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ABSTRACT
The ability to learn and adapt when playing against an adap-
tive opponent requires the ability to predict the opponent’s
behavior. Capturing any changes in the opponent’s behav-
ior during a sequence of plays is critical to achieve positive
outcomes in such an environment.
We identify two new requirements that we suggest are es-

sential for agents that learn in adaptive environments. These
requirements are dictated by the fact that repeated interac-
tions in practice have to be limited and that the opponent
can rapidly change strategy through the sequence of inter-
actions. We believe that building intelligent agents that can
survive in environments with such requirements will lead to
wider deployment of learning agents.
We propose a novel algorithm that is able to learn and

adapt rapidly to an opponent even when the number of in-
teractions is limited and the opponent is adapting quickly by
changing its strategy. The context we use for the experimen-
tal work is two player normal form games. We compare the
performance of an agent using our algorithm against agents
using existing multiagent learning algorithms.

1. INTRODUCTION
Learning in the presence of opponents is challenging not

only because the opponent’s behavior is unknown, but also
because the opponent can change behavior and adapt to
other players. We assume the opponent is adversarial in na-
ture and that the learning agent does not know what strat-
egy the opponent plays. Modeling the behavior of the oppo-
nent is a key to success. Moreover, capturing any changes in
the opponent’s behavior could help avoid issues of deception
and exploitation by the opponent.
Multiagent learning has emerged as an active area of re-

search in the past decade with algorithms that can function
in adaptive environments as well as theoretical properties
for new algorithms [14]. However, the deployment of such
algorithms to real world application remains limited due to
some unrealistic constraints. In this work we identify two
constraints that have appeared in previous work [9, 16] that
we believe could potentially increase the deployment of mul-
tiagent learning algorithms.
One of the major constraints initially set for agents that
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play against an opponent in a competitive environment is
the assumption that the opponent is either stationary or
will converge to a stationary policy [4]. New criteria that,
to some degree, relax the stationarity assumption have been
proposed in [14]. However, there are still some critical as-
sumptions that we believe are obstacles for the use of learn-
ing agents in real world domains.

The first obstacle relates to the need for extremely long
sequences of interactions between the agents, often in the
order of hundreds of thousands, before the agent learns how
to play against the opponent. The second relates to the fact
that abrupt changes in the opponent’s policy often require
restarting the learning process. The second issue has been
analyzed from different view points in terms of data bias and
computing best-response in games [11].

We proposed an algorithm for fast learning (FAL) against
an opponent that deals with those constraints [9]. In this
paper we briefly describe FAL and introduce a more refined
algorithm, called FAL-Ensemble, that is capable of detecting
changes in the opponent’s behavior faster than the original
FAL. We show experimentally how the algorithm performs
compared to other commonly used multiagent learning al-
gorithms in scenarios that have the following properties:

1. Limited repeated interactions. We consider cases
where agents have a limited number of repeated inter-
actions with an adaptive opponent and do not have a
long term history to build an opponent model. An in-
telligent agent deployed in the world is typically faced
with a task and a limitation in its possible repeated in-
teractions with its opponent. This is often true for the
general case of any opponent but is even more relevant
when the opponent is a human. Repeated interactions
beyond a few hundred games are a luxury in the world
and a rare commodity when an actual human is at the
other end. Current literature typically shows empirical
results in thousands of interactions even for simple nor-
mal form games. While convergence to equilibrium in
the long term is very important theoretically, it doesn’t
address the issue of how to deal with a limited number
of interactions.

2. Rapidly adaptive opponents. An abrupt policy
change requires an agent to be able to learn fast so
it can adapt to the changes in the opponent’s play.
There are numerous reasons for an opponent to change
its policy such as the ability to deceive its opponents.
The opponent could initially adopt a suboptimal strat-
egy to confuse the learning agent and then switch to
another strategy that could lead to more gains.



2. RELATED WORK
Multiagent learning has been an active area of research

in the past decade, with the emergence of many criteria
and theoretical foundations for developing new algorithms.
Within the AI community, the problem has been addressed
mainly from three different approaches, as elaborated in the
extensive survey by Busoniu et al. [6].
The first approach is focused on adapting single agent

reinforcement algorithms for the multiagent setting, as in
Littman [12] and other multiagent reinforcement learning
methods, but incorporating the adversarial nature of the
environment. The second approach combines policy search
methods with knowledge of the adversarial nature, as in the
work of Bowling [4]. The third approach starts initially from
a game theoretic perspective and attempts to produce an
algorithmic framework as in [13, 15] and others.
We describe briefly a few algorithms from the different

