
C-Nav: Distributed Coordination in Crowded
Multi-Agent Navigation

Julio Godoy∗

Universidad de Concepcion, Chile

Stephen J. Guy, Maria Gini

University of Minnesota, USA

Ioannis Karamouzas

Clemson University, USA

Abstract

In crowded multi-agent navigation, the motion of the agents is significantly
constrained by the motion of the nearby agents. This makes planning paths
very difficult and leads to inefficient global motion. To address this problem, we
propose a distributed approach, which we call C-Nav, that introduces politeness
into multi agent navigation. With our approach, agents take into account the
velocities and goals of their neighbors and optimize their motion accordingly
and in real-time. Further, we perform a theoretical analysis of the algorithm,
and experimentally demonstrate its advantages in simulation, with hundreds of
agents in a variety of scenarios, and in real world navigation tasks with several
mobile robots.

Keywords: Multi-agent navigation, multi-agent coordination, robotics

1. Introduction

Decentralized goal-directed navigation of multiple agents in crowded envi-
ronments has application in a variety of domains such as swarm robotics, traffic
engineering, and planning for evacuation. This problem is challenging due to
the conflicting constraints induced by the other moving agents; as agents plan
paths in a decentralized manner, they often need to recompute their paths in
real-time to avoid colliding with the other agents and static obstacles. The
problem becomes even harder when temporal constraints are added such as

∗Corresponding author
Email addresses: juliogodoy@udec.cl (Julio Godoy), sjguy@umn.edu (Stephen J. Guy),

gini@umn.edu (Maria Gini), ioannis@clemson.edu (Ioannis Karamouzas)

Preprint for Robotics and Autonomous Systems November 2020

when the agents need to reach their destinations in a timely manner while still
guaranteeing a collision-free motion. Further, the lack of knowledge of each
others’ internal states prevents the agents from coordinating their local motion
adding another layer of complexity to the decentralized multi-agent navigation
problem.

A variety of approaches have been proposed to address this problem, includ-
ing rule-based techniques [58, 59], geometric solutions [3, 20], and graph-based
techniques [40, 64]. Recently, multi-agent navigation methods have been en-
hanced with machine learning techniques, such as deep learning, allowing agents
to learn navigation strategies in a variety of domains. However, even though
deep learning techniques have made significant strides towards fully autonomous
robot navigation, they still cannot generalize well to unseen domains or handle
highly crowded scenarios. Our goal is to have mobile robots that learn in an
online and decentralized setting and are robust to new situations while avoiding
collisions. Velocity-based approaches, such as ORCA [3], offer a preferred family
of methods for multi-agent navigation due to their robustness and their ability
to provide collision-free guarantees for the agents’ motions. Such approaches
allow each agent to directly choose a new collision-free velocity at each cycle of
a continuous sensing-acting loop. However, in crowded environments, velocities
that are locally optimal for one agent are not necessarily optimal for the entire
group of agents. This lack of “social awareness” can result in globally ineffi-
cient behavior, which translates into long travel times and an excess of energy
expended by the agents.

Ideally, to obtain globally efficient motions and reduce the overall travel time
of the agents, a centralized entity needs to compute the best velocity for each
agent. However, in a decentralized domain, such central entity does not exist.
In this type of domains, agents can only use their limited knowledge of the
environment, obtained through local sensing, to compute their motions. This
might be enough for agents to avoid colliding with each other, but prevents them
from coordinating their motions at the higher level needed to facilitate time-
and energy-efficient navigation for the entire system of agents.

Consider, for example, the two group of agents in Figure 1(a). Here, the
two groups of agents try to move past each other in a narrow hallway. The
agents navigate using a predictive collision-avoidance technique, ORCA, but
still end up getting stuck in a congested area. This uncoordinated behavior can
be observed, in general, when a dense group of agents with conflicting goals
navigate in a constrained environment, and is an example of the “faster is slower”
effect [26, 52, 24] studied in the pedestrian navigation literature. In the same
domain, it has been observed that when (at least part of) the crowd behaves in
a “cooperative” manner, i.e. showing polite behavior towards others, the travel
time of the entire crowd is reduced [14, 68, 47].

