
Task allocation for spatially and temporally
distributed tasks

Julio Godoy and Maria Gini

Abstract In multi robot task allocation, a set of tasks has to be allocated to a group
of robots while optimizing some measure (for example, fuel or time). In order to
find the optimal allocation, an exponential number of possibilities must be explored.
In this work, we extend the Consensus Based Bundle Algorithm, to improve its
support for tasks with time constraints. The modified algorithm is compared with the
original one in order to show how strategic modifications to the algorithm increase
the number of tasks successfully completed.

1 Description of Problem

Multi robot task allocation addresses the problem of matching tasks to robots in a
way that satisfies a certain criterion or optimization function. The criterion is usu-
ally to minimize the distance traveled, or to minimize the time to complete all the
tasks, or maximize the number of completed tasks. Real problems often have addi-
tional constraints. For example, in a post-disaster scenario, tasks location and their
magnitude may be initially unknown, so robots should first explore the environment
and dynamically allocate tasks as they find them. Also, the amount of time to reach
tasks might be limited, after which some of them may no longer be available (for ex-
ample, a wounded civilian may have died), or may be too complex to complete (for
example, a fire may be too big to put off). There might be obstacles in the predicted
path to a task, and some tasks may need a minimum number of robots allocated in
order to be completed.

We build upon a decentralized auction algorithm, the Consensus Based Bundle
Algorithm [1], and modify it in order to incorporate stronger temporal constraints.
This is useful for scenarios where, for example, the lives of wounded civilians de-
pend on how fast ambulances can reach them.

Department of Computer Science and Engineering, University of Minnesota, 200 Union St SE,
Minneapolis, MN 55455, USA e-mail: godoy@cs.umn.edu,gini@cs.umn.edu

1

2 Julio Godoy and Maria Gini

2 Related Work

The area of multi robot task allocation has seen many contributions over the last
decade. In this work, we focus on allocation methods based on auctions. A compar-
ison of auction-based methods and token-based approaches [11] shows that auctions
produce higher rewards but require more communications. However, Kalra et al. [4]
compared both approaches and concluded that, when the task information is accu-
rate, auction based methods achieve better performance.

When using auctions to allocate tasks, agents submit bids for the desired tasks.
The amount of each bid is the value of the task for the agent, or is related to an
objective metric, such as the distance. The auctioneer selects the agent which sub-
mitted the best bid for each task, and assigns it to that particular agent. Since we
assume the agents are cooperative, social welfare increases when the most valuable
combination of tasks is assigned to each agent.

Sandholm [9] proposes an algorithm for combinatorial auctions, a method that
returns the optimal solution, but of exponential complexity, which makes it unfeasi-
ble for use in multi robot domains. Dias et al, [2] first discussed the use of auctions
in the context of task allocation in a multi robot system, while Koenig et al. [5]
proposed an efficient auction based algorithm which allows robots to account for
already assigned tasks in their subsequent bids.

Auctions are distributed methods, but require communication among all the
robots. To avoid the complete communication requirement, several approaches use
consensus based algorithms [12, 1], where each robot determines independently its
tasks and an equilibrium is reached by iteratively sharing information with its local
neighbors.

When tasks have time constraints, the allocation algorithms have to handle
scheduling in addition to cost. In [3] sequential auctions are used for situations
where the reward for completing tasks decreases over time. In this case, time win-
dows are not allowed to overlap. Similarly in [6] each task has a specific time win-
dow but again with no overlap. Overlapping time windows are not allowed as they
would violate the constraint that there is a strict total order of the tasks. Finally,
Ponda et al. [7] proposed a modification of the CBBA algorithm that deals with soft
time constraints: agents have to arrive to a task before its deadline, without con-
sidering the time it takes the agent to complete the task. Ramchurn et al. [8] uses
mixed integer programming to solve the problem of finding coalitions to do tasks,
considering distance (allocating tasks to closer agents) and time (to allocate tasks
with deadlines to agents that can reach them and execute them before the deadline).

In this work we consider tasks that have overlapping time windows and whose
duration can be shorter than the time window. In our approach, time windows are
considered hard constraints, so each task has to be completed within its time win-
dow.

