
Journal o f Intelligent Manufacturing (1992) 3, 59-73

Error management for robot programming

R I C H A R D S M I T H * and M A R I A G I N I

Department of Computer Seience, 4-192 EE/CSei Building, University of Minnesota, 200
Union St SE, Minneapolis, MN55455, USA

Received August 1990 and accepted March 1991

Reliability is a serious problem in computer controlled robot systems. Although robots serve
successfully in relatively simple applications such as painting and spot welding, their potential
in areas such as automated assembly is hampered by the complexity of programming. A
program for assembling parts may be logically correct, execute correctly on a simulator, and
even execute correctly on a robot most of the time, yet still fail unexpectedly in the face of real
world uncertainties. Recovery from such errors is far more complicated than recovery from
simple controller errors, since even expected errors can manifest themselves in unexpected
ways. In this paper we present a novel approach for improving robot reliability. Instead of
anticipating errors, we use knowledge-based programming techniques so that the robot can
autonomously exploit knowledge about its task and environment to detect and recover from
failures. We describe a system that we have designed and constructed in our robotics
laboratory.

Keywords: Robot programming, error detection, error recovery, reliability

1. Introduction

We want to make robots more dependable so that they can
be trusted when left unattended. This paper describes the
design and development of a robot system that continues to
operate satisfactorily even after it encounters a serious
error. Failures in achieving a task are the result of errors,
but not every error produces an immediately detectable
failure. Errors can occur at many levels, at the mechanical
level (a joint becomes locked), at the hardware level (a
sensor does not function properly so that the robot is driven
to exceed its joint limits), at the controller level, in the
computer controlling the robot (either at the hardware or
the software level), and in the environment. We are mostly
interested in errors in the environment because they tend
to be more unpredictable and difficult to characterize with
mathematical models. We are interested in errors in the
component parts used for the assembly, and in errors in the
work cell (loaders, feeders, conveyor belts, tools). Our
goal is to detect automatically and correct problems caused

*Present address: Secure Computing Technology Corporation, Arden
Hills, MN, USA.

0956-5515 �9 1992 Chapman & Hall

by collisions, jammed parts, gripper slip, misorientation,
alignment errors, and missing parts.

Robot systems that can recover from errors without
human intervention do not exist today because robot
control programs cannot handle the vast range of possible
error conditions. Error-handling routines are usually pro-
duced through trial and error with specific robots, tasks,
and work cell environments. It takes uncommon skill and
experience to develop a reliable robot program, and the
resulting program will then only apply to the specific robot
task at hand. Minor changes in the robot, task, or
environment can lead to major changes in the robot 's
program (Lozano-Perez, 1983). It is commonly believed
among robotics engineers that less than 20% of the code
produced is directly responsible for describing the robot 's
actual task. The rest of the code checks for errors and tries
to recognize and prevent disasters (Fielding et al., 1987).

A difficult problem in automatic error detection and
recovery is detecting that something significant has oc-
curred. Many events are usually reported to the robot
controller but not all of them are significant. The same
event may be important in some circumstances and almost
irrelevant in others. Deciding when something is important
is the first step in the error detection process. The second
step involves detecting the cause of the error and its effect

60 Smi th and Gin i

on the robot environment. Errors might appear a long time
after what caused them happened making it more difficult
to detect and correct them. Some errors do not affect the
execution of the task so they could be left unrecovered. To
recover from an error, a system needs to identify the
differences between what has happened and what is
wanted. The system must also be able to plan how to
correct these differences itself.

By making autonomous error recovery an attribute of
the robot programming and control system, we can im-
prove the reliability of robots and at the same time simplify
the programming task. The manufacturing engineer can
concentrate on describing the task at hand without having
to consider all likely errors and how to correct them. The
task description only needs to describe the assembly task
and does not need to specify error detection or recovery
procedures. This saves engineering time as well as robot
down-time (Smith and Gini, 1986b).

The system described here works with a fully functional
IBM 7565 industrial manipulator. The system uses the task
specification to generate a more detailed program describ-
ing the sequence of manipulator operations and the sensor
activities necessary to monitor the task's successful opera-
tion. When an error is detected, the system automatically
analyses the error and produces a sequence of operations to
recover from the error. More details can be found in Smith
(1987).

2. Related work

Reliability is a serious problem in robot programming and a
difficult one as well. Parts slip, fall, jam, and get misplaced;
surfaces become wet or slippery, and operations fail. The
range of potential problems is so vast that there is no
standard engineering procedure that addresses all of them
(Gini, 1990).

Many ideas used to improve the reliability of robots have
been taken from the fields of software reliability and safety
(Green and Bourne, 1972; Randell et al., 1978 and
Leveson, 1986). Unfortunately, techniques for software
reliability deal with states of information, not states of the
world and are primarily directed towards restoring internal
data states, not physical conditions. Robots operate in the
real world and errors of interest are those manifested in the
real world, not within the robot's software (Harmon,
1988). A common approach to failure analysis and diagno-
sis is to apply techniques based on fault trees, event trees,
or cause-consequence diagrams. It has been proposed to
combine fault-tree-based failure analysis with rule-
oriented reasoning (Williams et al., 1986 and Narayanan
and Viswanadham, 1987), to use fuzzy logic (Tsukanoto
and Terano, 1977), or to use Petri nets (Zhou and
DiCesare, 1989).

Our approach is very different from the customary

techniques of robot programmers. The typical approach is
to use the robot's sensors to check for errors and to perform
a pre-programmed recovery procedure in response (Cox
and Gehani, 1989). As noted earlier, this leads to robot
programs that consist predominantly of error detection and
recovery code. In large applications the robot might not
even be able to fit all possible error-handling codes into its
control memory. Another serious problem is that error
interpretation is inseparably tied to sensor readings. Spe-
cific sensor readings do not always refer to individual and
unique errors.

Since it is difficult to consider all possible errors, many of
which might never happen, a method proposed in artificial
intelligence is to generate, from the task level description, a
program that is guaranteed to be correctly executed even in
the presence of uncertainties in the environment. This
requires models of robot kinematics and dynamics, and
models of physical properties of objects such as friction.
This approach, so far, has been applied only to fine motions
for specific tasks such as insertion operations (Lozano-
Perez et al., 1984). Modeling uncertainties and taking into
account errors in the model (Donald, 1990) helps but the
real world is so complex that we do not really know how to
model it. It has been shown (Fielding et al., 1988) that the
problem of generating a complete set of automatic error
recovery routines is undecidable.

Much previous research in artificial intelligence has
centered on detection and correction of errors in simulated
robot systems (Wilkins, 1985). Most AI research makes a
number of assumptions: knowledge about events is correct,
each action produces precisely defined post-conditions,
there are no uncertain data, correct predicates are gener-
ated from sensor data every time they are needed, and
sufficient knowledge is provided to take into account all the
possible states of the environment. These assumptions are
too strict to be realistic. A few exceptions exist. The most
notable is STRIPS (Fikes and Nilsson, 1971) the system
used to control the mobile robot, Shakey. More recently,
work has been done on monitoring the execution of
programs with real robots for manufacturing applications
(Lee et al., 1983 and Nof et al., 1987). There is a growing
interest in modeling sensors (Henderson and Shilcrat,
1984) and planning for their use (Doyle et al., 1986) that
will benefit work on error detection and recovery.