In this paper, we hypothesize that if agents in multi-robot navigation tasks
could behave politely towards others, for example, by choosing velocities that
not only benefit themselves but also their neighboring agents, then the efficiency
of the global navigation would significantly improve. As such, we seek to develop
a navigation method that encourages coordination to emerge through agents’

2

polite interactions. We accomplish this by allowing agents to account for their
neighbors’ intended velocities during their motion planning without losing the
collision-free guarantees of existing multi-agent navigation frameworks.

(a) ORCA (b) C-Nav

Figure 1: Two groups of agents cross paths while moving to the opposite side
of a narrow corridor. (a) ORCA agents get stuck in the middle. (b) Using our
C-Nav approach, agents create lanes in a decentralized manner and move to
their goals faster.

To this end, we propose C-Nav (short for Coordinated Navigation), a dis-
tributed coordination approach that introduces the concept of politeness into
a multi-agent navigation framework. Figure 1(b) shows an example of such
coordinated motion achieved with our proposed approach. With C-Nav, robotic
agents improve their global motion in crowded environments by coordinating
their local motions, in a distributed fashion, while keeping the collision-free
properties of the underlying local navigation framework. This coordination is
achieved by the agents using observations of the nearby agents’ motion patterns
and a limited one-way communication. This low-communication requirement
allows C-Nav to scale and simulate hundreds of agents in real time. With
our approach, agents choose velocities that help their nearby agents to move
to their goals, effectively improving the time-efficiency of the entire crowd, as
shown in a variety of scenarios in simulation. Further, we demonstrate how
accounting for politeness translates into the multi-robot navigation problem,
through experiments with physical robots with non-holonomic constraints.

In this work, we assume that all agents move according to the same underly-
ing collision avoidance algorithm. Further, we propose a one-way communication
model, without requiring any type of exchange of information or negotiation
protocols. Accordingly, we label C-Nav as a distributed coordination method,
as each agent decides on its behavior autonomously. The type of communication
that C-Nav employs could be found in communicative robots, such as auto-
mated warehouses, future automated vehicles and, in general, in environments
where point-to-point communication is not always possible, or when real time
constraints prevent more complex negotiation between the agents.

Main Contributions. This paper makes four main contributions. First, we
propose a framework that introduces the concept of politeness into multi-agent
navigation tasks. Specifically, we show that accounting for nearby agents when
selecting an optimal velocity promotes distributed coordination between agents.

3

Second, we discuss theoretical properties of our proposed method, showing the
conditions under which C-Nav agents can avoid livelocks. Third, we empirically
evaluate C-Nav in simulation, in a variety of scenarios, and show that it leads to
more efficient global navigation, reducing the travel time as well as the energy
expended of all agents as compared to ORCA. Fourth, we evaluate C-Nav in
multi-robot experiments with three Turtlebot robots navigating in constrained
conditions.

This work is an extended version of [17], which introduced the C-Nav method
for distributed coordination in multi-agent navigation problems. Compared
to [17], here we perform a more thorough evaluation of C-Nav, highlight the
theoretical properties of the method, and provide new, extended experimental
analysis including experiments with real robots.

The rest of the paper is organized as follows. In Section 2, we review relevant
related work. In Section 3, we formulate the problem of achieving coordinated
motions to minimize the travel time of the agents. The C-Nav approach and its
main insights are introduced in Section 4. In Section 5, we present theoretical
properties of our proposed method. Section 6 introduces the empirical evaluation
on C-Nav with detailed simulation results. The analysis of the method is
presented in Section 7. Multi-robot experiments and results are presented in
Section 8. Limitations of C-Nav are described in Section 9. We conclude and
provide directions for future work in Section 10.

