
Journal o f  Intelligent Manufacturing (1992) 3, 59-73 

Error management for robot programming 
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Reliability is a serious problem in computer controlled robot systems. Although robots serve 
successfully in relatively simple applications such as painting and spot welding, their potential 
in areas such as automated assembly is hampered by the complexity of programming. A 
program for assembling parts may be logically correct, execute correctly on a simulator, and 
even execute correctly on a robot most of the time, yet still fail unexpectedly in the face of real 
world uncertainties. Recovery from such errors is far more complicated than recovery from 
simple controller errors, since even expected errors can manifest themselves in unexpected 
ways. In this paper we present a novel approach for improving robot reliability. Instead of 
anticipating errors, we use knowledge-based programming techniques so that the robot can 
autonomously exploit knowledge about its task and environment to detect and recover from 
failures. We describe a system that we have designed and constructed in our robotics 
laboratory. 
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1. Introduction 

We want to make robots more dependable so that they can 
be trusted when left unattended. This paper describes the 
design and development of a robot system that continues to 
operate satisfactorily even after it encounters a serious 
error.  Failures in achieving a task are the result of errors, 
but not every error  produces an immediately detectable 
failure. Errors can occur at many levels, at the mechanical 
level (a joint becomes locked), at the hardware level (a 
sensor does not function properly so that the robot is driven 
to exceed its joint limits), at the controller level, in the 
computer  controlling the robot (either at the hardware or 
the software level), and in the environment.  We are mostly 
interested in errors in the environment because they tend 
to be more unpredictable and difficult to characterize with 
mathematical models. We are interested in errors in the 
component  parts used for the assembly, and in errors in the 
work cell (loaders, feeders, conveyor belts, tools). Our 
goal is to detect automatically and correct problems caused 
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by collisions, jammed parts, gripper slip, misorientation, 
alignment errors, and missing parts. 

Robot  systems that can recover from errors without 
human intervention do not exist today because robot 
control programs cannot handle the vast range of possible 
error  conditions. Error-handling routines are usually pro- 
duced through trial and error with specific robots, tasks, 
and work cell environments. It takes uncommon skill and 
experience to develop a reliable robot program, and the 
resulting program will then only apply to the specific robot 
task at hand. Minor changes in the robot,  task, or 
environment can lead to major  changes in the robot 's 
program (Lozano-Perez,  1983). It is commonly believed 
among robotics engineers that less than 20% of the code 
produced is directly responsible for describing the robot 's 
actual task. The rest of the code checks for errors and tries 
to recognize and prevent disasters (Fielding et al., 1987). 

A difficult problem in automatic error detection and 
recovery is detecting that something significant has oc- 
curred. Many events are usually reported to the robot 
controller but not all of them are significant. The same 
event may be important in some circumstances and almost 
irrelevant in others. Deciding when something is important 
is the first step in the error  detection process. The second 
step involves detecting the cause of the error and its effect 
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on the robot environment. Errors might appear a long time 
after what caused them happened making it more difficult 
to detect and correct them. Some errors do not affect the 
execution of the task so they could be left unrecovered. To 
recover from an error, a system needs to identify the 
differences between what has happened and what is 
wanted. The system must also be able to plan how to 
correct these differences itself. 

By making autonomous error recovery an attribute of 
the robot programming and control system, we can im- 
prove the reliability of robots and at the same time simplify 
the programming task. The manufacturing engineer can 
concentrate on describing the task at hand without having 
to consider all likely errors and how to correct them. The 
task description only needs to describe the assembly task 
and does not need to specify error detection or recovery 
procedures. This saves engineering time as well as robot 
down-time (Smith and Gini, 1986b). 

The system described here works with a fully functional 
IBM 7565 industrial manipulator. The system uses the task 
specification to generate a more detailed program describ- 
ing the sequence of manipulator operations and the sensor 
activities necessary to monitor the task's successful opera- 
tion. When an error is detected, the system automatically 
analyses the error and produces a sequence of operations to 
recover from the error. More details can be found in Smith 
(1987). 

2. Related work 

Reliability is a serious problem in robot programming and a 
difficult one as well. Parts slip, fall, jam, and get misplaced; 
surfaces become wet or slippery, and operations fail. The 
range of potential problems is so vast that there is no 
standard engineering procedure that addresses all of them 
(Gini, 1990). 

Many ideas used to improve the reliability of robots have 
been taken from the fields of software reliability and safety 
(Green and Bourne, 1972; Randell et al., 1978 and 
Leveson, 1986). Unfortunately, techniques for software 
reliability deal with states of information, not states of the 
world and are primarily directed towards restoring internal 
data states, not physical conditions. Robots operate in the 
real world and errors of interest are those manifested in the 
real world, not within the robot's software (Harmon, 
1988). A common approach to failure analysis and diagno- 
sis is to apply techniques based on fault trees, event trees, 
or cause-consequence diagrams. It has been proposed to 
combine fault-tree-based failure analysis with rule- 
oriented reasoning (Williams et al., 1986 and Narayanan 
and Viswanadham, 1987), to use fuzzy logic (Tsukanoto 
and Terano, 1977), or to use Petri nets (Zhou and 
DiCesare, 1989). 

Our approach is very different from the customary 

techniques of robot programmers. The typical approach is 
to use the robot's sensors to check for errors and to perform 
a pre-programmed recovery procedure in response (Cox 
and Gehani, 1989). As noted earlier, this leads to robot 
programs that consist predominantly of error detection and 
recovery code. In large applications the robot might not 
even be able to fit all possible error-handling codes into its 
control memory. Another serious problem is that error 
interpretation is inseparably tied to sensor readings. Spe- 
cific sensor readings do not always refer to individual and 
unique errors. 

Since it is difficult to consider all possible errors, many of 
which might never happen, a method proposed in artificial 
intelligence is to generate, from the task level description, a 
program that is guaranteed to be correctly executed even in 
the presence of uncertainties in the environment. This 
requires models of robot kinematics and dynamics, and 
models of physical properties of objects such as friction. 
This approach, so far, has been applied only to fine motions 
for specific tasks such as insertion operations (Lozano- 
Perez et al., 1984). Modeling uncertainties and taking into 
account errors in the model (Donald, 1990) helps but the 
real world is so complex that we do not really know how to 
model it. It has been shown (Fielding et al., 1988) that the 
problem of generating a complete set of automatic error 
recovery routines is undecidable. 