Our early work (Gini and Gini, 1983) was inspired by
early research at Jet Propulsion Laboratory (JPL). Srinivas
(1977) developed a formlization of techniques to explain
robot failures and to generate expectations of the effects of
failures. The first of these techniques, failure reason
analysis, used knowledge about why robot actions fail to
generate a fault tree identifying possible reasons for a
particular failure. The second technique, multiple outcome
analysis, would generate a set of possible outcomes from a
given failure along with an indication of sensor information
that would disambiguate among the possibilities. Unfortu-

Error management f o r robot p rogramming 61

nately, Srinivas' system was only partially implemented on
the JPL Robot.

The group at the National Bureau of Standards (Simpson
et al., 1983) has developed a hierarchical control
architecture for a small-batch metal machining shop. The
architecture has recently been adapted to control the
NASA robot for the space station (Lumia et al., 1989). The
system is divided into three hierarchies; task decomposi-
tion, world model, and sensory processing. At each level,
goals are decomposed into simpler goals for the next lower
level. The sensory system updates the world model as
rapidly as possible to keep the model consistent with the
physical world.

The group at the University of Toulouse (Lopez-Mella-
do and Alami, 1986) has designed and implemented a
system, NNS, to control a manufacturing cell that includes
planning and some error recovery. They update the work
cell model after each failure, which is computationally
expensive except for trivial cells. The system concentrates
on using assembly knowledge during the assembly task
itself. Tasks are specified as a sequence of changes in the
state of the work cell. The structure of the system makes
the intentions of the robot's actions clear during task
execution, making it possible to detect automatically and
recover from errors. NNS does not address the problem of
task specification; tasks are apparently coded directly in
terms of work cell state descriptions.

The group of Lee and Hardy (Lee et al., 1983 and Hardy
et al., 1989) at the University College of Wales has studied
the problem of error recovery in conjunction with indust-
rial robot tasks. They are working on an experimental
system, called AFFIRM, for representing knowledge ab-
out the robot's task, work cell, and sensors. Tasks are
encoded using the frame-based knowledge structure
shared by the rest of the system. It appears that the work on
AFFIRM concentrates on error diagnosis more than on
error recovery.

Trevelyan and his group (Trevelyan et al., 1988) has
done similar work in sensor monitoring involving a radical-
ly different domain. In their problem domain, sheep
shearing, they have succeeded in recognizing a number of
specific failures through specific sensor readings. Each
failure triggers a specific recovery procedure. The system
does not attempt to represent knowledge about errors and
recoveries in a flexible fashion or to support inferencing.
While the technique of directly coupling sensor readings to
error handling greatly simplifies the system, it also restricts
the system to handling errors that can be explicitly recog-
nized by sensors.

Lyons (Lyons et al., 1989) proposes a representation for
robot task plans that allows robots to react to suit the
current environment. He has developed a formal model of
distributed computations that represents reactive plans as
networks of distributed processes and that allows to
represent the environment in which the robot acts. This

representation can be used to monitor the execution of
plans.

3. Archi tecture for robot error recovery

The autonomous error recovery system consists of three
components: the pre-processor, which accepts robot task
specifications, the AP executive, which operates the robot
and monitors its performance of the task, and the recover-
er, which generates error recovery procedures in response
to errors detected during execution. Figure I illustrates the
architecture and the flow of information in the system. In
the figure ovals represent data and rectangular boxes
represent processes. Subsequent sections of the paper
describe each component.

The architecture presented here explicitly divides the
system into two parts: one that must operate in real time
and one that does not. The activities associated with
operating the robot and verifying its performance are
assigned to a dedicated processor so that they may operate
at the highest possible speed. Activities associated with
preparing tasks for execution by the robot or with error
analysis and recovery are handled by a separate processor
that does not have serious time constraints.

~ obot~"~

Preprocessor t

AP Processor

I
Robot

Recoverer

Fig. 1. Architecture of the system.

62 Smith and Gini

An important feature of the system is that it is designed
to incorporate existing commercial robot controllers. It
does not depend on custom-designed robot control soft-
ware, instead it operates the robot through the robot's own
controller using its own control protocol. The error
recovery system simply needs to be adapted to a specific
controller so that it can send motion commands to the
robot's controller and use the robot's sensors.

The system cannot handle all possible errors. From the
beginning, our research has concentrated on the problems
posed by physical errors and uncertainties in the robot's
task and not on verification of the program's correctness.
The robot program given to the system is taken as the
specification of the desired task. Errors that could be found
by a robot simulation system must be eliminated before
execution.

The present configuration of the error recovery testbed
manages an IBM 7565 manufacturing manipulator. The
IBM 7565 is a hydraulic gantry robot with six degrees of
freedom and a closed loop controller. The robot's gripper
contains strain gauges on each jaw that measure strain
along three axes. Motion control and sensor filtering
software resides on an IBM Series/1 minicomputer and
allows manipulator and sensor programming in the AML
language (IBM, 1982 and Taylor et al., 1982). The AP
executive is implemented in C on an MC68000-based
personal computer system, an Apple Macintosh. The
pre-processor and the recoverer are written in Franz Lisp
on a Unix time-sharing system that communicates with the
Macintosh.

4. The pre-processor

To operate the system, the user provides the pre-processor
with a task specification in the system's robot programming
language. The pre-processor converts this program into a
specially designed intermediate form called the augmented
program (AP). This expanded form is then used by the AP
executive to monitor and control the robot's operation in
real time.

Task specifications are written in a simple manipulator
level programming language called woktalk. The name is
taken from Project Woksape, the organization that pro-
vided the IBM robot used in the testbed. The woktalk
language is equivalent in expressive power to typical robot
languages even though it lacks the features of some
languages. The woktalk primitives are adequate for de-
scribing manipulator and object motions in pick and place
tasks.

Figure 2 presents a simple robot task written in woktalk.
The robot moves about an object, picks it up, lifts it, puts it
down, and releases it. Woktalk programs are written as
Lisp forms with individual statements comprised of lists of
atoms. The first statement, name, defines the relevant

((name (aboveslot (8.44 -15.92 7 -47 0 0))

(slot (8.44 -15.92 .1 -47 0 0)))

(move aboveslot)

(open 1.5)

(grab cpl slot)

(carry cp 1 aboveslot)

(release cpl 1.5 slot))

Fig. 2. A simple program in woktalk.

positions. The first three coordinates are cartesian x, y, and
z in the work cell; the last three coordinates specify pitch,
roll, and yaw angles in degrees. The move statement moves
the gripper to the specified location aboveslot. The open
statement commands the gripper to open 3.75 cm. The next
three instructions describe manipulator actions that in-
volve objects. The grab statement tells the robot to move to
the location, slot and grasp the object, cpl. The carry
statement tells the manipulator to move to the location
aboveslot while carrying the object cpl. The release
statement tells the manipulator to move to the location slot
and open the gripper to 3.75 cm causing it to cease carrying
an object. These statements name the particular object
being affected so that the system can keep track of actions
performed on parts in the work cell.