2. Related Work

Multi-Agent Navigation. A number of models have been proposed to simulate
the motion of agents. In this work, we focus on decentralized multi-agent
navigation where each agent plans independently. Such approaches can be traced
back to the seminal work of Reynolds on boids [58], after which many agent-
based approaches have been introduced, including social forces [27], models that
account for groups [2], cognitive and behavioral rules [13, 61], biomechanical
principles [22] and sociological or psychological factors [54, 21, 57]. However, the
majority of such agent-based techniques does not account for the velocities of
individual agents which leads to unrealistic behaviors such as oscillations. These
problems tend to be exacerbated in densely packed, crowded environments.

To address these issues, velocity-based algorithms [11] have been proposed
that compute collision-free velocities for the agents using either sampling [50, 34]
or optimization-based techniques [3, 23]. In particular, the Optimal Reciprocal
Collision Avoidance navigation framework, ORCA [3], plans provably collision-
free velocities for the agents and has been successfully applied to simulate
high-density crowds [6]. However, ORCA and its variants are not sufficient on
their own to generate time-efficient agent behaviors, as computing locally optimal
velocities does not always lead to globally efficient motions. As such, we build
on the ORCA framework while allowing agents to coordinate their motions, in a
distributed manner, in order to improve the global time-efficiency of the crowd.

Multi-Robot Navigation. When translating multi-agent navigation ap-
proaches to the physical domain, many challenges arise. For example, the

4

collision avoidance methods that work in simulation might not be directly appli-
cable with the robots’ imperfect sensors and actuators. However, having multiple
robots moving in a shared environment means that avoiding collisions with each
other is of top priority. Potential fields were among the first methods proposed for
collision avoidance in robot navigation [35, 60, 45]. The approach in [62] extends
single agent collision avoidance methods for multiple robots, decoupling path
planning and coordination. A review of algorithms for collision-free navigation
of mobile robots is presented in [31], including different models of sensors and
robot kinematics, as well as different assumptions about the environment.

More recently, Alonso-Mora et al. [1] extended ORCA for multi-robot navi-
gation environments, accounting for non-holonomic constraints. Their work has
been the basis of several multi-robot navigation approaches that account for
the uncertainty present in real world environments [28], including approaches
that focus on autonomous vehicles navigation [55]. In the same domain, some
approaches have been proposed that not only address the collision avoidance
problem, but also aim at generating robot trajectories that are smooth and com-
fortable. Authors in [51] propose an approach that combines model predictive
control (MPC) with equilibrium point control to generate online trajectories for
a robot in dynamic environments that not only avoids collisions but also prevents
fast disturbances between consecutive MPC planning cycles. This approach
reduces the variations in consecutive velocities as compared to ORCA. Other
methods that use an MPC or MPC-inspired formulations on top of a collision
avoidance method include [4] and our own previous work [16]. In general, such
methods are computationally intensive, especially when it is necessary to model
and predict multi-agent interactions in crowded environments, such as the ones
addressed by C-Nav, while the quality of the solutions depends on the planning
horizon.

Recent contributions have adopted a data-driven approach, taking advantage
of the success of deep reinforcement learning methods on agent control tasks
[65, 19, 7, 43, 44, 42]. These approaches allow agents to learn policies and
navigate collision-free and autonomously in a variety of domains. However,
these methods have difficulties dealing with highly dense scenarios and unseen
situations [8, 41, 9], which are the types of environment that our C-Nav method
targets.

Researchers have also studied multi-agent navigation in the context of human
robot interaction, such as the works of Trautman et al. [66], Kretzschmar et al.
[38] and Sisbot et al. [63], that address the problem of socially compliant mobile
robot navigation.