Much previous research in artificial intelligence has 
centered on detection and correction of errors in simulated 
robot systems (Wilkins, 1985). Most AI research makes a 
number of assumptions: knowledge about events is correct, 
each action produces precisely defined post-conditions, 
there are no uncertain data, correct predicates are gener- 
ated from sensor data every time they are needed, and 
sufficient knowledge is provided to take into account all the 
possible states of the environment. These assumptions are 
too strict to be realistic. A few exceptions exist. The most 
notable is STRIPS (Fikes and Nilsson, 1971) the system 
used to control the mobile robot, Shakey. More recently, 
work has been done on monitoring the execution of 
programs with real robots for manufacturing applications 
(Lee et al., 1983 and Nof et al., 1987). There is a growing 
interest in modeling sensors (Henderson and Shilcrat, 
1984) and planning for their use (Doyle et al., 1986) that 
will benefit work on error detection and recovery. 

Our early work (Gini and Gini, 1983) was inspired by 
early research at Jet Propulsion Laboratory (JPL). Srinivas 
(1977) developed a formlization of techniques to explain 
robot failures and to generate expectations of the effects of 
failures. The first of these techniques, failure reason 
analysis, used knowledge about why robot actions fail to 
generate a fault tree identifying possible reasons for a 
particular failure. The second technique, multiple outcome 
analysis, would generate a set of possible outcomes from a 
given failure along with an indication of sensor information 
that would disambiguate among the possibilities. Unfortu- 
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nately, Srinivas' system was only partially implemented on 
the JPL Robot. 

The group at the National Bureau of Standards (Simpson 
et al., 1983) has developed a hierarchical control 
architecture for a small-batch metal machining shop. The 
architecture has recently been adapted to control the 
NASA robot for the space station (Lumia et al., 1989). The 
system is divided into three hierarchies; task decomposi- 
tion, world model, and sensory processing. At each level, 
goals are decomposed into simpler goals for the next lower 
level. The sensory system updates the world model as 
rapidly as possible to keep the model consistent with the 
physical world. 

The group at the University of Toulouse (Lopez-Mella- 
do and Alami, 1986) has designed and implemented a 
system, NNS, to control a manufacturing cell that includes 
planning and some error recovery. They update the work 
cell model after each failure, which is computationally 
expensive except for trivial cells. The system concentrates 
on using assembly knowledge during the assembly task 
itself. Tasks are specified as a sequence of changes in the 
state of the work cell. The structure of the system makes 
the intentions of the robot's actions clear during task 
execution, making it possible to detect automatically and 
recover from errors. NNS does not address the problem of 
task specification; tasks are apparently coded directly in 
terms of work cell state descriptions. 

The group of Lee and Hardy (Lee et al., 1983 and Hardy 
et al., 1989) at the University College of Wales has studied 
the problem of error recovery in conjunction with indust- 
rial robot tasks. They are working on an experimental 
system, called AFFIRM, for representing knowledge ab- 
out the robot's task, work cell, and sensors. Tasks are 
encoded using the frame-based knowledge structure 
shared by the rest of the system. It appears that the work on 
AFFIRM concentrates on error diagnosis more than on 
error recovery. 

Trevelyan and his group (Trevelyan et al., 1988) has 
done similar work in sensor monitoring involving a radical- 
ly different domain. In their problem domain, sheep 
shearing, they have succeeded in recognizing a number of 
specific failures through specific sensor readings. Each 
failure triggers a specific recovery procedure. The system 
does not attempt to represent knowledge about errors and 
recoveries in a flexible fashion or to support inferencing. 
While the technique of directly coupling sensor readings to 
error handling greatly simplifies the system, it also restricts 
the system to handling errors that can be explicitly recog- 
nized by sensors. 

Lyons (Lyons et al., 1989) proposes a representation for 
robot task plans that allows robots to react to suit the 
current environment. He has developed a formal model of 
distributed computations that represents reactive plans as 
networks of distributed processes and that allows to 
represent the environment in which the robot acts. This 

representation can be used to monitor the execution of 
plans. 

3. Archi tecture  for robot  error  recovery  

The autonomous error recovery system consists of three 
components: the pre-processor, which accepts robot task 
specifications, the AP executive, which operates the robot 
and monitors its performance of the task, and the recover- 
er, which generates error recovery procedures in response 
to errors detected during execution. Figure I illustrates the 
architecture and the flow of information in the system. In 
the figure ovals represent data and rectangular boxes 
represent processes. Subsequent sections of the paper 
describe each component. 

The architecture presented here explicitly divides the 
system into two parts: one that must operate in real time 
and one that does not. The activities associated with 
operating the robot and verifying its performance are 
assigned to a dedicated processor so that they may operate 
at the highest possible speed. Activities associated with 
preparing tasks for execution by the robot or with error 
analysis and recovery are handled by a separate processor 
that does not have serious time constraints. 

~ obot~"~ 

Preprocessor t 

AP Processor 

I 
Robot 

Recoverer 

Fig. 1. Architecture of the system. 
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An important feature of the system is that it is designed 
to incorporate existing commercial robot controllers. It 
does not depend on custom-designed robot control soft- 
ware, instead it operates the robot through the robot's own 
controller using its own control protocol. The error 
recovery system simply needs to be adapted to a specific 
controller so that it can send motion commands to the 
robot's controller and use the robot's sensors. 

The system cannot handle all possible errors. From the 
beginning, our research has concentrated on the problems 
posed by physical errors and uncertainties in the robot's 
task and not on verification of the program's correctness. 
The robot program given to the system is taken as the 
specification of the desired task. Errors that could be found 
by a robot simulation system must be eliminated before 
execution. 

The present configuration of the error recovery testbed 
manages an IBM 7565 manufacturing manipulator. The 
IBM 7565 is a hydraulic gantry robot with six degrees of 
freedom and a closed loop controller. The robot's gripper 
contains strain gauges on each jaw that measure strain 
along three axes. Motion control and sensor filtering 
software resides on an IBM Series/1 minicomputer and 
allows manipulator and sensor programming in the AML 
language (IBM, 1982 and Taylor et al., 1982). The AP 
executive is implemented in C on an MC68000-based 
personal computer system, an Apple Macintosh. The 
pre-processor and the recoverer are written in Franz Lisp 
on a Unix time-sharing system that communicates with the 
Macintosh. 