4.1. The task knowledge base

The task knowledge base (TKB) describes objects and
locations that are relevant to the robot's task. The TKB
serves as an initial model of the state of the robot's work
cell when it begins its task. The TKB identifies all objects in
the work cell that could possibly be used in the robot's task.
Each object is identified by location and object type.
Important locations in the work cell, such as pallet slots and
fixture positions, are also identified in the model. If an
error occurs, the recoverer updates the work cell model to
reflect its probable state using information in the event
trace. The TKB is constructed by the robot programmer
using appropriate declaration statements. The TKB used
for the sample program and other similar programs is
shown in Table 1.

Our experiments used only one type of part, so there is
only one object class. The object is of type coupler and its
grasp width is declared to be 2.5 cm. The grasp width
specifies a nominal value for the gripper's width when it is
holding that type of object. There are three couplers: part
cpl stored in location slotl, part cp2 stored in slot2, and
part cp3 stored in slot3. The coupler in slot3 is declared as a
spare so it may be used to replace one of the other couplers
if an error occurs.

Error management for robot programming

Table 1. The task knowledge base for the sample program and for the experiments.

63

Object classes Parts Location of parts

Identifier Descriptive Grasp Name Class Location Usage Name Location Usage
name width

coupler 'coupler' 1.0 cpl coupler slot1 task slotl 8.44 -15.92 0.1 -47 0 0 coupler
cp2 coupler slot2 task slot2 6.08 -15.94 0.1 -47 0 0 coupler
cp3 coupler slot3 spare slot3 3.73 -15.96 0.1 -47 0 0 coupler

fixture -7.77 -14.41 4.43 -47 0 0 holder
park 0 - 15 4 -47 0 0 park
discard 6.44 -5 3.5 -47 0 0 discard

The three slots that initially contain couplers are all
named and their locations specified. The usage declares
how a location can be used. The park location identifies the
manipulator 's park position in the work cell. The discard
location identifies a location above a trash bin into which
the robot may drop unwanted parts during error recovery.

The TKB could be generated automatically from a CAD
data base, but we haven't done so in our current imple-
mentation. This would require enrichment of the semantics
of typical CAD data files to indicate the usage of objects
and locations. Incorporation of such CAD data would
support the geometric modeling of objects, which would
allow more sophisticated analysis and recovery techniques.

4.2. Translating a woktalk program into an A P

The augmented program (AP) is a representation of the
robot 's program that provides the interface between the
pre-processor and the AP executive. In addition to the
command, sensory, and procedural information necessary
to control the robot, the AP contains information about
how the robot 's actions affect the objects in the work cell.
The AP represents the sequence of actions as a finite
automaton. The pre-processor generates the AP by trans-
lating the original woktalk program. The sequencing of
instructions in the woktalk program is replaced by transi-
tions in the AP. Crucial sensor readings preceding some
action in the woktalk program will correspond to the
pre-conditions of the corresponding state transition in the
AP. The pre-conditions on transition leading out of a given
state will correspond to the set of sensor readings to be
monitored by the sensor handler.

The AP incorporates two kinds of information besides
motion commands: sensor information and information
about objects in the work cell. The sensor information in
the AP is used to guide the real time system in its use of
sensors. The AP specifies which sensors need to be
monitored during each step of the robot 's task and often
identifies specific sensor values that are meaningful. All

unspecified sensor readings can be ignored by the system,
thus saving computation time and expense. The informa-
tion about objects is not used to control the robot, but it is
saved in the event trace and used only if an error occurs.

The automaton representation provides a natural way to
map events to actions. Significant sensor readings are
treated as tokens that may cause state transitions and
actions related thereto. The AP structure is designed to be
interpreted efficiently in real time. Another requirement is
that the AP must be in a form that can be modified
dynamically by the recoverer. When a failure has been
analysed and a recovery plan devised, the recoverer needs
to add new instructions to the AP. The AP representation
allows incremental compilation and reliable patching.

The diagram in Fig. 3 shows the AP for the sample
problem in a format that is easy to read. The actual internal
representation of an AP is a Lisp expression. A state may
contain any number of imply and expect forms and no more
than one robot-do operation. For example, the operation
'robot-do: move wok (8.44 -15 .92 7 - 4 7 0 0)' instructs the
robot named wok to move to the specified location. The
imply form specifies facts about the work cell that are true
when the state is entered, the expect form specifies the
expected result of the current state if all goes correctly. For
instance, if the program reaches state 5, the system assumes
that the object cpl has been grasped. If the destination of
the move operation in state 5 is reached without any error,
the system expects that the robot is still carrying the object
cpl .

Significant sensor readings are indicated by predicates.
For example, the predicate reach becomes true when wok
reaches its assigned destination. A transition from one
state to the next occurs when a continuously tested
predicate such as that becomes true. All predicates in a
state are tested concurrently. The AP executive chooses
the transition whose predicate is satisfied first. The event
predicates are described in Table 2.

Information about object manipulation is not important
for operating the robot, but it is vital to error detection and

64 Smith and Gini

1 robot-do:

when

2 robot-do:

when

3 robot-do:

expect:

when

4 robot-do:

expect:

when

5 robot-do:

imply:

expect:

when

6 robot-do:

imply:

expect:

when

7 robot-do:

imply:

expect:

when

8 imply:

9 imply:

Fig. 3. The AP for the given program.

move wok (8.44 -15.92 7 -47 0 0)

reach

hit

joint-error

open wok 1.5

open

hand-error

move wok (8.44 -15.92 0.1 -47 0 0)

grasp cpl (8.44 -15.92 0.1 -47 0 0)

reach

hit

joint-error

center wok

grasp cpl (8.44 -15.92 0.1 -47 0 0))

center

missed

crash

hand-error

move wok (8.44 -15.92 7 -47 0 0)))

grasp epl (8.44 -15.92 0.1 -47 0 0))

carry cpl (8.44 -15.92 7 -47 0 0))

reach

hit

untouch

joint-error

move wok (8.44 -15.92 O. 1 -47 0 0)))

carry cpl (8.44 -15.92 7 -47 0 0))

carry cpl (8.44 -15.92 0.1 -47 0 0))

reach

hit

untouch

joint-error

open wok 1.5))

carry cpl (8.44 -15.92 O. 1 -47 0 0))

release cpl (8.44 -15.92 0.1 -47 0 0))

open

crash

hand-error

done

error

go to state 2

go to state 9

go to state 9

go to state 3

go to state 9

go to state 4

go to state 9

go to state 9

go to state 5

go to state 9

go to state 9

go to state 9

go to state 6

go to state 9

go to state 9

go to state 9

go to state 7

go to state 9

go to state 9

go to state 9

go to state 8

go to state 9

go to state 9

recovery. At the level of robot control, a carry command is
almost identical to a move, except that special sensors may
be active to verify that the object is not dropped. The
presence or absence of an object in the gripper, for
example, would determine whether or not the hitobj event

is activated. In the AP itself, states that represent actions
on objects will contain special clauses (i.e. the expect and
imply clauses) that are inserted into the event trace when
the state is entered, as explained in the next section. If an
error occurs, the clauses help the recoverer determine

Error m a n a g e m e n t f o r robot p r o g r a m m i n g

Table 2. Event predicates.