approaches. Minimax-Q [12] was one of the early algorithms
with a clear framework for the multiagent learning problem.
Minimax-Q is a modified Q-Learning algorithm that uses
minimax instead of max in the action choosing step. The
performance of Minimax-Q is demonstrated in a two-player
grid-like game of soccer.
Godfather and Bully were introduced in [13] as exam-

ples of leader strategies that can influence the best response
of follower agents in repeated games. Such strategies were
shown to be advantageous in some normal form games. They
represent a class of deterministic strategies that act with full
knowledge of the game structure and the opponent’s previ-
ous actions. Bully plays the minimax strategy that obtains
the security value, which is the minimum value a player can
obtain regardless of what the opponent does. Godfather is
a generalization of Tit-For-Tat [13] that offers the opponent
the opportunity to choose an action with a reward higher
than its security value. If the opponent refuses the offer
Godfather punishes it.
The “Win or Learn Fast”(WOLF) [4] principle can be ap-

plied in any setting where an algorithm is learning with some
learning rate. The idea is that as long as the agent is win-
ning the learning rate is increased by a variable α but when
losing another rate β > α is used. Empirical results running
a policy hill climbing (WOLF-PHC) algorithm show the al-
gorithm will converge to the optimal policy when playing
against a stationary opponent. Note that if the learning rate
used is 1 then WOLF-PHC is equivalent to Q-Learning.
Bowling and Veloso proposed two criteria for multiagent

learning, rationality and convergence. Rationality states
that if the opponents converge to stationary policies then the
learning algorithm will converge to a best response. Con-
vergence states that the learner will converge to a stationary
policy.
Powers and Shoham [15] extended those criteria to include

a larger class of opponents. They parameterize the class of
opponents against which they achieve optimal performance.
This expands the set of allowable opponents from just oppo-
nents with stationary policies to adaptive opponents. How-
ever, to guarantee the algorithmic properties, the length of
history the opponent can use is limited to only the last k

moves. Without this assumption an agent will see the his-
tory only once and will be unable to learn. The class of adap-
tive opponents is restricted to a target class known a priori
and to learn the agent needs to play a very long training
sequence. In the results presented the training sequence is

200K rounds for small matrix games. Their algorithm guar-
antees the following: (1) Targeted Optimality: the agent’s
payoff approaches best response after a phase of exploration
against the target class of opponents. (2) Optimality: the
agent is Pareto efficient in self-play meaning that it cannot
be dominated. (3) Security : the payoff against any other
opponent approaches the security value.

Adapt When Everybody is Stationary, Otherwise Move
to equilibrium (AWESOME) [8] is an algorithm for learning
against stationary opponents by observing the opponent’s
actions. AWESOME precomputes a Nash equilibrium for
the game and at each iteration of the game it checks whether
the opponent is playing the precomputed Nash equilibrium
or is playing a non-stationary strategy. It performs the check
by defining an epoch and comparing the distribution of ac-
tions in the current epoch to the precomputed distribution
of actions for the Nash equilibrium. If it determines that the
opponent is not playing the Nash equilibrium it then com-
pares the distribution of actions in the current epoch to the
previous epoch to determine whether the opponent is play-
ing some other stationary strategy. If it is then AWESOME
plays its best response otherwise it restarts. After each
restart AWESOME forgets what it has learned and begins
by playing the Nash equilibrium and performing the strat-
egy checks. AWESOME learns the best response against a
stationary opponent and in self-play.

ReDValer [2] also works against stationary players and
observes the opponent’s mixed strategy. ReDValer has an
additional feature that guarantees a constant regret. The
algorithm NoRa [3] is a follow up on ReDVaLeR which mod-
ifies existing no-regret algorithms for the multiagent setting.
The proposed no-regret learning algorithm satisfies a modi-
fied version of Targeted Optimality and Security. The algo-
rithm provides guarantees against stationary opponents, op-
ponents converging to a stationary policy, and produces an
average expected payoff not much worse than what best re-
sponse to the observed distribution from the opponent would
produce. A limitation of no-regret strategies is that they do
not capitalize on patterns in the opponent play [15] and do
not account for an opponent whose strategy depends on the
agent’s moves.

Weighted Policy Learner (WPL) [1] is an algorithm that
converges to a Nash equilibrium with limited knowledge (i.e.
no knowledge of the underlying game or observation of the
opponent’s action). The algorithm works in two-player two-
action games with limited knowledge where other multiagent
learning algorithms fail.

Efficient Learning Equilibrium (ELE) [5] handles scenar-
ios with imperfect information games. However, it requires
that the learning algorithm itself be in an equilibrium. It
computes the surplus the agent would have from playing
the Nash equilibrium and shows that deviations from such
learning algorithm are irrational in polynomial time.