4. The pre-processor 

To operate the system, the user provides the pre-processor 
with a task specification in the system's robot programming 
language. The pre-processor converts this program into a 
specially designed intermediate form called the augmented 
program (AP). This expanded form is then used by the AP 
executive to monitor and control the robot's operation in 
real time. 

Task specifications are written in a simple manipulator 
level programming language called woktalk. The name is 
taken from Project Woksape, the organization that pro- 
vided the IBM robot used in the testbed. The woktalk 
language is equivalent in expressive power to typical robot 
languages even though it lacks the features of some 
languages. The woktalk primitives are adequate for de- 
scribing manipulator and object motions in pick and place 
tasks. 

Figure 2 presents a simple robot task written in woktalk. 
The robot moves about an object, picks it up, lifts it, puts it 
down, and releases it. Woktalk programs are written as 
Lisp forms with individual statements comprised of lists of 
atoms. The first statement, name, defines the relevant 

((name (aboveslot (8.44 -15.92 7 -47 0 0)) 

(slot (8.44 -15.92 .1 -47 0 0))) 

(move aboveslot) 

(open 1.5) 

(grab cpl slot) 

(carry cp 1 aboveslot) 

(release cpl 1.5 slot)) 

Fig. 2. A simple program in woktalk. 

positions. The first three coordinates are cartesian x, y, and 
z in the work cell; the last three coordinates specify pitch, 
roll, and yaw angles in degrees. The move statement moves 
the gripper to the specified location aboveslot. The open 
statement commands the gripper to open 3.75 cm. The next 
three instructions describe manipulator actions that in- 
volve objects. The grab statement tells the robot to move to 
the location, slot and grasp the object, cpl. The carry 
statement tells the manipulator to move to the location 
aboveslot while carrying the object cpl. The release 
statement tells the manipulator to move to the location slot 
and open the gripper to 3.75 cm causing it to cease carrying 
an object. These statements name the particular object 
being affected so that the system can keep track of actions 
performed on parts in the work cell. 

4.1. The task knowledge base 

The task knowledge base (TKB) describes objects and 
locations that are relevant to the robot's task. The TKB 
serves as an initial model of the state of the robot's work 
cell when it begins its task. The TKB identifies all objects in 
the work cell that could possibly be used in the robot's task. 
Each object is identified by location and object type. 
Important locations in the work cell, such as pallet slots and 
fixture positions, are also identified in the model. If an 
error occurs, the recoverer updates the work cell model to 
reflect its probable state using information in the event 
trace. The TKB is constructed by the robot programmer 
using appropriate declaration statements. The TKB used 
for the sample program and other similar programs is 
shown in Table 1. 

Our experiments used only one type of part, so there is 
only one object class. The object is of type coupler and its 
grasp width is declared to be 2.5 cm. The grasp width 
specifies a nominal value for the gripper's width when it is 
holding that type of object. There are three couplers: part 
cpl stored in location slotl, part cp2 stored in slot2, and 
part cp3 stored in slot3. The coupler in slot3 is declared as a 
spare so it may be used to replace one of the other couplers 
if an error occurs. 
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Object classes Parts Location of parts 

Identifier Descriptive Grasp Name Class  Location Usage Name Location Usage 
name width 

coupler 'coupler' 1.0 cpl coupler slot1 task slotl 8.44 -15.92 0.1 -47 0 0 coupler 
cp2 coupler slot2 task slot2 6.08 -15.94 0.1 -47 0 0 coupler 
cp3 coupler slot3 spare slot3 3.73 -15.96 0.1 -47  0 0 coupler 

fixture -7.77 -14.41 4.43 -47  0 0 holder 
park 0 - 15 4 -47  0 0 park 
discard 6.44 -5  3.5 -47  0 0 discard 

The three slots that initially contain couplers are all 
named and their locations specified. The usage declares 
how a location can be used. The park location identifies the 
manipulator 's park position in the work cell. The discard 
location identifies a location above a trash bin into which 
the robot may drop unwanted parts during error  recovery. 

The TKB could be generated automatically from a CAD 
data base, but we haven't  done so in our current imple- 
mentation. This would require enrichment of the semantics 
of typical CAD data files to indicate the usage of objects 
and locations. Incorporation of such CAD data would 
support the geometric modeling of objects, which would 
allow more sophisticated analysis and recovery techniques. 

4.2. Translating a woktalk program into an A P  

The augmented program (AP) is a representation of the 
robot 's  program that provides the interface between the 
pre-processor and the AP executive. In addition to the 
command, sensory, and procedural information necessary 
to control the robot,  the AP contains information about 
how the robot 's  actions affect the objects in the work cell. 
The AP represents the sequence of actions as a finite 
automaton.  The pre-processor generates the AP by trans- 
lating the original woktalk program. The sequencing of 
instructions in the woktalk program is replaced by transi- 
tions in the AP. Crucial sensor readings preceding some 
action in the woktalk program will correspond to the 
pre-conditions of the corresponding state transition in the 
AP. The pre-conditions on transition leading out of a given 
state will correspond to the set of sensor readings to be 
monitored by the sensor handler. 

The AP incorporates two kinds of information besides 
motion commands: sensor information and information 
about objects in the work cell. The sensor information in 
the AP is used to guide the real time system in its use of 
sensors. The AP specifies which sensors need to be 
monitored during each step of the robot 's task and often 
identifies specific sensor values that are meaningful. All 

unspecified sensor readings can be ignored by the system, 
thus saving computation time and expense. The informa- 
tion about objects is not used to control the robot,  but it is 
saved in the event trace and used only if an error occurs. 

The automaton representation provides a natural way to 
map events to actions. Significant sensor readings are 
treated as tokens that may cause state transitions and 
actions related thereto.  The AP structure is designed to be 
interpreted efficiently in real time. Another  requirement is 
that the AP must be in a form that can be modified 
dynamically by the recoverer.  When a failure has been 
analysed and a recovery plan devised, the recoverer needs 
to add new instructions to the AP. The AP representation 
allows incremental compilation and reliable patching. 

The diagram in Fig. 3 shows the AP for the sample 
problem in a format that is easy to read. The actual internal 
representation of an AP is a Lisp expression. A state may 
contain any number of imply and expect forms and no more 
than one robot-do operation. For example, the operation 
'robot-do: move wok (8.44 -15 .92  7 - 4 7  0 0)' instructs the 
robot named wok to move to the specified location. The 
imply form specifies facts about the work cell that are true 
when the state is entered,  the expect form specifies the 
expected result of the current state if all goes correctly. For 
instance, if the program reaches state 5, the system assumes 
that the object cpl  has been grasped. If the destination of 
the move operation in state 5 is reached without any error,  
the system expects that the robot is still carrying the object 
cpl .  