Task allocation for spatially and temporally distributed tasks 3

3 Tasks with Time Windows

In many real world scenarios, tasks are not always available. For example, in res-
cue scenarios, there might be wounded civilians that could perish if not assisted on
time. They might also be buried under semi collapsed buildings, that may collapse
completely after some time, preventing them from being rescued afterwards. Fires
might appear, and they might become un-extinguishable if they grow loo large.

These urgent tasks may appear anytime, or may all appear at the same time.
It becomes critical that an agent not only reaches a task, but also that it reaches
it in a specific time period, where the task is doable. This time period is called
time window. Due to these extra constraints, tasks now have time related properties
associated with them, specifically:

• Start time is the time from when the task can be done, the beginning of its time
window. Before this time, the task does not exist.

• End time is the last time point an agent can work on the task. It marks the end of
the time window of the task. After this time, the task does no longer exist.

• Duration is the time it takes an agent to do the task, once it is in the task location.
Its length is at most the length of the task’s time window.

A task is doable if the agent can reach it no later than (Endtime−Duration), as
otherwise it cannot complete it before its end time. For simplicity, we consider only
tasks that are done by a single agent, so duration is a fixed number for each task.
We also assume that task locations are known, and that there are no obstacles in the
paths.

4 Extensions to CBBA

Our work extends the CBBA algorithm [1] and its modification in [7] where each
task has an associated time window. We start by summarizing CBBA. The CBBA
algorithm follows a two phase design:
Phase 1: Bundle Construction

Each agent assigns a score to each task (based on time or spatial criterion) and
one by one selects the task with the maximum score, amongst the unassigned ones.
This is repeated until all tasks have been assigned or the maximum bundle size has
been reached. This is different from traditional bundle algorithms [9], where all
possible bundle combinations are tested.

An agent has two lists of tasks, the bundle itself (bi) and the path (pi), which
contains the same tasks as the bundle, but in the order they will be visited. Let Lt
be the maximum bundle size and Si

pi the total reward agent i receives by doing the
tasks on path pi. Each task is inserted in a position in the agent’s path pi where it
maximizes the score improvement. ⊕n is the operation of inserting the second list
after the nth element of the first list, while

⊕
end appends the second list to the first.

4 Julio Godoy and Maria Gini

Algorithm 1 CBBA Phase 1 for agent i at iteration t (from [1])
procedure Build Bundle(zi(t-1),yi(t-1), bi(t-1))
yi(t)=yi(t-1); zi(t)=zi(t-1); bi(t)=bi(t-1); pi(t)=pi(t-1)
while |bi|< Lt do

ci j = maxn≤|pi|Si
pi⊕n{ j}−Si

pi ,∀ j ∈ J/ bi
hi j = 1I (ci j > yi j),∀ j ∈ J
Ji = argmax j ci j ·hi j
ni,Ji = argmaxn Si

pi⊕nJi

bi = bi
⊕

end Ji
pi = pi

⊕
ni,Ji

Ji
yi,Ji (t) = ci,Ji
zi,Ji (t) = i

end while
end procedure

Algorithm 1 [1] summarizes the first phase of CBBA, where yi is the winning bid
list, zi the winning agent list, and bi and pi respectively the bundle and path lists. J
is the set of all possible combinations of tasks, of which each bundle is an instance.
1I(.) is the indicator function (= 1 if argument is true and 0 otherwise),
Phase 2: Conflict Resolution

After each agent has a bundle of pre allocated tasks, the agents communicate with
each other, comparing their bids for the tasks in their bundles with other agent’s bids
for the same tasks. When an agent is outbid by another for a task, not only it has to
release that task, but also all others it was planning to visit after that, as the score
associated with them is no longer valid. In order to reach consensus, three lists are
shared amongst the agents: the winning bids list yi, the winning agent list zi and a
vector of time stamps of thelast information update from other agents, si.

At the time agent i receives a message from another agent k, using the informa-
tion of lists zi and si, it can take one of three actions [1] on task j:

1. update: yi j = yk j,zi j = zk j
2. reset: yi j = 0,zi j = /0
3. leave: yi j = yi j,zi j = zi j

For example, an update action is taken when a better bid is found, a reset ac-
tion is performed when both agents i and k believe that each other is the winner
of task j and, in case both agents agree on the winner, no action is performed. An
interesting feature of this phase is that the agents don’t need to communicate di-
rectly with each other to reach consensus, but only to form a connected graph. This
puts less constraints on the communication, and makes the algorithm suitable for
environment conditions where communication is restricted. Detailed cases and the
respective actions can be found in [1].