All these works focus on achieving safe navigation, and some of them aim
at incorporating smoothness and anticipation in the robot behaviors. These
methods do not require explicit communication between the robots (although
some of them require a training phase to work appropriately). However, what
often is not explored is how efficient is the navigation of the agents, that is, how
much time they take to reach their goals. As Figure 1(a) shows, pure collision
avoidance may not be enough to move agents to their goals. Hence, a higher
level of coordination between the agents might be needed to ensure not only

5

collision-free motion but also an efficient one. This is the problem that C-Nav
addresses. In what follows, we review related work that focuses on achieving
such coordination with and without explicit communication.

Coordinated Multi-Agent Navigation. Many approaches have been pro-
posed to allow agents to coordinate their motions while moving to their goals. In
some of these methods, there is no need for explicit communication between the
agents. For example, when simulating the motion of pedestrians, coordination
can be achieved through social norms [10], which can be embedded in the sys-
tem [37] or can emerge through the interactions between the agents [67]. Other
works such as [12] assume similar behaviors between the agents and use cognitive
models of social interactions. Similarly, our work allows agents to compare
motion features, without though relying on socio-psychological theory. Another
approach for achieving coordinated navigation is by explicitly forming groups
of agents that follow specific directions while maintaining cohesiveness among
their members [34, 33]. A recent work addresses emergent group formation of
different sizes based on proxemics [25].

Other works use the motions of the agents to communicate their intentions.
For example, Mavrogiannis et al. [46] propose a framework for multi-agent
navigation based on the concept of “social momentum”, which is a way for
an agent to take into account other agents’ motions when planning its own
movements. This approach allows each navigating agent to “read” the intentions
of other agents based on their observed velocities. Using this information, the
agent moves in a way that is “legible” to others while also progressing safely to
its goal. This work has similarities with our proposed approach, such as the fact
that agents consider both their goal progress as well as how they affect the other
agents when making navigation decisions. A notable difference though, is that
[46] assumes that motions of other agents are correlated with their intentions,
which might not be the case in highly crowded environments where agents have
to prioritize safety over performing legible actions. Our proposed approach, C-
Nav, addresses navigation tasks in very constrained environments, where agents
broadcast their intended motions to allow others to “read” them and take them
into account when deciding what action to take.

In grid-like environments, some approaches encourage coordination by mark-
ing the cells in the grid with information which can be used by the agents to
reduce congestion. In [32], each agent moves along neighbors with a similar
goal, adjusting its path cost based on the agents’ relative velocities. This idea
is extended to account for congestion in [56]. Other approaches consider the
generation of bounded suboptimal paths for multiple agents [5] and the kinematic
constraints that emerge when dealing with embodied agents [30]. However, in
most of these approaches, coordination is achieved by incorporating features in
the environment that are assumed to be known by (or communicated to) all
agents. Further, in all these approaches, the degree of coordination depends on
the chosen resolution of the grid. In our approach, agents move in a continuous
2D environment. User-driven coordination has been studied in continuous 2D
environment in [53], where agents can be guided to their goals to avoid conges-

6

tion. Our approach does not need external guidance and automatically generates
coordinated goal paths for the agents.

Knepper and Rus [36] proposed a distributed cooperative collision avoidance
method to find safe trajectories for robots in environments populated with humans
and other robots. Their method is based on the concept of “civil inattention”:
in case of a potential collision, robots adapt their motion strategy depending on
whether the other agent is engaged or not in the collision avoidance effort. In
case of a potential collision between robots, it relies on explicit communication to
coordinate the appropriate collision avoidance strategy. This adaptive strategy
makes the robot motion more socially acceptable in human environments. Finally,
coordination methods based on consensus between the agents have been proposed,
for example, in [49, 48], which use graph-based methods and assume two-way
communication between neighboring agents to reach consensus on formation
control parameters, among others. Our method draws inspiration from these
types of approaches, though it focuses more on large, distributed planning tasks.
Most of these approaches consider only a limited number of agents, while C-Nav
can scale up to hundreds of agents, as we show in Section 6.4.