Significant sensor readings are indicated by predicates. 
For example, the predicate reach becomes true when wok 
reaches its assigned destination. A transition from one 
state to the next occurs when a continuously tested 
predicate such as that becomes true. All predicates in a 
state are tested concurrently. The AP executive chooses 
the transition whose predicate is satisfied first. The event 
predicates are described in Table 2. 

Information about object manipulation is not important 
for operating the robot,  but it is vital to error  detection and 
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1 robot-do: 

when 

2 robot-do: 

when 

3 robot-do: 

expect: 

when 

4 robot-do: 

expect: 

when 

5 robot-do: 

imply: 

expect: 

when 

6 robot-do: 

imply: 

expect: 

when 

7 robot-do: 

imply: 

expect: 

when 

8 imply: 

9 imply: 

Fig. 3. The AP for the given program. 

move wok (8.44 -15.92 7 -47 0 0) 

reach 

hit 

joint-error 

open wok 1.5 

open 

hand-error 

move wok (8.44 -15.92 0.1 -47 0 0) 

grasp cpl (8.44 -15.92 0.1 -47 0 0) 

reach 

hit 

joint-error 

center wok 

grasp cpl (8.44 -15.92 0.1 -47 0 0)) 

center 

missed 

crash 

hand-error 

move wok (8.44 -15.92 7 -47 0 0))) 

grasp epl (8.44 -15.92 0.1 -47 0 0)) 

carry cpl (8.44 -15.92 7 -47 0 0)) 

reach 

hit 

untouch 

joint-error 

move wok (8.44 -15.92 O. 1 -47 0 0))) 

carry cpl (8.44 -15.92 7 -47 0 0)) 

carry cpl (8.44 -15.92 0.1 -47 0 0)) 

reach 

hit 

untouch 

joint-error 

open wok 1.5)) 

carry cpl (8.44 -15.92 O. 1 -47 0 0)) 

release cpl (8.44 -15.92 0.1 -47 0 0)) 

open 

crash 

hand-error 

done 

error 

go to state 2 

go to state 9 

go to state 9 

go to state 3 

go to state 9 

go to state 4 

go to state 9 

go to state 9 

go to state 5 

go to state 9 

go to state 9 

go to state 9 

go to state 6 

go to state 9 

go to state 9 

go to state 9 

go to state 7 

go to state 9 

go to state 9 

go to state 9 

go to state 8 

go to state 9 

go to state 9 

recovery. At the level of robot control, a carry command is 
almost identical to a move, except that special sensors may 
be active to verify that the object is not dropped. The 
presence or absence of an object in the gripper, for 
example, would determine whether or not the hitobj event 

is activated. In the AP itself, states that represent actions 
on objects will contain special clauses (i.e. the expect and 
imply clauses) that are inserted into the event trace when 
the state is entered, as explained in the next section. If an 
error occurs, the clauses help the recoverer determine 
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Table 2. Event predicates. 

Event Description Operations 

Manipulator position events move open center 

reach arm reached its destination X 
joint-error arm motion error X 

Gripper Width Events 

open hand reached specified opening size X 
hand-error gripper error X X 

touch 
untouch 
center 
missed 
crush 
hit 
hitobj 

detect 
lost 

Strain Gauge Events 

gripper touched something 
gripper ceased to touch something 
force controlled grasp operation completed 
nothing found to grasp 
excessive grasp pressure 
unexpected touch on strain gauge 
unexpected touch on carried part 

LED Events 

gripper LED detected an object 
gripper LED stopped detecting object 

X 

X 
X 

X 

X 

X 

X 
X 
X 

X X 
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where objects really are in the work cell and what the robot 
was trying to do when the failure occurred. The woktalk 
language is designed so that the appropriate clauses for a 
given state are inferred directly from the statement type 
and from statement parameters.  

5. The AP executive 

The AP executive is responsible for maintaining an accu- 
rate picture of what the robot does. The AP executive does 
more than simply observe and report  on the robot 's 
actions. It takes responsibility for issuing commands to 
move the robot.  When the AP says that a robot action is to 
occur, the AP executive sends the command to the robot. 
The AP executive tracks the robot 's activities by monitor- 
ing data from the robot 's  sensors. The sequence of sensor 
data yields an event trace from which we get the robot 's 
recent history. 

The testbed utilizes separate processors for executing the 
reactive, or real time, software components and for 
executing the reflective, or symbolic reasoning, com- 
ponents of the system. Providing separate processors for 
the real time and the automated reasoning components of 
the system prevents time-critical software components 
from having to compete for computation time. Since the 
AP executive is the only component  that interacts with the 

robot continuously, a large-scale system would probably 
consist of several independent work cells, each with its own 
AP executive, sharing a central server that provides 
pre-processor and recoverer  resources. 

5.1. The event  trace 

As the AP is executed the AP executive produces the event 
trace. The trace tells when state transitions occur, the 
sensor readings that triggered them, and information about 
the progress of the robot 's task. When a new state is 
entered,  the AP executive adds a new-state entry to the 
trace. While processing the initial actions, the AP execu- 
tive writes imply and expect entries into the trace. Sense 
entries are written when sensor events occur. Event  trace 
entries are transmitted to the recoverer as they occur so 
that the recoverer  may track the robot 's  activities and 
handle error recovery. 

Figure 4 shows a portion of an event trace during the 
execution of the task shown in Fig. 2. The Fig. shows trace 
entries generated during an execution of states 4 and 5. 
Each entry begins with a timestamp. The new-state entries 
identify when state transitions occur. The expect and imply 
entries are generated from the current AP state. The sense 
entries identify the result of the commanded operation and 
provide precise numerical feed-back of the result of the 
operation. Gripper  operations return the resulting jaw 
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(228055 new-state task 4 23) 

(228055 expect grasp cpl (8.44 -15.92 0.1 -47 0 0)) 

(228125 sense center wok 0.963099) 

(228126 sense center wok 0.963099) 

(228127 new-state tas k 5 24) 

(228127 imply grasp cpl (8.44 -15.92 0.1-47 0 0)) 

(228127 expect carry cpl (8.44 -15.92 7 -47 0 0)) 

(228213 sense reach wok (8.44114 -15.9155 6.99949 -46.9778 0.0310315 -0.0207186)) 

(228214 new-state task 6 25) 

Fig. 4. Portion of the event trace. 

width and motions return a six element vector identifying 
the resulting manipulator coordinates. 