Event Description Operations

Manipulator position events move open center

reach arm reached its destination X
joint-error arm motion error X

Gripper Width Events

open hand reached specified opening size X
hand-error gripper error X X

touch
untouch
center
missed
crush
hit
hitobj

detect
lost

Strain Gauge Events

gripper touched something
gripper ceased to touch something
force controlled grasp operation completed
nothing found to grasp
excessive grasp pressure
unexpected touch on strain gauge
unexpected touch on carried part

LED Events

gripper LED detected an object
gripper LED stopped detecting object

X

X
X

X

X

X

X
X
X

X X

65

where objects really are in the work cell and what the robot
was trying to do when the failure occurred. The woktalk
language is designed so that the appropriate clauses for a
given state are inferred directly from the statement type
and from statement parameters.

5. The AP executive

The AP executive is responsible for maintaining an accu-
rate picture of what the robot does. The AP executive does
more than simply observe and report on the robot 's
actions. It takes responsibility for issuing commands to
move the robot. When the AP says that a robot action is to
occur, the AP executive sends the command to the robot.
The AP executive tracks the robot 's activities by monitor-
ing data from the robot 's sensors. The sequence of sensor
data yields an event trace from which we get the robot 's
recent history.

The testbed utilizes separate processors for executing the
reactive, or real time, software components and for
executing the reflective, or symbolic reasoning, com-
ponents of the system. Providing separate processors for
the real time and the automated reasoning components of
the system prevents time-critical software components
from having to compete for computation time. Since the
AP executive is the only component that interacts with the

robot continuously, a large-scale system would probably
consist of several independent work cells, each with its own
AP executive, sharing a central server that provides
pre-processor and recoverer resources.

5.1. The event trace

As the AP is executed the AP executive produces the event
trace. The trace tells when state transitions occur, the
sensor readings that triggered them, and information about
the progress of the robot 's task. When a new state is
entered, the AP executive adds a new-state entry to the
trace. While processing the initial actions, the AP execu-
tive writes imply and expect entries into the trace. Sense
entries are written when sensor events occur. Event trace
entries are transmitted to the recoverer as they occur so
that the recoverer may track the robot 's activities and
handle error recovery.

Figure 4 shows a portion of an event trace during the
execution of the task shown in Fig. 2. The Fig. shows trace
entries generated during an execution of states 4 and 5.
Each entry begins with a timestamp. The new-state entries
identify when state transitions occur. The expect and imply
entries are generated from the current AP state. The sense
entries identify the result of the commanded operation and
provide precise numerical feed-back of the result of the
operation. Gripper operations return the resulting jaw

66 Smith and Gini

(228055 new-state task 4 23)

(228055 expect grasp cpl (8.44 -15.92 0.1 -47 0 0))

(228125 sense center wok 0.963099)

(228126 sense center wok 0.963099)

(228127 new-state tas k 5 24)

(228127 imply grasp cpl (8.44 -15.92 0.1-47 0 0))

(228127 expect carry cpl (8.44 -15.92 7 -47 0 0))

(228213 sense reach wok (8.44114 -15.9155 6.99949 -46.9778 0.0310315 -0.0207186))

(228214 new-state task 6 25)

Fig. 4. Portion of the event trace.

width and motions return a six element vector identifying
the resulting manipulator coordinates.

5.2. Robot task execution

The AP executive naturally follows an event-driven soft-
ware structure. Sensory stimuli produce sensory events
which in turn invoke procedures to perform state-related
actions. The automaton structure permits a simple form of
multi-programming. The AP processor implements this
through nonpreemptive scheduling of active processes.
Each time a process does a state transition the process
executes the transition actions to completion before
another transition may occur. Once the process completes
its transition the scheduler is invoked which then seeks
another event ready to process and handles it.

An AP state transition consists of several steps beginning
with a sensor event being placed on the scheduler queue.
When the scheduler dequeues the sensor event, it checks to
see if the active AP is waiting for that event. If so, the
scheduler generates a transition action, which is also placed
on the queue. When the scheduler dequeues the transiton
action, it performs the state transition. This is the point at
which a new-state entry is placed in the event trace. The
transition action itself involves three steps. First, the
scheduler queues look-for actions that correspond to the
event predicates in the new state. Next, the scheduler
queues the robot-do action, if any, for execution. Finally,
the scheduler extracts imply and expect clauses from the
state and writes corresponding entries into the event trace.

The transition is complete once the scheduler performs
the queued actions. It first dequeues the look-for actions
and passes them to the appropriate sensor handlers. These
actions direct the sensor handlers to look for appropriate
sensory information. If a particular sensor handler does not
need such prompting then the look-for action is ignored.
Following the look-for actions on the queue is the robot-do
action. This action is passed to the software process that
controls the robot which in turn instructs the robot to do the
action. Following the robot-do action the queue will
probably be empty until the next sensory event occurs,
probably triggering another state transition.

5.3. Interfacing to the robot's controller

As mentioned previously, the system is designed to work
with existing, off-the-shelf robot systems. The system
simply requires that robots are able to position themselves
reliably with control systems provided by the manufactur-
er. The error recovery system operates the robots in terms
of point-to-point manipulator positioning commands; the
robots must be able to handle such commands reliably and
accurately. Clearly, more functionality is better: built-in
sensor systems such as the gripper strain gauges on the IBM
7565 system can be exploited to enhance system perform-
ance. Additional sensors such as cameras may be incorpo-
rated into the system to analyse the work cell state after an
error is detected; such sensors may bypass the AP execu-
tive and connect directly to the recoverer. However,
sensors such as gripper strain gauges that can verify the
success of a robot action, must report to the AP executive.

To operate the robot, the AP executive must take the
basic robot-do functions of move, open, and center and
generate appropriate commands to operate the robot
connected to it. This is usually handled by a robot driver
process; a separate driver must be implemented for every
type of robot used by the error recovery system. In the
testbed system the driver is a process that receives com-
mands to start a robot operation or to read messages sent
back by the robot. The driver starts a robot operation by
sending a command to the robot. The driver is then
instructed to pull the robot 's output port. The robot will
send a message when it finishes the commanded operation;
the driver interprets the message and generates a sensor
event indicating the result. The robot 's controller must
provide sufficient functionality to implement three basic
manipulator operations, as shown in Table 3.

Table 3. Operations required from the robot controller.