Learn or Exploit in Adversary Induced Markov decision
process (LoE-AIM) [7] is an algorithm that has target op-
timality against any opponent with bounded memory. The
memory bound is important because without memory bound
the Markov decision process induced by the adversary joint
histories will have an infinite state space. The algorithm is
distinctive because in theory it makes no assumption about
a target class. However, in the implementation it assumes
it knows if the opponent is stationary or not.



3. FAST ADAPTIVE LEARNER (FAL)
We proposed a novel algorithm for an agent which learns

a strategy to use when playing repeated games against an
adaptive opponent [9]. The key feature of our algorithm
is that it is able to learn in a limited number of repeated
interactions and is able to detect and adapt to potentially
abrupt changes in the opponent’s strategy.
The algorithm, at a high level, has two parts: (1) a Predic-

tive Model which makes a prediction about the opponent’s
next action; (2) a Reasoning Model which chooses a suitable
best response accordingly.
There is a large class of models and methods that can be

used for both parts of the algorithm. However, in order to
meet the requirements of limited repeated interactions and
fast adaptive opponents we need to impose constraints on
the models. These are the main requirements on each part:

1. the Predictive model makes a prediction about the op-
ponent’s next action with the following requirements:

(a) is online in nature;
(b) weighs the recent observation more than the past;
(c) preserves the ordering of the sequence of repeated

interactions;
(d) is sensitive to abrupt changes in data streams.

2. The Reasoning model chooses a suitable best response
with the following requirements:

(a) reasons about the temporal accuracy of the pre-
dictive model above;

(b) reasons if the opponent is cooperative or compet-
itive;

(c) attempts to teach the opponent to cooperate (if
the opponent is teachable);

(d) analyzes its own average reward and whether it
is “losing” or “winning” and incorporates it in its
decision making process.

We instantiate our Fast Adaptive Learner (FAL) algo-
rithm with the models we describe next.

3.1 Predictive Model
For the Predictive Model, we use an algorithm called En-

tropy Learning Pruned Hypothesis Space (ELPH) [10]. ELPH
was developed as an online predictive algorithm for sequences
that met the requirements we specified above for the predic-
tive model. ELPH has the ability to learn to predict from a
sequence of observations rapidly and therefore can adapt to
non-stationary opponents quickly.
At the core of ELPH is the hypothesis space, which is

constantly updated with patterns and predictions using the
recent history of events and predictions. Every time an ob-
servation matches one or more patterns, ELPH computes
the entropy of the matching set and uses the entropy to
prune the rules that have high entropy. The rule with the
lowest entropy is then used to make the prediction. Pruning
facilitates adaptation because it removes unsuccessful rules
from the hypothesis space. Algorithm 1 provides a sketch of
how ELPH works, more details are in [10].

3.2 Reasoning Model
For the Reasoning Model, we adapt a solution which is a

compromise of two strategies: (1) a Godfather like strategy,
called Godfather-Future, which takes as input the predicted

Algorithm 1 ELPH: Entropy Learning Pruned Hypothesis
Space

1: λ: is the threshold for hypothesis pruning.
2: {a1, a2, . . . , ak} is the history of k actions.
3: create all possible subsets of the history {a1, a2, . . . , ak}
4: compute the reliable entropy for each subset
5: prune subsets with entropy greater than λ

6: make a prediction based on the lowest entropy hypoth-
esis.

future opponent action; (2) a model, called Meta-Prediction,
which reasons about the success of the predictive model in
predicting the opponent’s next action.

The Godfather-Future strategy computes a targetable pair
of actions, i.e. any pair of deterministic strategies with the
property that it yields a reward for the players higher than
their security value.

While the original Godfather plays its half of the tar-
getable pair if the opponent played its half in the last in-
teraction, Godfather-Future plays its half of the targetable
pair if the opponent is predicted to play its half in the next
interaction.

The Meta-Prediction computes a weighted average pre-
diction success on a moving horizon. Let’s assume that
Pi ∈ {0, 1} is the prediction of the predictive model in inter-
action i, Pi = 1 if it predicted successfully and 0 otherwise.
The weighted Wt average prediction success at time t is

Wt =
(t)Pt + (t− 1)Pt−1 + . . .+ (t− k)Pt−k

t+ (t− 1) + . . .+ (t− k)

where k is a constant.
Meta-Prediction compares the value of Wt to a parameter

β. If Wt > β then Meta-Prediction will consider the ELPH
prediction reliable, otherwise it replaces the prediction with
the opponent’s last action. If β is set to 1 then the model will
behave similarly to the original Godfather; as β gets closer
to zero, the ELPH predictions are used more regardless of
their accuracy. How to choose an appropriate value for β is
discussed later in the experimental work.

Algorithm 2 is a high-level description of how FAL works.