5.2. Robot task execution 

The AP executive naturally follows an event-driven soft- 
ware structure. Sensory stimuli produce sensory events 
which in turn invoke procedures to perform state-related 
actions. The automaton structure permits a simple form of 
multi-programming. The AP processor implements this 
through nonpreemptive scheduling of active processes. 
Each time a process does a state transition the process 
executes the transition actions to completion before 
another  transition may occur. Once the process completes 
its transition the scheduler is invoked which then seeks 
another event ready to process and handles it. 

An AP state transition consists of several steps beginning 
with a sensor event being placed on the scheduler queue. 
When the scheduler dequeues the sensor event, it checks to 
see if the active AP is waiting for that event. If so, the 
scheduler generates a transition action, which is also placed 
on the queue. When the scheduler dequeues the transiton 
action, it performs the state transition. This is the point at 
which a new-state entry is placed in the event trace. The 
transition action itself involves three steps. First, the 
scheduler queues look-for actions that correspond to the 
event predicates in the new state. Next, the scheduler 
queues the robot-do action, if any, for execution. Finally, 
the scheduler extracts imply and expect clauses from the 
state and writes corresponding entries into the event trace. 

The transition is complete once the scheduler performs 
the queued actions. It first dequeues the look-for actions 
and passes them to the appropriate sensor handlers. These 
actions direct the sensor handlers to look for appropriate 
sensory information. If a particular sensor handler does not 
need such prompting then the look-for action is ignored. 
Following the look-for actions on the queue is the robot-do 
action. This action is passed to the software process that 
controls the robot which in turn instructs the robot to do the 
action. Following the robot-do action the queue will 
probably be empty until the next sensory event occurs, 
probably triggering another state transition. 

5.3. Interfacing to the robot's controller 

As mentioned previously, the system is designed to work 
with existing, off-the-shelf robot systems. The system 
simply requires that robots are able to position themselves 
reliably with control systems provided by the manufactur- 
er. The error recovery system operates the robots in terms 
of point-to-point manipulator positioning commands; the 
robots must be able to handle such commands reliably and 
accurately. Clearly, more functionality is better: built-in 
sensor systems such as the gripper strain gauges on the IBM 
7565 system can be exploited to enhance system perform- 
ance. Additional sensors such as cameras may be incorpo- 
rated into the system to analyse the work cell state after an 
error  is detected; such sensors may bypass the AP execu- 
tive and connect directly to the recoverer. However,  
sensors such as gripper strain gauges that can verify the 
success of a robot action, must report  to the AP executive. 

To operate the robot,  the AP executive must take the 
basic robot-do functions of move, open, and center and 
generate appropriate commands to operate the robot 
connected to it. This is usually handled by a robot driver 
process; a separate driver must be implemented for every 
type of robot used by the error recovery system. In the 
testbed system the driver is a process that receives com- 
mands to start a robot operation or to read messages sent 
back by the robot. The driver starts a robot operation by 
sending a command to the robot. The driver is then 
instructed to pull the robot 's output port. The robot will 
send a message when it finishes the commanded operation; 
the driver interprets the message and generates a sensor 
event indicating the result. The robot 's controller must 
provide sufficient functionality to implement  three basic 
manipulator operations, as shown in Table 3. 

Table 3. Operations required from the robot controller. 

Instruction Operation Robot controller 
operation 

move move gripper to absolute manipulator movement 
location 

open change gripper's gripper movement 
opening to specific width 

center close gripper until object feed-back from gripper's 
grasped fingers 

The AP executive makes no assumptions about the 
actual form of robot controller commands and responses or 
the nature of the robot 's interface. Robots we used in our 
experiments all use standard RS-232 or RS-422 serial 
interfaces; the commands and responses are all in the form 
of ASCII text strings. However,  this is visible only in the 
robot drivers themselves. A robot interface could just as 
easily be through a complicated custom controller con- 
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nected to the AP executive or through a series of parallel 
interfaces. 

In our implementation all manipulator motions are 
performed by AMLs MOVE statement. The arguments to 
MOVE are a list of joints to move, a matching list of 
destinations, and an optional list of AML sensor monitors 
that can terminate the motion. Joint destinations are given 
in cartesian coordinates for x, y, and z positions, degrees 
for pitch, roll, and yaw angles, and centimeters for the 
gripper width. The AP move function is performed by a 
MOVE statement that specifies an absolute destination for 
the x, y, z, roll, pitch, and yaw joints. The open function is 
performed by a MOVE statement that affects the gripper 
opening only. The center operation is performed by a 
MOVE statement to close the gripper combined with an 
embedded MONITOR statement to terminate the motion 
when the strain gauges detect an object being held. 

5.4. Sensor management through filtration 

Sensor information is filtered in several ways. The AP 
specifies sensor information that is significant to the 
execution of that task. This specification is given in terms of 
sensory events that can cause state transitions in the AP. 
The specification is used both to identify potential state 
transition events and to identify sensory information 
significant for the event trace. This specification is also 
passed to sensor filter tasks that activate appropriate 
sensors and map sensor values into events. 

AP transitions are caused by discrete events, so a robot's 
progress at its task depends on the occurrence of events 
that cause appropriate transitions. Significant sensory 
readings must be mapped into events that cause state 
transitions. This mapping provides one form of sensory 
filtration; sensory readings are reported only when the 
value is significant to the progress of the robot's task. In 
some cases the identity of the event is the only specific 
sensory information returned and in other cases numerical 
data is included as well. 

Each AP state contains event predicates identifying 
sensor readings that would be significant to the successful 
execution of that state. The AP executive passes the 
information in the event predicates to the appropriate 
sensor filters before initiating robot motion. The sensor 
filters activate appropriate procedures so that necessary 
sensor readings will take place. 