Instruction Operation Robot controller
operation

move move gripper to absolute manipulator movement
location

open change gripper's gripper movement
opening to specific width

center close gripper until object feed-back from gripper's
grasped fingers

The AP executive makes no assumptions about the
actual form of robot controller commands and responses or
the nature of the robot 's interface. Robots we used in our
experiments all use standard RS-232 or RS-422 serial
interfaces; the commands and responses are all in the form
of ASCII text strings. However, this is visible only in the
robot drivers themselves. A robot interface could just as
easily be through a complicated custom controller con-

Error management for robot programming 67

nected to the AP executive or through a series of parallel
interfaces.

In our implementation all manipulator motions are
performed by AMLs MOVE statement. The arguments to
MOVE are a list of joints to move, a matching list of
destinations, and an optional list of AML sensor monitors
that can terminate the motion. Joint destinations are given
in cartesian coordinates for x, y, and z positions, degrees
for pitch, roll, and yaw angles, and centimeters for the
gripper width. The AP move function is performed by a
MOVE statement that specifies an absolute destination for
the x, y, z, roll, pitch, and yaw joints. The open function is
performed by a MOVE statement that affects the gripper
opening only. The center operation is performed by a
MOVE statement to close the gripper combined with an
embedded MONITOR statement to terminate the motion
when the strain gauges detect an object being held.

5.4. Sensor management through filtration

Sensor information is filtered in several ways. The AP
specifies sensor information that is significant to the
execution of that task. This specification is given in terms of
sensory events that can cause state transitions in the AP.
The specification is used both to identify potential state
transition events and to identify sensory information
significant for the event trace. This specification is also
passed to sensor filter tasks that activate appropriate
sensors and map sensor values into events.

AP transitions are caused by discrete events, so a robot's
progress at its task depends on the occurrence of events
that cause appropriate transitions. Significant sensory
readings must be mapped into events that cause state
transitions. This mapping provides one form of sensory
filtration; sensory readings are reported only when the
value is significant to the progress of the robot's task. In
some cases the identity of the event is the only specific
sensory information returned and in other cases numerical
data is included as well.

Each AP state contains event predicates identifying
sensor readings that would be significant to the successful
execution of that state. The AP executive passes the
information in the event predicates to the appropriate
sensor filters before initiating robot motion. The sensor
filters activate appropriate procedures so that necessary
sensor readings will take place.

All sensor filtering on the IBM 7565 is implemented
using the monitor facility of the A M L language. Monitors
are used to define ranges of sensor values that can activate
user-defined procedures or terminate robot motions.
When initializing the IBM 7565, the AP executive defines a
set of monitors for classifying gripping forces and associates
each monitor with an AP event type. The numerical values
used for classifying gripping force depend on the objects
being used in the robot's task and the actions performed on

them, so these values may be adjusted when a task begins.
More details on how to obtain these values are in the next
section. When the AP executive gives the IBM 7565 a
motion command, it also specifies a set of monitors to
activate. The A M L system collects the appropriate sensor
readings for each active monitor and trips the appropriate
monitor if its sensor enters the monitor's defined range.
This terminates the motion in progress and generates a
message to the AP executive identifying the qualitative
value of the sensor reading, as determined from the
monitor that was tripped. If no monitor terminates the
active motion, a similar message indicating uninterrupted
completion is sent instead. The AP executive then gener-
ates a sensor event and, if necessary, updates the event
trace and performs an AP state transition.

Figure 5 shows an example of the transformation of a
move operation in an AP state into the corresponding
AML commands executed by the robot. The desired
destination and the desired A M L monitoring sets to be
activated (E-HIT and E._UNTOUCH) are passed to the
APM procedure. This procedure, written in AML and
executing on the IBM Series/l, performs the MOVE
operation and the related filtering for the 7565's sensors.
The procedure activates the appropriate monitors and
performs the motion subject to the selected monitors.

AUGMENTED PROGRAM CODE

(4 ((robot-do move wok
(-7.77 -14.41 7 -45 0 0)))

((reach wok) 5)
((hit wok) 12)
((untouch wok) 12)
((joint-error wok) 12))

AMLPROCEDURECALL

APM (-7.77, -14.41, 7, -45, 0,0, E_HIT#E_UNTOUCH) ;

t__]
AML ROBOT COMMANDS

REMONITOR (E_HIT#E UNTOUCH) ;

MOVE (<JX, JY, JZ, JR, JP, JY>,

<-7.77, -14.41, 7, -45, 0, 0>,

E_HI T#E__UNTOUCH) ;

Fig. 5. Converting AP statements into AML statements.

68 Smith and Gini

5.5. Qualitative sensor interpretation

Although the event trace often provides numerical sensor
data, such information is not of primary importance when
reasoning about the robot's activities. To meet this need,
the error recovery system assigns symbolic meanings to
numerical sensor values in a number of ways. Spatial
locations and critical dimensions are assigned symbolic
names. Gripping forces are assigned qualitative values
according to the range in which a force value falls.

Qualitative classification of sensor data serves a second
purpose as well. When executing an AP, the AP executive
responds to events in terms of symbolic classifications.
Upon successful completion of a motion command the AP
responds to a reach sensor event instead of examining and
matching the robot's reported destination. If the gripper
drops an object and the gripping force drops to a small
value, the AP responds to an untouch sensor event instead
of testing the specific force value. The classification of
sensor values into different types of AP events is performed
by a sensor filter procedure that operates on the behalf of
the AP executive, as described above.

Gripper forces, when they are significant, determine
whether the gripper is touching an object and holding with
an adequate force. Identification of appropriate touching
and grasping forces must be communicated to the AP
executive so that appropriate AP state transitions occur
depending on the gripping forces encountered. The sensor
filter classifies gripping forces into specific ranges according
to the robot's current action. Each range corresponds to a
type of sensing event that can be produced by the gripping
force sensor.

Ranges for strain gauge forces were determined experi-
mentally by measuring side, pinch, and tip forces while the
robot manipulated objects. Figures 6 and 7 summarize the
range of pinch and tip forces encountered while grasping a
coupler held in a slot. The experiments identified the
normal force values and the variations thereof encountered
during normal operation. This information defined an

4500

4000

3500

3000

Pinch 25oo
Strain
Force 2000

(g) lSOO

1000

5OO

0

-500

Time (.09 second Intervals)

Fig. 6. Range of pinch forces during a grasp.

Tip
Strain
Force

(g)

1500

1300

1100

900

700

500

300

100

-100

T i m e (.09 s e c o n d i n t e r v a l s)

Fig. 7. Range of tip forces during a grasp.

I / / / / / / / / l / l l l l ,

" / / / / / i

t / / / / / / / ~

" / ' l l l l / / l

t l l l Z

" / l l ~

1500g
r / / / i i ,

" l / l / l / I l l ,

2500g
r j j j j ~ j j j j

5000g
, J J J ~ ,

/ / / #

touch

untouch

center

hit

hitobj

crush

-7000 0

Fig. 8. Interpretation ofgraspingforces.

