be inter-
esting and useful to examine the performance of this modehvépplied to other
types of non-stationary opponents. Another point to irigaest is a method to com-
pute appropriate reciprocation levels from the game and e probability distri-
bution over the model parameters of the opponent, insteading a preset level.
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