Algorithm 2 FAL Algorithm

1: Teachmin: is the teaching period
2: β: is the threshold of confidence in the prediction
3: while i ≤ end of game do
4: if Wt ≤ β then
5: Predicted Next Action ← Last Action
6: else
7: Predicted Next Action ← ELPH Predicted Action
8: end if
9: if i ≤ Teachmin then
10: Play half of Targetable Pair
11: else
12: Next Action ← Godfather-Future Predicted Next

Action
13: Compute Average Prediction Success
14: end if
15: Increment i

16: end while



4. ENSEMBLE OF FAST ADAPTIVE LEARN-
ERS (FAL-ENSEMBLE)

The FAL-Ensemble algorithm (shown as Algorithm 3) func-
tions in a way similar to the original FAL algorithm with a
significant difference. It monitors the number of new hy-
potheses generated in its ELPH predictive model. If at time
t the number of new hypotheses reaches a threshold of δ it
creates a new predictive model that starts the observations
from time t going forward. This process is repeated, every
time the number of new hypotheses is above the threshold,
a new model is added. When making a prediction FAL-
Ensemble takes a majority vote among the ensemble of pre-
dictive models weighted by their past accuracy.

Algorithm 3 FAL-Ensemble Algorithm

1: δ: is the threshold for starting a new model.
2: M1, . . .Mj : is the set of ELPH models.
3: Mk = {ELPH(0)}
4: while i ≤ end of game do
5: if i ≤ Teachmin then
6: Next Action ← Play half of Targetable Pair.
7: else
8: Next Action ← Weighted Majority Vote from Mk

9: end if
10: Added Hypotheses← Sum of added hypotheses inMk

11: if Added Hypotheses ≥ δ then
12: Mk ← Mk

⋃
ELPH(i)

13: end if
14: Add New Observation to all models in Mk

15: Increment i

16:
17: end while

5. EXPERIMENTAL RESULTS
We compared experimentally the performance of different

learning algorithms, using two-player repeated normal form
games as the setting for our experiments. An example of a
game matrix is in Table 1, where the row player’s payoff is
given first followed by the column player’s payoff. At each
interaction the players play a simultaneous move. After each
interaction, each player receives a payoff which depends on
the joint action chosen for the interaction.
Each of the normal form games we have chosen was played

for 100 iterations. We repeated each of the 100 iterations 100
times to compute average outcomes and reduce the noise.
We choose to limit the number of repeated games to 100
to support the core idea of having limited repeated interac-
tions. We also tried the different algorithms against an ad-
versary that at some point switches strategy. This enabled
us to explore how the agents respond to situations where the
opponent does not converge to a stationary policy.
We have chosen two set of algorithms for our experimen-

tal work. Bully and Godfather are representatives of de-
terministic methods. Q-Learning, WOLF-PHC, and AWE-
SOME represent learning methods. Each one of the learning
methods also represents one of the approaches of multiagent
learning discussed earlier in section 2 and in [6]. All meth-
ods assume knowledge of the underlying game and observe
the opponent’s actions.
Q-Learning is a classical learning method, WOLF-PHC

is one the early algorithms that combine policy search and

opponent modeling, AWESOME learns best response. The
specific algorithms and strategies we use are:

• Q-Learning is a general purpose semi-supervised learn-
ing algorithm that we adapted for the repeated game
setting. Q-Learning traditionally assumes a station-
ary, fully observable environment. In this framework
we break these assumption [13].
• WOLF-PHC operates on a different assumption from

Q-Learning with the specific notion of deciding the
best action depending on whether the agent is losing
and winning. WOLF-PHC updates the belief on the
current actions with a steady rate as long as it leads
to wins. When the action leads to losses, WOLF-PHC
changes that belief on the actions with a higher rate
in order to find another suitable action. WOLF-PHC
converges to the optimal policy under the assumption
that the opponent is a learner that will converge to a
stationary policy.
• FAL and FAL-Ensemble are our proposed algorithms.
• Godfather is a general class of Tit-For-Tat strategies

with the basic idea of giving the opponent the chance
to “cooperate” by playing a targetable pair that gains
the opponent more than the security value. However
if the opponent fails to play the targetable pair, God-
father will punish it by playing the minimax strategy.
• Bully is a deterministic policy that chooses the action

the maximizes the player’s payoff assuming the oppo-
nent will best respond. A more detailed description of
Bully is in [13] .
• AWESOME is an adaptive algorithm that learns to

play against opponents that (eventually) play a sta-
tionary strategy. It does this by observing its oppo-
nent’s actions and either plays a precomputed Nash
equilibrium strategy or a best response strategy.