7000

envelope for acceptable sensor readings. We used the
experimental information to assign values to symbolic
ranges, as shown in Fig. 8. Each symbolic sensor event
corresponds to a range tested by a MONITOR statement in
the AML sensor filtering code. The appropriate monitors
are activated at the beginning of the robot's action. If a
tested strain gauge reading enters the range marked by the
dashed line the appropriate monitor is tripped. When a
monitor is tripped it terminates the robot's action and the
corresponding sensory event is passed to the AP executive.
The actual boundary values may be changed when initializ-
ing and calibrating the testbed system.

6. T h e r e c o v e r e r

If an AP state transition leads to an error state, a message
to that effect is appended to the event trace and the trace is
passed to the recoverer. The recoverer generates a model
of the current work cell's state and of its desired state using
information in the event trace (Smith and Gini, 1986a).
Locations visited by the robot or by objects in the work cell

Error management for robot programming 69

are assigned symbolic identifiers, and a history is produced
of visits for each location, object, and robot gripper in the
work cell. This model is used to produce a recovery plan in
the form of a sequence of AP states to be appended to the
task's existing AP. The recoverer passes these additional
states back to the AP executive where they are executed. If
the new states each execute successfully, they will lead the
task back to a state in the original AP. To effect recoveries
in this manner successfully, the recoverer requires a copy of
the task's AP and the information in the event trace.

6.1. Error recovery planning

The kinds of recovery activity of which the system is
capable depends on the level of abstraction at which the
system understands the task. This is related to the notion of
levels of abstraction in robot programming languages. If
the system understands nothing about the task beyond the
manipulator level, then effective recovery is seldom possi-
ble. On the other hand, if the system understands the task
in terms of factory inventories and mechanism design, the
system could conceivably design and build a new part in
response to an error. For assembly tasks in this research,
however, the highest level at which a task is understood is
in terms of object motions. Task goals, failures, and
recoveries are understood in terms of the desired positions
of parts in the assembly. If errors are understood primarily
as situations in which parts are misplaced, then recovery
consists primarily of putting parts back where they should
be. This is often referred to as the pick and place synthesis
problem (Lozano-Perez, 1983).

Classically, a pick and place motion planner requires
three types of input data. First, it requires a description of
the manipulator, available parts, and of the work cell. In
the error recovery testbed, this is provided by the task
knowledge base. Second, it requires the current configura-
tion of the manipulator and parts in the work cell. This
information is derived from the event trace. Finally, the
planner needs to know the desired destinations of parts to
be moved. The error recovery testbed derives this informa-
tion by comparing the expected and actual results of object
motions after an error is detected. The pick and place
planning problem is often decomposed into two sub-
problems: grasp and path planning. Grasp planning con-
sists of selecting the appropriate sequence of motions to
grasp an object rigidly. This is simple if the object is always
grasped while being held in a fixed position, but it is quite
difficult if the paws position is unconstrained. Our experi-
ments relied on simplifying assumptions for grasp and path
planning as described in the next section.

Although pick and place problems are the most complex
problems addressed here, the system encounters other
types of errors as well. For example, robots may encounter
controller errors, hydraulic or power failures, and operator
intervention via safety switches. Errors such as these

prevent the robot from performing the attempted manipu-
lator motion. Unlike errors involving objects, these fai-
lures prevent the robot from performing its task at the
manipulator level. When such an error is detected it can be
recovered from by retrying the manipulator level operation
that failed. Manipulator level errors may be classified as
soft or hard errors. A soft error is a situation in which the
robot is disabled only momentarily and can recover without
operator assistance or repair. For example, some robot
controllers experience momentary instabilities or wobbles
which infrequently prevent them from completing a mo-
tion. Such a failure is intermittent and is unlikely to occur if
the operation is retried. Recovery consists of simply
retrying the failed operation. On the other hand, some
manipulator level errors are serious enough to require
operator intervention or even repair. For example, the
IBM 7565 might lose its counterbalancing air pressure and
cease to operate until the pressure is restored. This would
constitute a hard error since the robot can not resume
operation without operator assistance. However, once the
problem has been resolved the recovery strategy is the
same as for soft errors: simply retry the failed operation. A
recovery plan for hard errors, then, must ask for operator
assistance and, once the problem is resolved, should retry
the operation that failed.

6.2. The woktalk planner

In order to simplify grasp and path planning, the error
recovery planner exploits some simplifying aspects of the
testbed's work cell. The testbed assembly tasks all use
plastic parts that are large and easily sensed by the strain
gauges on the IBM 7565's gripper. Assembly parts are
provided with individual slots to hold them in a precise
position for grasping. Parts, slots, and fixtures are spread
about the work cell surface so that all may be reached
through straight vertical motion without the risk of collid-
ing with other work cell obstacles.

Grasp planning requires information about the paws
position and the locations of appropriate grasp points on
the object. This information is extracted from the TKB.
The recovery planner always plans to grasp parts that have
been installed in slots designed for the purpose. The
appropriate gripper location for grasping a particular part
is given in the TKB as an attribute of the slot containing the
part. The grasping width for approaching the part is
derived from information on the part contained in the
TKB. This provides sufficient information for grasping the
part.

Path planning exploits the flat surface nature of the
testbed's work cell lay-out. Typically, a path needs to be
planned from one location near a slot or fixture to another.
These motions are planned in three steps: up, over, then
down. Collision avoidance is achieved by moving up from
the surface of the work cell and into a parking plane during

70 Smith and Gini

the up step. The parking plane is a region high enough
above the work cell that the manipulator can move
anywhere in it without hitting anything in the work cell. Its
location is inferred from the park location defined in the
TKB. The over step places the manipulator on top of its
destination and the down step approaches the desired
destination.

The recovery planner uses a state-oriented model of
parts and locations in the work cell. Error interpretation
for purposes of recovery attempts to achieve the expected
occupancy states of parts and locations in the assembly
task. Parts may be in use or spare or lost, depending on the
progress of the task and the effects of errors and recovery
plans. Locations are usually occupied or empty and are
usually manipulated symbolically though each location's
geometric position is also known. A typical recovery may
be to replace the missing part, x, with a new part, x,
currently in location, a, and move the part to its expected
position of location, b.

When the recoverer is invoked it uses a four-step process
to produce the recovery plan. First, it uses the event trace
and TKB to update the work cell model. Next, it chooses its
recovery plan depending on the type of error that occurred.
Third, it generates assertions about the expected and
desired state of the work cell using the event trace and the
work cell model. Finally, the recoverer selects a recovery
plan according to the type of error; the specific plan steps
are generated by applying the assertions to the individual
steps of the recovery plan. Plan steps are generated in
woktalk and converted to AP form before being sent to the
AP executive.