All sensor filtering on the IBM 7565 is implemented 
using the monitor facility of the A M L  language. Monitors 
are used to define ranges of sensor values that can activate 
user-defined procedures or terminate robot motions. 
When initializing the IBM 7565, the AP executive defines a 
set of monitors for classifying gripping forces and associates 
each monitor with an AP event type. The numerical values 
used for classifying gripping force depend on the objects 
being used in the robot's task and the actions performed on 

them, so these values may be adjusted when a task begins. 
More details on how to obtain these values are in the next 
section. When the AP executive gives the IBM 7565 a 
motion command, it also specifies a set of monitors to 
activate. The A M L  system collects the appropriate sensor 
readings for each active monitor and trips the appropriate 
monitor if its sensor enters the monitor's defined range. 
This terminates the motion in progress and generates a 
message to the AP executive identifying the qualitative 
value of the sensor reading, as determined from the 
monitor that was tripped. If no monitor terminates the 
active motion, a similar message indicating uninterrupted 
completion is sent instead. The AP executive then gener- 
ates a sensor event and, if necessary, updates the event 
trace and performs an AP state transition. 

Figure 5 shows an example of the transformation of a 
move operation in an AP state into the corresponding 
AML commands executed by the robot. The desired 
destination and the desired A M L  monitoring sets to be 
activated (E-HIT and E._UNTOUCH) are passed to the 
APM procedure. This procedure, written in AML and 
executing on the IBM Series/l, performs the MOVE 
operation and the related filtering for the 7565's sensors. 
The procedure activates the appropriate monitors and 
performs the motion subject to the selected monitors. 

AUGMENTED PROGRAM CODE 

(4 ((robot-do move wok 
(-7.77 -14.41 7 -45 0 0))) 

((reach wok) 5) 
((hit wok) 12) 
((untouch wok) 12) 
((joint-error wok) 12)) 

AMLPROCEDURECALL 

APM (-7.77, -14.41, 7, -45, 0,0, E_HIT#E_UNTOUCH) ; 

t__] 
AML ROBOT COMMANDS 

REMONITOR (E_HIT#E UNTOUCH) ; 

MOVE (<JX, JY, JZ, JR, JP, JY>, 

<-7.77, -14.41, 7, -45, 0, 0>, 

E_HI T#E__UNTOUCH) ; 

Fig. 5. Converting AP statements into AML statements. 
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5.5. Qualitative sensor interpretation 

Although the event trace often provides numerical sensor 
data, such information is not of primary importance when 
reasoning about the robot's activities. To meet this need, 
the error recovery system assigns symbolic meanings to 
numerical sensor values in a number of ways. Spatial 
locations and critical dimensions are assigned symbolic 
names. Gripping forces are assigned qualitative values 
according to the range in which a force value falls. 

Qualitative classification of sensor data serves a second 
purpose as well. When executing an AP, the AP executive 
responds to events in terms of symbolic classifications. 
Upon successful completion of a motion command the AP 
responds to a reach sensor event instead of examining and 
matching the robot's reported destination. If the gripper 
drops an object and the gripping force drops to a small 
value, the AP responds to an untouch sensor event instead 
of testing the specific force value. The classification of 
sensor values into different types of AP events is performed 
by a sensor filter procedure that operates on the behalf of 
the AP executive, as described above. 

Gripper forces, when they are significant, determine 
whether the gripper is touching an object and holding with 
an adequate force. Identification of appropriate touching 
and grasping forces must be communicated to the AP 
executive so that appropriate AP state transitions occur 
depending on the gripping forces encountered. The sensor 
filter classifies gripping forces into specific ranges according 
to the robot's current action. Each range corresponds to a 
type of sensing event that can be produced by the gripping 
force sensor. 

Ranges for strain gauge forces were determined experi- 
mentally by measuring side, pinch, and tip forces while the 
robot manipulated objects. Figures 6 and 7 summarize the 
range of pinch and tip forces encountered while grasping a 
coupler held in a slot. The experiments identified the 
normal force values and the variations thereof encountered 
during normal operation. This information defined an 
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envelope for acceptable sensor readings. We used the 
experimental information to assign values to symbolic 
ranges, as shown in Fig. 8. Each symbolic sensor event 
corresponds to a range tested by a MONITOR statement in 
the AML sensor filtering code. The appropriate monitors 
are activated at the beginning of the robot's action. If a 
tested strain gauge reading enters the range marked by the 
dashed line the appropriate monitor is tripped. When a 
monitor is tripped it terminates the robot's action and the 
corresponding sensory event is passed to the AP executive. 
The actual boundary values may be changed when initializ- 
ing and calibrating the testbed system. 

6.  T h e  r e c o v e r e r  

If an AP state transition leads to an error state, a message 
to that effect is appended to the event trace and the trace is 
passed to the recoverer. The recoverer generates a model 
of the current work cell's state and of its desired state using 
information in the event trace (Smith and Gini, 1986a). 
Locations visited by the robot or by objects in the work cell 
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are assigned symbolic identifiers, and a history is produced 
of visits for each location, object, and robot gripper in the 
work cell. This model is used to produce a recovery plan in 
the form of a sequence of AP states to be appended to the 
task's existing AP. The recoverer passes these additional 
states back to the AP executive where they are executed. If 
the new states each execute successfully, they will lead the 
task back to a state in the original AP. To effect recoveries 
in this manner successfully, the recoverer requires a copy of 
the task's AP and the information in the event trace. 

6.1. Error recovery planning 

The kinds of recovery activity of which the system is 
capable depends on the level of abstraction at which the 
system understands the task. This is related to the notion of 
levels of abstraction in robot programming languages. If 
the system understands nothing about the task beyond the 
manipulator level, then effective recovery is seldom possi- 
ble. On the other hand, if the system understands the task 
in terms of factory inventories and mechanism design, the 
system could conceivably design and build a new part in 
response to an error. For assembly tasks in this research, 
however, the highest level at which a task is understood is 
in terms of object motions. Task goals, failures, and 
recoveries are understood in terms of the desired positions 
of parts in the assembly. If errors are understood primarily 
as situations in which parts are misplaced, then recovery 
consists primarily of putting parts back where they should 
be. This is often referred to as the pick and place synthesis 
problem (Lozano-Perez, 1983). 