The experimental work is divided into two groups of ex-
periments. In the first group we test different agents, each
one using one of the algorithms in the set listed above. The
agents play in pairwise runs against each other in each game.
The second group involves a subset of agents this time play-
ing against a specific agent that switches strategy. The goal
of this second group of experiments is to understand how fast
different types of agents adapt to an opponent that switches
its strategy during the game. For FAL, the β is set at 0.75
unless otherwise stated.

Experiment 1
The tables of results presented in this experiment represent
the average reward at the end of 100 iterations for each
game. Each entry in the table contains two values. The first
represents the reward obtained by the row player and the
second represents the reward obtained by the column player
when playing against each other. We only show the results of
FAL because FAL-Ensemble and FAL were identical due to
the fact that in FAL-Ensemble the added hypotheses didn’t
reach the threshold to create an Ensemble.

Chicken
In the game of Chicken, shown in Table 1, in the most coop-
erative solution each player can get a payoff of 3.0. However,
at each interaction the opponent has an incentive to exploit
to receive a reward of 3.5. If both agents deviate they both
get a lower outcome of 1.0.



3.0,3.0 1.5,3.5
3.5,1.5 1.0,1.0

Table 1: Chicken game matrix.

Q1 WF FAL GF Bully AW
Q1 2.4,2.4 2.4,2.4 1.8,2.6 2.5,2.5 1.3,2.5 2.6,2.5
WF 2.4,2.4 1.8,2.6 2.3,2.3 1.3,2.5 2.7,2.4
FAL 3.0,3.0 3.0,3.0 1.0,1.0 2.9,2.9
GF 3.0,3.0 1.0,1.0 3.5,1.5
Bully 1.0,1.0 3.5,1.5
AW 2.5,2.5

Table 2: Average pairwise payoffs after 100 repeated
games of Chicken.

Analysis. The reward obtained by Bully is 1.0, which is the
lowest reward possible. This happens because Bully assumes
the opponent will best respond and so it will never try to
cooperate. It is evident that in this game cooperation would
yield a higher payoff of 3.0 for both players. Agents that are
willing to cooperate, like FAL and Godfather, or are willing
to understand when there is potential of higher reward, like
Q-learning and WOLF-PHC, end up choosing a set of ac-
tions that lead to higher reward, as shown in Table 2. How-
ever, an agent like AWESOME doesn’t attempt to cooperate
and plays the Nash equilibrium strategy to start and it con-
tinues to use it against Bully, Godfather, and in self-player.
Against WOLF-PHC and Q-Learning, AWESOME switches
to a best response strategy when these agents are exploring
or cooperating (in the case of FAL). Due to this, AWE-
SOME receives a lower reward then when playing against
other agents.
It is important to notice the speed at which the agents

were able to get the higher cooperative outcome of 3.0. Let’s
look at the row of FAL. FAL learns and signals to the op-
ponent that it is willing to cooperate. Q-Learning, while
better than Bully, is slow at converging to cooperation and
gets only a payoff of 1.8 after 100 games.
Unfortunately, WOLF-PHC and Q-Learning are learners

but are relatively slow in learning the cooperative nature
of the opponent. The slowness in their learning is evident
when compared to the speed of FAL in self-play or even the
original Godfather, which is a stationary strategy. Playing
against Bully is the most clear example of how the lack of
fast learning implies higher reward for the opponent. Bully
is a deterministic policy which does not cooperate, but Q-
Learning and WOLF-PHC are unable to realize this fast
enough and continue to explore in the hope of finding a bet-
ter outcome. FAL with its fast prediction of the opponent’s
actions is able to realize this and to revert back to the secu-
rity value.

Prisoner’s Dilemma
In Prisoner’s Dilemma, shown in Table 3, the dominant
strategy is to defect and receive a reward of 1.0. Coop-
erating would lead to a higher outcome of 3.0 but with the
added risk of getting 0 if the opponent decided to betray.
Analysis. The issue of speed of learning remains a chal-
lenge in this game but there are some interesting differences
between the nature of the games Chicken and Prisoner’s
Dilemma that lead to WOLF-PHC and Q-Learning to learn

3.0,3.0 0.0,5.0
5.0,0.0 1.0,1.0

Table 3: Prisoner’s Dilemma game matrix.

Q1 WF FAL GF Bully AW
Q1 1.7,1.7 1.7,1.7 2.2,2.2 2.4,2.4 0.9,1.4 1.8,1.1
WF 1.9,1.9 2.2,2.2 2.4,2.4 0.9,1.4 2.0,1.1
FAL 3.0,3.0 3.0,3.0 1.0,1.0 1.9,2.0
GF 3.0,3.0 1.0,1.0 1.0,1.0
Bully 1.0,1.0 1.0,1.0
AW 1.0,1.0

Table 4: Average pairwise payoffs after 100 repeated
games of Prisoner’s Dilemma.