Task allocation for spatially and temporally distributed tasks 5

4.1 Maximizing the number of completed tasks

In the implementation of CBBA the task start and end times, agents, and tasks po-
sitions are randomly generated. The task duration is equal to the length of its time
window. The implementation leaves room for improvement. First, it doesn’t con-
sider the ending time of tasks in the score function that assigns a value for each
agent to perform a task. Hence, two tasks with the same starting time but differ-
ent ending time (one more urgent than the other), are considered equal in terms of
value for the agent. Second, a task is considered completed even if the task duration
exceeds its ending time.

We modified the score function and evaluation mechanism to maximize the num-
ber of completed tasks, creating a variant of CBBA that we call MOD, and compared
the results to the normal CBBA implementation. We consider an agent able to com-
plete a task only if it can reach the task in a time that allows for its total completion
(the duration of the task) before its time window ends.

Specifically, we consider both starting and ending times of tasks when computing
the scores. Also, we added a sub algorithm to CBBA in order to test the feasibility
of adding a task in the time before other already assigned tasks. This situation may
arise when, after allocating the most valuable tasks, the algorithm finds that it can
add another task (which previously was not very valuable), but because of time
constraints, the new task has to be done before other tasks already allocated. This
may create a situation where a previously assigned task is no longer doable in its
time window, or needs to be shifted inside its time window.

We implemented a two way check to ensure that when a task is inserted before
another, no time constraint is violated. The first check is via a value called MinAllo-
Time, which keeps track of the task with the smallest difference between the ending
time and the current completion time in the temporal allocation. This way, if the
new task has a duration longer than MinAlloTime, it is discarded and the insertion
is aborted. The second check is via a procedure shown in Algorithm 2, in which
the time added for inserting a new task m in position j is compared with the time
constraints of all tasks that would be done after it in the agent bundle. If the arrival
time of the agent to task j+1 after doing m is altered, then a check is done to ensure
that task in position j + 1 can still be done before the end of its time window. If
not, the insertion is not feasible in position j and the next position j+1 is checked.
Otherwise, the task is inserted in position j and the starting time for task in position
j+1 is updated (i.e. the task is shifted) to reflect this insertion. In this case, all con-
secutive tasks must also be checked in case they also need to be shifted inside their
time windows.

In Algorithm 2, a task is added before others if (1) the agent has empty slots in its
bundle, (2) the task is the most valuable amongst the remaining ones; and (3) tasks
already allocated can still be done in their respective time windows.

The difference is noticeable in the simple examples in Figure 1 and Figure 2.
CBBA doesn’t allocate task 2 to the agent (there is a single agent in this example),
even though there is enough time to complete it. Due to the way the score function
is designed, the agent just performs task 1 and 3.

6 Julio Godoy and Maria Gini

Algorithm 2 Feasibility determination for agent i to do task m in position j of path
pi

AddedT = startm +durationm +TravelT (m,Task j+1)
if AddedT < startTask j+1 then

return False
else

if AddedT > startTask j+1 then
if AddedT +durationTask j+1 < endTask j+1 then

startTask j+1 = AddedT
return True /* Task m feasible at position j */

else
return False /* Task m unfeasible at position j */

end if
end if

end if

Fig. 1 Solution produced by
CBBA

Fig. 2 Solution produced by
MOD

Task allocation for spatially and temporally distributed tasks 7

5 Experimental Results

To test the impact of our modifications on the number of completed tasks, we tested
MOD against the original CBBA in different settings, where the number of agents
and tasks varied, as so did the tasks duration, length, start and ending time of their
time windows. Finally, we also varied the size of the grid where the agents and tasks
were placed. Because the grid is not made of discrete cells but of continuous X,Y
coordinates, the increase of the size is the same as having the same grid but with the
agents moving slower or faster.

The experiments considered using from two to ten agents, and from 10 to 100
tasks in different combinations, in order to evaluate specific scenarios. Each experi-
mental setting was run 30 times, the resulting values are an average over the total set
of results. The statistical significance of each experiment was tested with p≤0.05.