Classically, a pick and place motion planner requires 
three types of input data. First, it requires a description of 
the manipulator, available parts, and of the work cell. In 
the error recovery testbed, this is provided by the task 
knowledge base. Second, it requires the current configura- 
tion of the manipulator and parts in the work cell. This 
information is derived from the event trace. Finally, the 
planner needs to know the desired destinations of parts to 
be moved. The error recovery testbed derives this informa- 
tion by comparing the expected and actual results of object 
motions after an error is detected. The pick and place 
planning problem is often decomposed into two sub- 
problems: grasp and path planning. Grasp planning con- 
sists of selecting the appropriate sequence of motions to 
grasp an object rigidly. This is simple if the object is always 
grasped while being held in a fixed position, but it is quite 
difficult if the paws position is unconstrained. Our experi- 
ments relied on simplifying assumptions for grasp and path 
planning as described in the next section. 

Although pick and place problems are the most complex 
problems addressed here, the system encounters other 
types of errors as well. For example, robots may encounter 
controller errors, hydraulic or power failures, and operator 
intervention via safety switches. Errors such as these 

prevent the robot from performing the attempted manipu- 
lator motion. Unlike errors involving objects, these fai- 
lures prevent the robot from performing its task at the 
manipulator level. When such an error is detected it can be 
recovered from by retrying the manipulator level operation 
that failed. Manipulator level errors may be classified as 
soft or hard errors. A soft error is a situation in which the 
robot is disabled only momentarily and can recover without 
operator assistance or repair. For example, some robot 
controllers experience momentary instabilities or wobbles 
which infrequently prevent them from completing a mo- 
tion. Such a failure is intermittent and is unlikely to occur if 
the operation is retried. Recovery consists of simply 
retrying the failed operation. On the other hand, some 
manipulator level errors are serious enough to require 
operator intervention or even repair. For example, the 
IBM 7565 might lose its counterbalancing air pressure and 
cease to operate until the pressure is restored. This would 
constitute a hard error since the robot can not resume 
operation without operator assistance. However, once the 
problem has been resolved the recovery strategy is the 
same as for soft errors: simply retry the failed operation. A 
recovery plan for hard errors, then, must ask for operator 
assistance and, once the problem is resolved, should retry 
the operation that failed. 

6.2. The woktalk planner 

In order to simplify grasp and path planning, the error 
recovery planner exploits some simplifying aspects of the 
testbed's work cell. The testbed assembly tasks all use 
plastic parts that are large and easily sensed by the strain 
gauges on the IBM 7565's gripper. Assembly parts are 
provided with individual slots to hold them in a precise 
position for grasping. Parts, slots, and fixtures are spread 
about the work cell surface so that all may be reached 
through straight vertical motion without the risk of collid- 
ing with other work cell obstacles. 

Grasp planning requires information about the paws 
position and the locations of appropriate grasp points on 
the object. This information is extracted from the TKB. 
The recovery planner always plans to grasp parts that have 
been installed in slots designed for the purpose. The 
appropriate gripper location for grasping a particular part 
is given in the TKB as an attribute of the slot containing the 
part. The grasping width for approaching the part is 
derived from information on the part contained in the 
TKB. This provides sufficient information for grasping the 
part. 

Path planning exploits the flat surface nature of the 
testbed's work cell lay-out. Typically, a path needs to be 
planned from one location near a slot or fixture to another. 
These motions are planned in three steps: up, over, then 
down. Collision avoidance is achieved by moving up from 
the surface of the work cell and into a parking plane during 
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the up step. The parking plane is a region high enough 
above the work cell that the manipulator can move 
anywhere in it without hitting anything in the work cell. Its 
location is inferred from the park location defined in the 
TKB. The over step places the manipulator on top of its 
destination and the down step approaches the desired 
destination. 

The recovery planner uses a state-oriented model of 
parts and locations in the work cell. Error interpretation 
for purposes of recovery attempts to achieve the expected 
occupancy states of parts and locations in the assembly 
task. Parts may be in use or spare or lost, depending on the 
progress of the task and the effects of errors and recovery 
plans. Locations are usually occupied or empty and are 
usually manipulated symbolically though each location's 
geometric position is also known. A typical recovery may 
be to replace the missing part, x, with a new part, x, 
currently in location, a, and move the part to its expected 
position of location, b. 

When the recoverer is invoked it uses a four-step process 
to produce the recovery plan. First, it uses the event trace 
and TKB to update the work cell model. Next, it chooses its 
recovery plan depending on the type of error that occurred. 
Third, it generates assertions about the expected and 
desired state of the work cell using the event trace and the 
work cell model. Finally, the recoverer selects a recovery 
plan according to the type of error; the specific plan steps 
are generated by applying the assertions to the individual 
steps of the recovery plan. Plan steps are generated in 
woktalk and converted to AP form before being sent to the 
AP executive. 

The recoverer generates a pick and place recovery 
whenever a sense event occurs that indicates trouble with 
the part the manipulator is carrying. The primary purpose 
of gripper strain gauge readings in the testbed system is to 
verify the proper transportation of a gripped part, so the 
recoverer usually generates a pick and place recovery in 
response to strain gauge sense events. The generalized pick 
and place recovery plan treats it as a problem of discarding 
an invalid part and acquiring a new one. The generalized 
pick and place recovery plan consists of six steps. The first 
step is to move to the parking plane in preparation for the 
next step. The next step is to discard the part currently held 
in the manipulator, if any. The TKB defines a discard 
location that is used for this purpose. The third step is 
generated if the recoverer believes there is an obstruction 
in the part's destination: a message is generated that asks 
the operator to remove any obstruction from the specified 
location. The fourth step generated if there are no spare 
parts of the required type available: an operator message is 
generated to ask for the desired part to be provided. The 
fifth step picks up the replacement part from its initial 
location and moves it to its expected destination, fulfilling 
the forward recovery. The sixth step generates a state 
transition into the forward recovery state. 

6.3. Recovery from multiple errors 

If an error occurs, the recoverer passes additional AP states 
to the AP executive. These additional states do not replace 
existing states in the AP; they are appended to them. The 
AP executive resumes task execution with the first of the 
recovery states passed to it. Once the recovery execution 
begins, the AP executive treats the recovery states identi- 
cally to the states in the original AP. If another failure 
occurs, whether during the recovery or after completing 
the recovery, the AP executive again reports the failure to 
the recoverer and resumes execution when it receives a set 
of recovery states. For example, if the robot loses a part, it 
can attempt a recovery by opening the gripper, moving to 
the work cell surface, and trying to grab the part. If the part 
is there, the recovery can proceed. If the grasp fails, the AP 
executive simply informs the recoverer which can then 
produce another recovery plan and try again. 