3. Problem Formulation

In our problem setting, we assume there are n independent agents, A1, . . . , An,
each with an individual start and goal position. We further assume that all
agents use the same local collision avoidance routine. For simplicity, agents
move on a 2D plane where there can be static obstacles O, approximated as line
segments. We model each agent Ai as a disc with a fixed radius ri. At timestep
t, the agent Ai has a position pi and moves with velocity vi that is subject
to a maximum speed, υmax. Furthermore, Ai has a set of empirically defined
preferred velocities vpref

i (see Fig. 2) that indicate the agent’s possible intended
direction and speed of motion at a given timestep.

Definition 1. Intended velocity, vintent
i : The intended velocity of agent i corre-

sponds to the agent’s current preferred velocity.

Ai also has a goal velocity vgoal
i directed toward the agent’s goal gi with

magnitude equal to υmax. In the absence of any other agents and static obstacles,
vintent
i = vgoal

i , i.e., the intended velocity of Ai is equal to its goal velocity.
We assume that an agent can sense the radii, the positions, and the velocities

of a subset of the agents, N , composed by at most |N | agents within a limited
fixed sensing range. We further assume that agents are capable of limited one-
way communication. Specifically, each agent uses this capability to broadcast its
unique ID and its intended velocity to its neighbors. This type of communication
scales well, as it is not affected by the size of the agent’s neighborhood.

Our task is to steer the agents to their goals without colliding with each other
or with the environment, while reaching their goals as fast as possible. Since the
agents navigate independently with only limited communication, this task has
to be solved in a decentralized manner. Therefore, at each timestep t, we seek

7

GoalAgent
β

Figure 2: The set of actions in C-Nav : moving at 1.5 m/s with different angles
with respect to the goal: 0◦, β, −β, 90◦, −90◦, 180◦, 180◦ + β and 180◦ − β.
In our implementation, β = 45◦. Dotted lines indicate the projection of the
corresponding preferred velocities.

to find for each agent a new collision-free velocity that respects its geometric
and kinematics constraints while progressing the agent towards its goal. To do
so, we rely on the ORCA navigation framework [3]. At each timestep, ORCA
takes as input an intended velocity vintent

i and returns a new velocity vnew that
is collision-free and as close as possible to vintent

i by solving a low dimensional
linear program. While ORCA guarantees a locally optimal behavior for each
agent, it does not account for the aggregate behavior of all the agents. As ORCA
agents have only a goal-oriented vintent

i , and do not account for each other’s
internal state (including their intended velocities) they may get stuck in local
minima, unable to coordinate their motions, leading to large travel times and,
subsequently, globally inefficient motions.

We postulate that if each agent is able to take into account the intended
motions of its neighbors as well as its own, it could move in a way that reduces
the travel time of its entire agent neighborhood. To do so, we propose C-Nav, a
distributed coordination approach that allows each agent to choose an action from
a set of preferred velocities at each timestep (Fig. 2), optimizing on a combination
of its own goal progress as well as the progress of its neighbors. Throughout this
paper, we use the terms action and preferred velocity interchangeably.

4. The C-Nav Approach

C-Nav is a distributed coordination framework for multi-agent navigation
tasks. This type of coordination can be achieved when: 1) agents share their
intended velocities via broadcast to their nearby agents and 2) agents use the
information broadcasted by others, as well as their own goal progress, to make

8

better decisions on how to move and coordinate with each other without the
need for explicit negotiation. With C-Nav, agents can select from a set of actions,
adopted from our previous works [16, 15, 18] (see Fig. 2), in a way that helps
their entire neighborhood of agents move to their goal locations. As we will show
later in Section 6, this reduces the travel time of all the agents.