To start, we compare the number of tasks completed out of 10 in a scenario with
two agents, with different task duration times. Table 1 summarizes the results.

Table 1 Two agents and 10 tasks with different task durations (TD)

Total number of tasks TD=5 TD=10 TD=20 TD=40

CBBA 9.3333 8.3333 6.5333 4.3667
MOD 9.7333 9.3333 8.1667 5.7667

The differences in the results in Table 1 are statistically significant, except when
task duration is 5. As task duration increases, the proportional difference in the
average number of completed tasks between CBBA and MOD increases, favorably
to MOD. At the same time, the average number of completed tasks decreases for all
approaches, due to the higher chance of having short overlapping time windows.

The next experiment involves three agents and 50 tasks. Table 2 shows average
number of tasks completed, total time to completion and total distance traveled by
the agents. The values in Table 2 reflect the number of completed tasks. The ap-
proaches that complete more tasks also have a higher average path cost and larger
average time needed to complete the tasks.

Table 3 shows the results for a larger scenario. This is useful to analyze the scal-
ability of the proposed approach to longer distances. 10 agents are placed in a grid
10 times larger than the one used in previous experiments, with 100 tasks. In this
case, MOD completes in average 50% more tasks than CBBA.

In order to analyze how both approaches perform under specific time window
configurations, we include two additional scenarios: (a) the task duration is equal
to its time window, and (b) the time window is four times the length of the task
duration. For the first scenario, the difference between the two approaches is not
statistically significant, mainly because the agents have fewer chances to vist the
tasks, due to their constrained time windows.

8 Julio Godoy and Maria Gini

Table 2 Three agents and 50 tasks, using multiple metrics with different task durations (TD)

Total number of tasks TD=5 TD=10 TD=20 TD=40

CBBA 31.5333 21.5 13.3667 7.8667
MOD 30.3 24.3 16.6 10.3667

Total time TD=5 TD=10 TD=20 TD=40

CBBA 114.8018 123.7246 136.1574 156.6719
MOD 153.0252 169.5668 186.7175 206.6135

Total distance TD=5 TD=10 TD=20 TD=40

CBBA 95.4677 59.5234 33.5156 14.2594
MOD 86.693 63.1454 42.0853 23.3113

Table 3 Ten agents and 100 tasks, in a scenario ten times larger than the scenario used for the
other experuments

Total number of tasks TD=5 TD=10 TD=20 TD=40

CBBA 39.0333 32.8 25.4 18.5667
MOD 52.3667 48.1 38.0333 27.5667

Table 4 shows the number of completed tasks for scenario (b). In this case, be-
cause the agents have more room to decide when to complete a certain task, the
modifications to CBBA improve performance.

Table 4 Three agents and 20 tasks, with time windows four times the task duration (TD)

Total number of tasks TD=5 TD=10 TD=20 TD=40

CBBA 18.4 16.2 11.5333 7.1667
MOD 15.6667 16.6667 15.2667 12.9333

Table 5 shows the number of completed tasks for different agent-task configu-
rations that have the same early start time, emulating a real-world scenario where a
disaster occurs and suddenly many tasks appear that differ in both time duration and
end time. It can be seen that MOD performs much better than the original CBBA,
due to the change in the constraints and the task shifting in order to maximize the
completion rate. In both cases, low values indicate overlapping time windows.

Finally, the number of iterations of the algorithm before reaching consensus was
also tested, in experiments performed with different numbers of agents and tasks.

Task allocation for spatially and temporally distributed tasks 9

Table 5 Number of tasks completed when all tasks have the same start time

Total number of tasks 2A10T 3A20T 3A50T 10A100T

CBBA 2.8667 4.333 4.8 12.9333
MOD 6.2333 11.0714 17 31.5

The total number of iterations required by MOD is just 35% of the ones required by
CBBA.

The modifications made to CBBA increase the number of completed tasks. Al-
though with small tasks duration times the performance is in many cases similar to
CBBA, as this time increases the enhancements start to show off, enhancing perfor-
mance differences (in terms of number of completed tasks) that are most visible in
the case where all tasks have the same start time. Increasing the number of com-
pleted tasks is not trivial, as it requires to find a tradeoff between space and time,
and a detailed analysis of how each of these dimensions affects the possibility of
completing more tasks is something that goes beyond the scope of this paper.