The recoverer generates a pick and place recovery
whenever a sense event occurs that indicates trouble with
the part the manipulator is carrying. The primary purpose
of gripper strain gauge readings in the testbed system is to
verify the proper transportation of a gripped part, so the
recoverer usually generates a pick and place recovery in
response to strain gauge sense events. The generalized pick
and place recovery plan treats it as a problem of discarding
an invalid part and acquiring a new one. The generalized
pick and place recovery plan consists of six steps. The first
step is to move to the parking plane in preparation for the
next step. The next step is to discard the part currently held
in the manipulator, if any. The TKB defines a discard
location that is used for this purpose. The third step is
generated if the recoverer believes there is an obstruction
in the part's destination: a message is generated that asks
the operator to remove any obstruction from the specified
location. The fourth step generated if there are no spare
parts of the required type available: an operator message is
generated to ask for the desired part to be provided. The
fifth step picks up the replacement part from its initial
location and moves it to its expected destination, fulfilling
the forward recovery. The sixth step generates a state
transition into the forward recovery state.

6.3. Recovery from multiple errors

If an error occurs, the recoverer passes additional AP states
to the AP executive. These additional states do not replace
existing states in the AP; they are appended to them. The
AP executive resumes task execution with the first of the
recovery states passed to it. Once the recovery execution
begins, the AP executive treats the recovery states identi-
cally to the states in the original AP. If another failure
occurs, whether during the recovery or after completing
the recovery, the AP executive again reports the failure to
the recoverer and resumes execution when it receives a set
of recovery states. For example, if the robot loses a part, it
can attempt a recovery by opening the gripper, moving to
the work cell surface, and trying to grab the part. If the part
is there, the recovery can proceed. If the grasp fails, the AP
executive simply informs the recoverer which can then
produce another recovery plan and try again.

The ability to do multiple recoveries allows the recoverer
to profit from mistakes in a recovery plan. When faced with
multiple recovery choices, the recoverer can choose the
one that is most likely to reduce uncertainty about the state
of the work cell. The recoverer can also produce recovery
plans with the sole purpose of taking sensor readings in the
robot work cell. If the recoverer needs to probe a specific
spatial location it can produce a recovery plan that
performs the desired sensor reading and then immediately
fails. The resulting event traces will increase the amount of
information in the work cell model and the unsuccessful
recovery will not prevent a subsequent recovery from being
attempted.

Another useful feature during error recovery is the AP
executive's ability to display messages for the robot's
operator. These messages are produced by statements in
the AP and thus may be generated by the recoverer. This
facility allows the recoverer to request specific operator
intervention when necessary.

6.4. Experimental results

We have performed a variety of simple experiments
involving repetitive tasks, all of them using the workcell
lay-out described in Table 1. Multiple parts were alternate-
ly grasped, moved, and released so that all basic operations
occur repeatedly.

We have collected results on experiments with two task
procedures, called pkplc and pkpair. Pkplc is a repetitive
task that moves a coupler from its slot to the fixture and
back. Pkpair is more complex; it moves two couplers
around the work cell. The couplers to be moved are placed
in slots 1 and 2. The task starts by using the coupler in slotl.
The gripper picks up the coupler from its slot, moves the
coupler to the fixture, inserts it into the fixture, then puts
the coupler back into its original slot, releasing it. The
gripper then moves to the coupler in slot2 and repeats the
same sequence of actions on it. The task then repeats.

Error management fo r robot programming

Table 4. Summary of experiments.

71

Task Successful #Runs Activity
failure/
recovery
cycles

Successful
failure/
recovery
cycles

Error Recovery # Recoveries

pickslot 9 3 move coupler 9
pickpair 5 1 insert coupler 3

grasp coupler 2

part lost/removed
collision/part dislodged
destination obstructed
part missing

get another part 6
discard part and get another 3
discard part and get another 2
get another part 3

Table 4 summarizes the results of a series of video-taped
experiments that used the error recovery testbed. These
experiments relied entirely on the gripper strain gauges for
sensing. For each task run, we started the robot and
repeatedly induced failures of various kinds. We induced
the errors manually by pulling parts out of the gripper,
striking it, putting objects in its path, stealing parts that
were about to be used, and placing foreign objects in a
part's destination. In Table 4, the column listing Successful
failure/recovery cycles indicates the number of times that
we induced a failure and the system recovered, resuming its
previous task. Two of these recovery cycles took place
while the robot was already executing steps to recover from
a previous error, demonstrating the system's ability to
recover from nested errors. In other experimental runs the
system also demonstrated its ability to recover from errors
during nested recoveries as well.

Each run continued until encountering an error the
system could not handle. In two cases, the part collided
with a foreign object with insufficient force to trigger the
error event. In another case, the robot collided with an
obstructed part and did not have a recovery strategy that
ignored the resulting overforce measurement; this caused
subsequent motion commands also to fail with the same
overforce error. In another case, an eager operator pro-
vided extra spare parts that were not explicitly requested by
the system and thus were not reflected in its workcell
model or in its behavior.

7. Conclusions

We have presented an architecture for building program-
mable industrial robots that automatically detect and
recover from errors encountered while manipulating parts.
The architecture separates the real time robot control
components from the task analysis, programming, error
interpretation, and error recovery planning components.
The system uses one computer to run the AP executive,
providing real time robot control, and a separate computer
for the symbolic computation and recovery tasks. The

architecture relies on the augmented program form, a
special representation of the robot's task, to provide
information needed for robot operation and automatic
error recovery.

An important feature of this system is that it is designed
to work with conventional robot programming languages.
If a task-level programming language does become avail-
able the error recovery system could work with it. The
statements of the woktalk language used in the error
recovery testbed are extremely similar in form and content
to the primitive robot operations generated by typical
task-level motion planners. Thus the error recovery system
could serve as a back end to a task planner with minor
modifications.

A basic criterion of the system design has always been
language independence, both for the input language that
specifies the robot's task and the output language that
controls the robot. New input languages may be incorpo-
rated by implementing a pre-processor for them. Pre-
processors have been designed to work with AL and
woktalk; a pre-processor for AML or VAL is expected to
present no problems. New robots may be incorporated by
implementing AP executive driver processes for them. We
have implemented drivers for the IBM 7565 and for the
Microbot TeachMover.

Another important feature is how the system combines
information about the robot's task. The AP is used to
operate the robot in real time so it describes the sequence
of manipulator motions the robot must perform. Associ-
ated with each motion there are statements of how the
motions are intended to affect the robot's task. Each time
the AP executive starts a robot motion, the statements
associated with the motion are written to the event trace.
When the motion is finished, sensor readings that detect its
completion are also written to the trace. This provides a
detailed record of events in the work cell, consisting both of
sensed facts and of deductions about the effects of the
robot's actions.

Sensor filtering is also an important feature of the AP
executive. Filtering the sensor data reduces the overhead
associated with analysing sensor data and may in some
cases be performed on a separate processor.

72 Smith and Gini

While it is important to recognize the design features that
make the system work, it is also important to recognize the
features that make it applicable to other problems. The
error recovery testbed demonstrates the system's feasibil-
ity for performing woktalk programs on an IBM 7565
robot, but the underlying architecture makes it possible to
adapt the system to other robot languages or robot
hardware.