To achieve this, a C-Nav agent follows a three-step process. First, the agent
simulates the execution of each of its actions for a number of timesteps into the
future. For each simulated timestep, the agent evaluates the effect that a given
action might have on its own goal progress, as well as on the motion of its most
constrained neighbors, that is, neighbors whose observed velocities are most
different from their broadcast intended velocities. Secondly, the agent selects
an action that maximizes a reward function, R, that evaluates its potential
goal progress, as well as the progress of its most constrained neighbors. Finally,
the preferred velocity vpref corresponding to the chosen action is passed to the
collision-avoidance framework, ORCA, which computes a collision-free velocity
vnew to be used during the next timestep.

Algorithm 1 outlines C-Nav. For each agent that has not reached its goal,
a new action is computed every few timesteps, on average every 0.2 seconds
(line 4), empirically determined. In each new update, the agent computes which
neighbors are most constrained to move (line 5), and uses this information to
evaluate all of its actions (line 7). After this evaluation, the best action is
selected (line 9) as measured by the above described reward function R. Finally,
its intended velocity vintent is broadcast to the agent’s neighbors (line 10) and is
also mapped to a collision-free velocity vnew via the ORCA framework (line 12),
which is used to update the agent’s position (line 13). The cycle repeats until
the agent reaches its goal.

Algorithm 1: The C-Nav(i) framework for agent i

1: Input: agent i
2: start the navigation
3: while not at the goal do
4: if UpdateAction(t) then
5: Crank ← GetMostConstrainedNeighs(i)
6: for all a ∈ Actions do
7: Ra ← SimMotion(i, a, Crank)
8: end for
9: vpref ← arg maxa∈ActionsRa

10: broadcast ID and vintent to nearby agents
11: end if
12: vnew ← CollisionAvoidance(vintent)
13: pt ← pt+1 + vnew ·∆t
14: end while

In what follows, we describe how C-Nav agents choose their most constrained
neighbors, and how are these neighbors taken into account when evaluating

9

the available actions. Finally, we show how C-Nav’s reward function balances
between two objectives: reducing motion constraints in the neighbors and
increasing the goal progress for the agent.

4.1. Determining constrained neighbors

With information obtained by sensing (radii, positions and velocities) and
via one-way communication (IDs and intended velocities) from all the neighbors
within the sensing range, each agent estimates which nearby agents are the
most constrained ones. Specifically, agents use the intended velocities of their
neighbors to evaluate how constrained their motion is and, thus, determine
neighbors that are more likely to slow down the overall progress of the crowd.
By reducing the constraints of these neighbors, i.e. by being polite towards them,
the time- and energy- efficiency of the system increases.

Definition 2. Polite action: For a given neighbor j, the politeness of an agent’s
action a is measured by how much the neighbor’s vintent

j would be impeded during
the next timestep, if the agent took action a. Formally, given that the maximum
speed that the neighbor j can attain is υmax, the politeness Pa,j is given as
follows:

Pa,j = υmax − ‖ vintent
j − vnew

j ‖. (1)

It is important to distinguish our definition of politeness, in the context of
C-Nav, from the notion of reciprocity of the underlying multi-agent navigation
framework, ORCA. ORCA’s reciprocity focuses on the low-level planning of
the agents and its sole purpose is to prevent agents from colliding with each
other, while the politeness defined above focuses on a higher-level planning of the
agents and it is intended to avoid or reduce congestion. Hence, both behaviors
are complementary.

Algorithm 2 details the constraint evaluation procedure, GetMostConstrainedNeighs(i),
for agent i. First, each agent compares a neighbor’s intended motion with its
observed velocity (line 7). The larger the difference, the more likely it is that
the neighbor’s motion is impeded. To avoid circular dependencies which can
give rise to deadlocks, each agent only considers neighbors that are closer than
itself to its goal (line 5). This ensures that no two agents with the same goal will
simultaneously defer to each other. The agent keeps two lists, C and D, which
keep track of the neighbor ID and quantify the constraints of each neighbor,
respectively. After all neighbors have been evaluated, C is sorted in descending
order based on the values in D, and a list Crank of the indices of the sorted
neighbors is returned (line 10-12).