The ability to do multiple recoveries allows the recoverer 
to profit from mistakes in a recovery plan. When faced with 
multiple recovery choices, the recoverer can choose the 
one that is most likely to reduce uncertainty about the state 
of the work cell. The recoverer can also produce recovery 
plans with the sole purpose of taking sensor readings in the 
robot work cell. If the recoverer needs to probe a specific 
spatial location it can produce a recovery plan that 
performs the desired sensor reading and then immediately 
fails. The resulting event traces will increase the amount of 
information in the work cell model and the unsuccessful 
recovery will not prevent a subsequent recovery from being 
attempted. 

Another useful feature during error recovery is the AP 
executive's ability to display messages for the robot's 
operator. These messages are produced by statements in 
the AP and thus may be generated by the recoverer. This 
facility allows the recoverer to request specific operator 
intervention when necessary. 

6.4. Experimental results 

We have performed a variety of simple experiments 
involving repetitive tasks, all of them using the workcell 
lay-out described in Table 1. Multiple parts were alternate- 
ly grasped, moved, and released so that all basic operations 
occur repeatedly. 

We have collected results on experiments with two task 
procedures, called pkplc and pkpair. Pkplc is a repetitive 
task that moves a coupler from its slot to the fixture and 
back. Pkpair is more complex; it moves two couplers 
around the work cell. The couplers to be moved are placed 
in slots 1 and 2. The task starts by using the coupler in slotl. 
The gripper picks up the coupler from its slot, moves the 
coupler to the fixture, inserts it into the fixture, then puts 
the coupler back into its original slot, releasing it. The 
gripper then moves to the coupler in slot2 and repeats the 
same sequence of actions on it. The task then repeats. 
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Task Successful #Runs Activity 
failure/ 
recovery 
cycles 

Successful 
failure/ 
recovery 
cycles 

Error Recovery # Recoveries 

pickslot 9 3 move coupler 9 
pickpair 5 1 insert coupler 3 

grasp coupler 2 

part lost/removed 
collision/part dislodged 
destination obstructed 
part missing 

get another part 6 
discard part and get another 3 
discard part and get another 2 
get another part 3 

Table 4 summarizes the results of a series of video-taped 
experiments that used the error recovery testbed. These 
experiments relied entirely on the gripper strain gauges for 
sensing. For each task run, we started the robot and 
repeatedly induced failures of various kinds. We induced 
the errors manually by pulling parts out of the gripper, 
striking it, putting objects in its path, stealing parts that 
were about to be used, and placing foreign objects in a 
part's destination. In Table 4, the column listing Successful 
failure/recovery cycles indicates the number of times that 
we induced a failure and the system recovered, resuming its 
previous task. Two of these recovery cycles took place 
while the robot was already executing steps to recover from 
a previous error, demonstrating the system's ability to 
recover from nested errors. In other experimental runs the 
system also demonstrated its ability to recover from errors 
during nested recoveries as well. 

Each run continued until encountering an error the 
system could not handle. In two cases, the part collided 
with a foreign object with insufficient force to trigger the 
error event. In another case, the robot collided with an 
obstructed part and did not have a recovery strategy that 
ignored the resulting overforce measurement; this caused 
subsequent motion commands also to fail with the same 
overforce error. In another case, an eager operator pro- 
vided extra spare parts that were not explicitly requested by 
the system and thus were not reflected in its workcell 
model or in its behavior. 

7. Conclusions 

We have presented an architecture for building program- 
mable industrial robots that automatically detect and 
recover from errors encountered while manipulating parts. 
The architecture separates the real time robot control 
components from the task analysis, programming, error 
interpretation, and error recovery planning components. 
The system uses one computer to run the AP executive, 
providing real time robot control, and a separate computer 
for the symbolic computation and recovery tasks. The 

architecture relies on the augmented program form, a 
special representation of the robot's task, to provide 
information needed for robot operation and automatic 
error recovery. 

An important feature of this system is that it is designed 
to work with conventional robot programming languages. 
If a task-level programming language does become avail- 
able the error recovery system could work with it. The 
statements of the woktalk language used in the error 
recovery testbed are extremely similar in form and content 
to the primitive robot operations generated by typical 
task-level motion planners. Thus the error recovery system 
could serve as a back end to a task planner with minor 
modifications. 

A basic criterion of the system design has always been 
language independence, both for the input language that 
specifies the robot's task and the output language that 
controls the robot. New input languages may be incorpo- 
rated by implementing a pre-processor for them. Pre- 
processors have been designed to work with AL and 
woktalk; a pre-processor for AML or VAL is expected to 
present no problems. New robots may be incorporated by 
implementing AP executive driver processes for them. We 
have implemented drivers for the IBM 7565 and for the 
Microbot TeachMover. 

Another important feature is how the system combines 
information about the robot's task. The AP is used to 
operate the robot in real time so it describes the sequence 
of manipulator motions the robot must perform. Associ- 
ated with each motion there are statements of how the 
motions are intended to affect the robot's task. Each time 
the AP executive starts a robot motion, the statements 
associated with the motion are written to the event trace. 
When the motion is finished, sensor readings that detect its 
completion are also written to the trace. This provides a 
detailed record of events in the work cell, consisting both of 
sensed facts and of deductions about the effects of the 
robot's actions. 

Sensor filtering is also an important feature of the AP 
executive. Filtering the sensor data reduces the overhead 
associated with analysing sensor data and may in some 
cases be performed on a separate processor. 



72 Smith and Gini 

While it is important to recognize the design features that 
make the system work, it is also important to recognize the 
features that make it applicable to other problems. The 
error  recovery testbed demonstrates the system's feasibil- 
ity for performing woktalk programs on an IBM 7565 
robot,  but the underlying architecture makes it possible to 
adapt the system to other robot languages or robot 
hardware. 

The system also has the flexibility to incorporate im- 
proved automated reasoning, deductive, and planning 
systems. The architecture has a mechanism to relate 
symbolic information (e.g. assertions, deductions, even 
rules) with manipulator actions, but the content of this 
information is transparent to the underlying system. The 
contents are subject only to cooperation between the 
pre-processor and recoverer.  There is no architectural 
impediment to implementing a task-level programming 
system to serve as the pre-processor as long as it generates 
APs. Similarly, the recoverer could be implemented using 
a high-performance spatial reasoning and robot motion 
planning system. Many techniques exist that could be 
adapted to this system; the architecture is designed to make 
this possible. 
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