The system also has the flexibility to incorporate im-
proved automated reasoning, deductive, and planning
systems. The architecture has a mechanism to relate
symbolic information (e.g. assertions, deductions, even
rules) with manipulator actions, but the content of this
information is transparent to the underlying system. The
contents are subject only to cooperation between the
pre-processor and recoverer. There is no architectural
impediment to implementing a task-level programming
system to serve as the pre-processor as long as it generates
APs. Similarly, the recoverer could be implemented using
a high-performance spatial reasoning and robot motion
planning system. Many techniques exist that could be
adapted to this system; the architecture is designed to make
this possible.

Acknowledgements

This work was funded in part by the NSF under grants
NSF/DMC-8518735 and NSF/CCR-8715220, and by the
Productivity Center of the University of Minnesota.

References

Cox, I. J. and Gehani, N. H. (1989) Exception handling in
robotics. IEEE Computer, 22, 43-9.

Donald, B. (1990) Planning multi-step error detection and
recovery strategies. International Journal of Robotics Re-
search, 9, 3--60.

Doyle, R. J., Atkinson, D. J. and Doshi, R. S. (1986) Generating
perception requests and expectations to verify the execution
of plans, in Proceedings of American Association for Arti-
ficial Intelligence, 86, Philadelphia, pp. 81-7.

Fielding, P. J., DiCesare, F. and Goldbogen, G. (1988) Error
recovery in automated manufacturing through the aug-
mentation of programmed processes. Journal of Robotic
Systems, Philadelphia, PA, 5, 337-62.

Fielding, P. J., DiCesare, F., Goldbogen, G. and Desrochers, A.
(1987) Intelligent automated error recovery in manufactur-
ing workstations, in Proceedings of the IEEE Inter
Symposium on Intelligent Control, pp. 280-5.

Fikes, R. E. and Nilsson, N. J. (1971) STRIPS: a new approach to
the application of theorem proving to problem solving.
Artificial Intelligence, 2, 189-208.

Gini, M. (1990) Automatic error detection and recovery, in Robot
Technology and Applications, Rembold, U. (ed.), M.
Dekker, New York, 445-483.

Gini, M. and Gini, G. (1983) Towards automatic error recovery in

robot programs, in Proceedings of the 8th International Joint
Conference on Artificial Intelligence, Karlsruhe, Germany,
pp. 821-3.

Green, A. E. and Bourne, A. J. (1972) Reliability Technology,
Wiley, London.

Hardy, N. W., Barnes, D. P. and Lee, M. H. (1989) Automatic
diagnosis of tasks faults in flexible manufacturing. Robotica,
7, 25-35.

Harmon, S. Y. (1988) Dynamic task allocation and execution
monitoring in teams of cooperating humans and robots, in
Proceedings of the 1988 Workshop on Human-Machine
Symbiotic Systems, Oak Ridge.

Henderson, T. and Shilcrat, E. (1984) Logical sensor systems.
Journal of Robotics, 1,169-93.

IBM Corporation (1982) A Manufacturing Language Reference,
Publication 8509015, IBM Corporation, Boca Raton, FL.

Lee, M. H., Barnes, D. P. and Hardy, N. W. (1983) Knowledge
based error recovery in industrial robots, in Proceedings of
the 8th International Joint Conference on Artificial Intelli-
gence, pp. 824-6.

Leveson, N. G. (1986) Software safety: what, why, and how.
Computing Surveys, 18, 125-63.

Lopez-Mellado, E. and Alami, R. (1986) An execution monitor-
ing system for a flexible assembly workcell, in Proceedings of
the 16th ISIR, pp. 955-62.

Lozano-Perez, T. (1983) Robot programming. Proceedings of the
IEEE, 71,821-41.

Lozano-Perez, T., Mason, M. T. and Taylor, R. H. (1984)
Automatic synthesis of fine-motion strategies for robots. The
International Journal of Robotics Research, 3, 3-24.

Lumia, R., Fiala, J. and Wavering, A. (1989) The NASREM
robot control system standard. Robotics & Computer-Inte-
grated Manufacturing, 6,303-8.

Lyons, D. M., Vijaykumar, R. and Venkataraman, S. T. (1989)
A representation for error detection and recovery in robot
task plans, in Proceedings of the 1989 SPIE Symposium on
Advances in Intelligent Robotics Systems, Philadelphia, PA,
Vol. 1196.

Narayanan, N. H. and Viswanadham, N. (1987) A methodology
for knowledge acquisition and reasoning failure analysis of
systems. IEEE Transactions on Systems, Man, and Cyber-
netics, SMC-17, 274-88.

Nof, S. Y., Maimon, O. Z. and Wilhelm, R. G. (1987) Experi-
ments for planning error_recovery programs in robotic work,
in Proceedings of the ASME International Conference on
Computers in Engineering, New York.

Randell, B., Lee, P. A. and Treleaven, P. C. (1978) Reliability
J issues in computer system design. ACM Computing Surveys,

10, 123--65.
Simpson, J. A., Hocken, R. J. and Albus, J. S. (1983) The

automated manufacturing research facility of the national
bureau of standards. Journal of Manufacturing Systems,
1, 17.

Smith, R. (1987) An autonomous system for recovery from object
manipulation errors in industrial robot tasks, PhD Thesis,
University of Minnesota.

Smith, R. and Gini, M. (1986a) Robot tracking and control issues
in an intelligent recovery system, in Proceedings of the 1986
IEEE Conference on Robotics and Automation, San
Francisco, (A, pp. 1070-5.

Error management fo r robot programming 73

Smith, R. and Gini, M. (1986b) Reliable real-time robot opera-
tion employing intelligent forward recovery. Journal of
Robotic Systems, Fall, 281-300.

Srinivas, S. (1977) Error recovery in robot systems, PhD Thesis,
CIT.

Taylor, R. H., Summers, P. D. and Meyer, J. M. (1982) AML: a
manufacturing language. International Journal of Robotics
Research, 1, pp. 19-41.

Trevelyan, J. P., Nelson, M. and Kovesi, P. (1988) Adaptive
motion sequencing for process robots, in Proceedings of
Robotics Research, the 4th International Symposium, Bolles,
R. and Roth, B. (eds), The MIT Press, pp. 445-53.

Tsukanoto, Y. and Terano, T. (1977) Failure diagnosis by using
fuzzy logic. IEEE Proceedings Decision and Control, 2,
1390-5.

Wilkins, D. (1985) Monitoring the execution of plans in SIPE.
Computational Intelligence, 1, 33-45.

Williams, D. J., Rogers, P. and Upton, D. M. (1986) Program-
ming and recovery in cells for factory automation. Interna-
tional Journal of Advanced Manufacturing Technology, 1,
37-47.

Zhou, M. C. and DiCesare, F. (1989) Adaptive design of Petri net
controllers for error recovery in automated manufacturing
systems. IEEE Transactions on Systems, Man, and Cyber-
netics, 19, 963-73.