β WOLF-PHC FAL

1 2.4 2.4
0.75 2.2 2.2
0.55 2.1 2.1
0.35 2.0 2.0

Table 5: The effect of different β choices for FAL on
WOLF-PHC vs FAL in Prisoner’s Dilemma.

relatively faster than Bully. In Chicken the difference was
between getting a reward of 1.0 versus 1.5 while in Prisoner
Dilemma the difference is either 1 or 0 against Bully.

In a side sub-experiment reported in Table 5 we investi-
gated the effect of using different values of β on the perfor-
mance of our algorithm. This sub-experiment was conducted
in Prisoner’s Dilemma because it was the game with most
significant changes in rewards.

We assume that the benefit occurs because FAL, by trust-
ing its prediction, gives a longer grace period before it pun-
ishes the opponent which gives more time to the opponent
to understand that FAL is willing to cooperate. However,
this result depends on the exploration policy. The grace pe-
riod might not be sufficient for WOLF-PHC to reach the
cooperation stage.

Q-Learning against a simple strategy such as Bully fails to
learn that Bully is stationary quickly enough and continues
its attempt to explore. This leads to more than 10% loss in
reward than the security value. This problem is not apparent
in others agents that are adapting faster.

Note that it is evident that Q-Learning in its basic setting
has no concept of winning and losing and it is simply learning
parameters based on the collected reward. On the other
hand, WOLF-PHC has a clear concept of winning and losing
and that affects its parameter learning. WOLF-PHC is able
to learn at a faster rate than Q-Learning and obtains an
average reward of 1.9 in self-play while Q-Learning gets 1.7
in self-play.

AWESOME is able to receive the Nash equilibrium reward
against Bully, Godfather, and in self-play and is able to re-
ceive a higher reward when playing against FAL, WOLF-
PHC, and Q-Learning. It is able to receive a higher reward
against these agents because it can take advantage of the
initial exploration period of Q-Learning and WOLF-PHC
to earn the highest possible reward of 5.0 until Q-Learning
and WOLF-PHC eventually converge. Against FAL it is
able to receive an even higher reward because FAL initially



3.0,3.0 2.0,0.0
0.0,2.0 1.0,1.0

Table 6: Deadlock game matrix.

Q1 WF FAL GF Bully AW
Q1 2.7,2.7 2.7,2.7 2.8,2.8 3.0,3.0 3.0,3.0 2.1,2.1
WF 2.7,2.7 2.8,2.8 3.0,3.0 3.0,3.0 1.8,1.9
FAL 3.0,3.0 3.0,3.0 3.0,3.0 3.0,3.0
GF 3.0,3.0 3.0,3.0 3.0,3.0
Bully 3.0,3.0 3.0,3.0
AW 3.0,3.0

Table 7: Average pairwise payoffs after 100 repeated
games of Deadlock.

cooperates and AWESOME is able to earn a reward of 5.0
many times until FAL learns it is doing this and switches to
play the Nash equilibrium strategy.

Deadlock
In the game Deadlock, the choice of action is obvious, which
is to choose action 1, i.e. cooperating. This leads to a reward
of 3.0 for both sides.
Analysis. Deadlock is a simple game where the choices are
clear. Most agents choose the cooperative action. The ex-
ception is Q-Learning and WOLF-PHC which get rewards
slightly below 3.0 due to their exploration, especially when
playing against other learning agents. The question remains
what is the value of exploration in this game. This is a
game where any exploration could be viewed as an irrational
choice, because there is no incentive to get a higher reward
from the one given. Godfather and Bully are determinis-
tic strategies so they do not change their choice. FAL and
AWESOME converge to a cooperative state and do not ex-
plore a suboptimal solution while in self-play. WOLF-PHC
and Q-Learning continue to explore in self-play and against
other learners.

Battle of the Sexes
In the game of Battle of the Sexes both players want to
coordinate but they have conflicting interests. There are two
pure Nash equilibria where both players choose the same
action and one mixed Nash equilibria where both players
play their preferred action more often than the opponents
preferred action.

3.0,2.0 0.0,0.0
0.0,0.0 2.0,3.0

Table 8: Battle of the Sexes game matrix.

Q1 WF FAL GF Bully AW
Q1 2.7,2.1 2.6,2.2 2.9,1.9 3.0,2.0 3.0,2.0 1.5,1.1
WF 2.7,2.0 2.9,2.0 2.9,2.1 2.9,2.0 1.5,1.2
FAL 2.0,3.0 2.0,3.0 2.0,3.0 2.0,3.0
GF 2.0,3.0 2.0,3.0 2.0,3.0
Bully 2.0,3.0 2.0,3.0
AW 2.0,3.0

Table 9: Average pairwise payoffs after 100 repeated
games of Battle of the Sexes.