Once the agent computes a ranking of the most constrained neighbors, it can
use this information to bias the action selection towards velocities that, on one
hand, move the agent closer to its goal while, on the other, help nearby agents
to move according to their intended motions.

4.2. Improving neighborhood motion

Agents can choose a preferred velocity from the set of actions shown in
Figure 2, which allows agents to choose velocities that are uniformly distributed

10

Algorithm 2: GetMostConstrainedNeighs(i): Compute most con-
strained neighbors for a given agent i

1: Input: agent i (includes list of neighbors N (i), goal position gi and current
position pi)

2: Output: Crank, list of indices of the most constrained neighbors
3: C ← [], D ← []
4: for all j ∈ N (i) do
5: if ‖gi − pj‖ < ‖gi − pi‖ then
6: C.insert(j)
7: D.insert(‖ vintent

j − vnew
j ‖)

8: end if
9: end for

10: Sort list C by value D in descending order
11: Crank ← C
12: return Crank

in the space of directions. To evaluate each available action, an agent simulates
its execution for a number of timesteps and evaluates two metrics: its potential
progress towards its goal and its effect in the motion of its k most constrained
neighbors (0 ≤ k ≤ |N |). This procedure is called SimMotion(i, a, Crank) in
Algorithm 1 (line 7). In practice, SimMotion executes each action for two time
steps (less than a quarter of a second). We empirically found this small time
window to be sufficient, as our goal here is to assess how the action affects the k
most constrained neighbors of the agent rather than trying to capture complex
type of dynamics. Algorithm 3 outlines the overall procedure.

Motion simulation

As a first step, for each given action, an agent uses the ORCA framework
to simulate the changes in its neighborhood (line 4), updating the velocities
and positions of itself and its neighbors for each timestep within a fixed time
horizon T (line 3). Note that in very crowded areas (such as in Figure 3(a)),
agents often have no control over their own motions, as they are being pushed
by other agents to avoid collisions. Hence, simulating the dynamics of all the
agent’s neighbors often results in the same velocity for all simulated actions
(Figure 3(b)). This prevents the agent from selecting a velocity that improves
the motion of its most constrained neighbors. Because of this, in C-Nav the
agent considers in its simulation only the neighbors that are closer to its goal
than itself (Figure 3(c)), ‘ignoring’ the agents that are behind it with respect to
its goal (Figure 3(d)). Even if the best valued action is not currently allowed, we
expect that the neighboring agents will eventually try to relax the constraints
that they impose on the agent, and enable the agent to make progress towards
its goal.

11

Goal Goal Goal Goal

(a) (b) (c) (d)

Figure 3: Motion simulation of C-Nav for the bold agent in crowded areas.
(a) Initial crowded conditions. (b) If the bold agent takes into account all of
its neighbors in the motion simulation step (line 3 of Algorithm 3), all of its
simulated actions would result in similar collision-free velocities (to the left of its
goal-oriented path). (c) With C-Nav, the bold agent only considers the neighbors
that are closer to its goal. (d) Because the bold agent “ignores” agents coming
from behind, it assumes that it can move backwards unconstrained (for example,
to avoid introducing motion constraints to the two agents moving to the left).
Even if such movement is not immediately allowed by the collision-avoidance
mechanism, it might eventually be feasible if the “ignored” agents behave politely
towards the bold agent.