Another interesting improvement is in the number of iterations required to reach
convergence, which is less than half as normal CBBA. This implies that by using
MOD, the algorithm is less vulnerable to communication errors, and hence it is more
adequate for use in communication constrained environments.

6 Conclusions and Future Work

We presented our modifications to CBBA in order to improve its performance
with tasks that have time windows. We have presented how the tradeoff between
space, time, and communication affects the number of tasks completed. Some re-
sults matched our initial intuition while others showed us some interesting and un-
foreseen correlations, that give light to future enhancements. The number of tasks
completed increases to different degrees depending on the specific setting. The num-
ber of communication rounds required to reach consensus is also greatly reduced,
opening new possible applications to the algorithm.

As future work, we will perform a theoretical analysis of our approach and aim at
improving specific performance metrics while, at the same time, keeping an appro-
priate overall performance balance. For instance, we will consider adding levels of
criticality to the tasks, so when not all the tasks can be done, the agents could work
on the most critical tasks first. Another line of future research is related to inter-task
constraints, similar to the approach developed in [10]. Specifically, we will analyze
how precedence constraints between tasks and their decomposition affects perfor-
mance and convergence time of the multi-robot system.

10 Julio Godoy and Maria Gini

References

1. Choi, H.L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task al-
location. IEEE Trans. on Robotics 25, 912–926 (2009). DOI 10.1109/TRO.2009.2022423.
URL http://dl.acm.org/citation.cfm?id=1653147.1653161

2. Dias, M.: Traderbots: A new paradigm for robust and efficient multirobot coordination in
dynamic environments. Ph.D. thesis, Carnegie Mellon, Pittsburgh, Pennsylvania (2004)

3. Ekici, A., Keskinocak, P., Koenig, S.: Multi-robot routing with linear decreasing rewards
over time. In: Proc. Int’l Conf. on Robotics and Automation, pp. 3944–3949 (2009). URL
http://dl.acm.org/citation.cfm?id=1703775.1704082

4. Kalra, N., Martinoli, A.: Comparative study of market-based and threshold-based task alloca-
tion. In: M. Gini, R. Voyles (eds.) Distributed Autonomous Robotic Systems 7, pp. 91–101.
Springer Japan (2006)

5. Koenig, S., Tovey, C., Lagoudakis, M., Markakis, V., Kempe, D., Keskinocak, P., Kleywegt,
A., Meyerson, A., Jain, S.: The power of sequential single-item auctions for agent coordi-
nation. In: American Association of Artificial Intelligence, pp. 1625–1629 (2006). URL
http://dl.acm.org/citation.cfm?id=1597348.1597457

6. Melvin, J., Keskinocak, P., Koenig, S., Tovey, C.A., Ozkaya, B.Y.: Multi-robot routing with
rewards and disjoint time windows. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pp. 2332–2337 (2007)

7. Ponda, S.J., Redding, J., Choi, H.L., How, J.P., Vavrina, M.A., Vian, J.: Decentralized plan-
ning for complex missions with dynamic communication constraints. In: American Control
Conference (2010)

8. Ramchurn, S.D., Polukarov, M., Farinelli, A., Truong, C., Jennings, N.R.: Coalition formation
with spatial and temporal constraints. In: Int’l Conf. on Autonomous Agents and Multi-Agent
Systems, pp. 1181–1188 (2010)

9. Sandholm, T.: Algorithm for optimal winner determination in combinatorial auctions. Artif.
Intell. 135, 1–54 (2002). DOI 10.1016/S0004-3702(01)00159-X

10. Whitten, A.K., Choi, H.l., Johnson, L.B., How, J.P.: Decentralized Task Allocation with Cou-
pled Constraints in Complex Missions, pp. 1642–1649. IEEE (2011)

11. Xu, Y., Scerri, P., Sycara, K., Lewis, M.: Comparing market and token-based coordination.
In: Int’l Conf. on Autonomous Agents and Multi-Agent Systems, pp. 1113–1115. ACM, New
York, NY, USA (2006)

12. Zavlanos, M.M., Spesivtsev, L., Pappas, G.J.: A distributed auction algorithm for the assign-
ment problem. In: Proc. 47th IEEE Conference on Decision and Control, pp. 1212–1217
(2008)