Analysis. In Battle of the Sexes, Godfather and Bully sim-
ply play one of the cooperative actions. FAL starts by play-
ing one of the cooperative actions and learns what the op-
ponent strategy is. However, it does not switch strategies
because it will not gain any reward by doing so. In fact, if
FAL were to switch strategies it would force both itself and
its opponent to lose out on all potential reward. WOLF-
PHC and Q-Learning receive slightly below the equilibrium
reward due to the exploration period. AWESOME best re-
sponds to WOLF-PHC and Q-Learning during this time and
is able to obtain more reward than it would if it were to not
switch from the Nash equilibrium strategy. However, the av-
erage reward AWESOME receives is low because it is slow
to recognize that its opponent has switched strategies and
AWESOME receives a reward of 0.0 for a few iterations.

Collaboration
In the Collaboration game both players want to coordinate
and choose the same action and don’t have a preference for
which action they both agree on. There are two pure Nash
equilibria where both players choose the same action.

3.0,3.0 2.0,2.0
0.0,0.0 3.0,3.0

Table 10: Collaboration game matrix.

Q1 WF FAL GF Bully AW
Q1 2.8,2.8 2.7,2.7 2.9,2.9 2.9,2.9 2.9,2.9 2.5,2.5
WF 2.7,2.7 2.9,2.9 2.9,2.9 3.0,3.0 2.4,2.4
FAL 3.0,3.0 3.0,3.0 3.0,3.0 3.0,3.0
GF 3.0,3.0 3.0,3.0 3.0,3.0
Bully 3.0,3.0 3.0,3.0
AW 3.0,3.0

Table 11: Average pairwise payoffs after 100 re-
peated games of Collaboration.

Analysis. In Collaboration, Godfather, Bully, and FAL
play one of the cooperative actions and FAL learns that it
should not change actions because it will receive less reward
even though it knows what action its opponent will play.
WOLF-PHC and Q-Learning again receive slightly below
the equilibrium reward, similar to Battle of the Sexes, due to
the exploration period. AWESOME best responds but the
average reward is higher for this game because AWESOME
does not receive a reward of 0.0 as often since it now also
may receive a reward of 2.0.

Coordination
In the Coordination game both players want to coordinate
and choose the same action and they both prefer action 1
over action 2. There are two pure Nash equilibria where both
players choose the same action however action 1 dominates
the other.
Analysis. In Coordination, the results are similar to Col-
laboration however the cases when Q-Learning plays against
AWESOME and when WOLF-PHC plays against AWE-
SOME are interesting. Both players receive far lower than
the equilibrium reward. This is because Q-Learning and
WOLF spend time exploring and as such sometimes play
action 2. This will initially give both players a reward of
1.0. AWESOME eventually determines that its opponent is



3.0,3.0 0.0,0.0
1.0,1.0 2.0,2.0

Table 12: Coordination game matrix.

Q1 WF FAL GF Bully AW
Q1 2.3,2.3 2.2,2.2 2.4,2.4 2.7,2.7 2.3,2.3 1.3,1.3
WF 2.2,2.2 2.6,2.6 2.7,2.7 2.4,2.4 1.3,1.3
FAL 3.0,3.0 3.0,3.0 3.0,3.0 3.0,3.0
GF 3.0,3.0 3.0,3.0 3.0,3.0
Bully 3.0,3.0 3.0,3.0
AW 3.0,3.0

Table 13: Average pairwise payoffs after 100 re-
peated games of Coordination.

playing a stationary strategy and plays its best response to
this strategy which is to play action 2 instead of its initial
Nash equilibrium action 1. This forces both players to re-
ceive a reward of 2 and the joint strategy of both players
playing action 2 is a Nash equilibrium so both players never
deviate from this strategy from then on.

5.1 Experiment 2: Switching Strategy
In Experiment 1 we have shown that FAL is able to learn

faster, adapt and achieve better results than Q-Learning,
WOLF-PHC, and Bully. FAL was also able to receive bet-
ter results in self-play in comparison to AWESOME in self-
play. However, the performance of Godfather, and FAL are
almost identical in many scenarios. Moreover, we would like
to further show the power of FAL-Ensemble over the origi-
nal FAL. In order to show the importance of fast adaptive
learning we present what happens against an opponent that
changes its strategy after some period of time. Detecting
the change and adapting to it is the real advantage that we
are aiming at achieving in this work.
We introduce a new agent we call Switch agent. The agent

starts by following the classical Godfather strategy until it
reaches stage 40 of the game. After that, the agent follows a
deterministic repeated sequence of actions {a1, a2, a1, a1, a2, a1}
indefinitely. This agent is intended to be deterministic and
predictable with a bounded memory. The choice of mak-
ing the agent switch to a deterministic policy was made to
simplify the analysis. Despite its simplicity, learning to play
against this opponent is challenging.
In this experiment, we show the results of the Switch agent

playing against Godfather, WOLF-PHC, FAL, and FAL-
Ensemble in the game of Chicken. The rest of the games
show similar trends as Chicken so the analysis would be
similar. WOLF-PHC and Godfather were chosen to repre-
sent the learner agents because of their strong performance
in Experiment 1. Figure 1 shows the average reward over
time for the 4 agents against the Switch agent.
Analysis of Rewards Figure 1 shows the graph for the
Switch agent against the four agents Godfather, WOLF-
PHC, FAL, and FAL-Ensemble. The figure reports the dif-
ference Delta in average reward between the agents and the
Switch agent. Positive Delta rewards imply Switch is getting
more reward and 0 is a tie. FAL and Godfather were able to
detect that the opponent is cooperative and converged to a
stable reward. WOLF-PHC attempted to learn the cooper-
ative nature but started by fluctuating and did not actually
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Figure 1: Average delta reward for the 4 Agents
vs. Switch agent. Positive values imply the Switch
agent is getting more reward, 0 are ties, and the
positive values are the others.

converge to constant reward as FAL and Godfather.
At stage 40 of the game, the Switch agent switches to its

deterministic strategy. At that stage, the behaviors of the
four agents vary. FAL goes on a period of attempting to pre-
dict the opponent’s action. In this period FAL’s prediction
accuracy fluctuates which leads into a phase where FAL will
use a combination of its prediction or the opponent’s pre-
vious action to decide its own next action. This continues
until FAL succeeds in predicting the Switch agent action se-
quence which will occur at around stage 60. From that point
forward, FAL has a 100% accurate prediction of Switch that
will lead to stable Delta rewards. FAL-Ensemble starts a
new Predictive model at time 40 and is able to capture the
new behaviors without any biases in less than 8 interactions
in comparison to 20 in FAL.
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Figure 2: FAL success at predicting the agent’s next
action.

Figure 2 shows the success of FAL in predicting the ac-
tion of the Switch agent. The graph shows how FAL after
the first 7 interactions is able to determine the next action
of its opponent with 100% accuracy. When it reaches stage
40, the prediction success dropped and continued to fluctu-
ate around 40% and 70% but in around 20 interactions it
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Figure 3: Godfather success at predicting the
agent’s next action (Godfather prediction is simply
the opponent’s last action).

went up to almost 100%. This is very significant as it shows
that our predictive model is capable of adapting rapidly to
changes in the opponents behavior.
Stage 40 and beyond shows a shortcoming of the Godfa-

ther strategy. Godfather continues to miscalculate the next
action and ends up either getting 1.5 or 3.0, which is driven
by the actions of the Switch agent. This issue rises because
Godfather makes its next action based on the last action of
the opponent while in order to fully capture the opponent
a model needs to look at least three past actions as a se-
quence. Figure 3 shows by using the opponents last action
as prediction for its next action Godfather was able to pre-
dict the first 40 stages. However, after stage 40 Godfather’s
prediction is almost random. This also explains our require-
ment of a predictive model that is able to find and exploit
any information hidden in the ordered sequence of actions.
WOLF-PHC struggles in a fashion similar to Godfather

after stage 40, by alternating between rewards of 1.5 and
above 3.0. The issue with WOLF-PHC that even if WOLF-
PHC is able to quickly learn the probability of each action, it
will not be a clear sequence predicted as provided by FAL.
This will cause WOLF-PHC to have sub-optimal best re-
sponse to the Switch agent in the limited interactions as
shown in the delta rewards. The comparison of these results
is important as it shows the true power of FAL in compari-
son to both WOLF-PHC and Godfather. Moreover, it shows
the power of FAL- Ensemble by eliminating bias and add a
new predictive model to the Ensemble.

6. CONCLUSIONS AND FUTURE WORK
Our goal in this work was to motivate and introduce the

need for new requirements on multiagent learning algorithms.
We want to be able to build agents that learn even when
interacting with an opponent for a limited number of re-
peated interactions as well as that have the capability to
adapt to sudden and frequent changes in the opponent’s
strategy regardless of whether the opponent is truly adap-
tive or even stationary in the limit. We proposed a new algo-
rithm, FAL, and its variation, FAL-Ensemble, which creates
a new predictor whenever the opponent strategy switches
and which makes predictions by a majority vote among its
predictive models. We showed experimentally that FAL and
FAL-Ensemble outperform other algorithms in this context.
Future work will be directed at examining theoretical prop-
erties of FAL, extending it to work with n-player games,
making predictions for more than the next opponent’s ac-
tion, and applying it to a larger class of games.
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