Algorithm 3: SimMotion(i, a, Crank)

1: Input: agent i (includes list of neighbors N (i)), integer a ∈ Actions, sorted
list of indices Crank

2: Output: Ra, estimated value of action a
3: for t = 0, . . . , T − 1 do
4: simulate evolution of neighborhood dynamics
5: if t > 0 then
6: for all j ∈ N (i) do
7: if rank(j ∈ Crank) < k then
8: Rca ← Rca + υmax − ‖ vintent

j − vnew
j ‖

9: end if
10: end for
11: end if
12: Rga ← Rga + vnew

i · gi−pi

‖gi−pi‖
13: end for
14: Rga ←

Rg
a

T ·υmax ,Rca ←
Rc

a

(T−1)·k·υmax

15: Ra ← (1− γ) · Rga + γ · Rca
16: return Rga

Neighborhood influence

After simulating a specific action for the given time horizon, the agent
can estimate how this action affects each of its k most constrained neighbors.

12

For a given neighbor j, it computes this based on the difference between j’s
predicted collision-free velocity vnew

j and its communicated intended velocity

vintent
j (line 8).

Motion evaluation

To decide what motion to perform, the agent aims at minimizing the amount
of constraints imposed to its neighbors, while also ensuring progress towards
its own goal. Our reward function balances these two objectives, by taking a
linear combination of a goal-oriented and a constrained-reduction component
(Eq. 2). Each component has an upper bound of 1 and a lower bound of -1 and
is weighted by the coordination-factor γ.

Ra = (1− γ) · Rga + γ · Rca (2)

The goal-oriented component Rga computes, for each timestep in the time horizon,
the scalar product of the collision-free velocity vnew

i of the agent with the
normalized vector which points from the position p of the agent i to its goal gi.
This component encourages preferred velocities that lead the agent as quickly as
possible to its goal. Formally:

Rga =

T−1∑
t=0

(
vnew
i · gi−pi

‖gi−pi‖

)
T · υmax

(3)

The constrained-reduction component Rca averages the amount of constraints
introduced in the agent’s k most constrained neighbors. This component pro-
motes preferred velocities that do not impede these k neighbors. More formally:

Rca =

T−1∑
t=1

∑
j∈Crank

Pa,j

(T − 1) · k · υmax
(4)

An agent which only aims at maximizing Rga would be selfish and it would
not consider the effect that its actions have on its neighbors. On the other
hand, if the agent only tries to maximize Rca, it might have no incentive to
move towards its goal, which means it might never reach it. Therefore, by
maximizing a combination of both components, the agent coordinates its goal-
oriented motion with that of its neighbors, resulting in lower travel times for all
agents. Overall, the low communication and computation overhead that C-Nav
imposes over the ORCA underlying navigation framework allows our approach to
simulate hundreds of agents in real time, as well as its application to multi-robot
navigation tasks.

To better highlight the advantages of C-Nav, Figure 4 compares the behavior
of vanilla ORCA and C-Nav in a small scenario with two agents, whose goal is
to reach the other side of a hallway. The agents’ initial positions is shown in
Figure 4 (a), with agent 1 initially closer to the goal than agent 2. With ORCA,
agent 2, coming full speed from behind, introduces constraints into the goal

13

1

2

1

2
2

1
2

1

1

2

2

1
2

(a)

(b) (c) (d)

(e) (f) (g)

ORCA

C-Nav

Figure 4: Example executions of ORCA (top) and C-Nav (bottom), in a scenario
with two agents with identical goal positions. (a) Agents in their starting
positions. (b) agents using ORCA have a single preferred velocity towards their
goals; (c) agent 1 is forced to move to the right to avoid collision with agent
2 coming from behind, even though agent 1 is closer to the goal; (d) agent 2
overpasses agent 1, reaching its goal first; (e) agent 2, using C-Nav, selects a
preferred velocity that allows agent 1 to move unconstrained to its goal position;
(f) agent 2 resumes its goal oriented motion only when it does not introduce
constraints in the motion of agent 1; (g) agents 1 and 2 reach their goal faster
than with ORCA.

oriented motion of agent 1, forcing the latter to move aside to avoid colliding
with the former (Figures 4 (b) and (c)). Only after agent 2 has overtaken agent
1 can the latter resume its goal-oriented motion (Figure 4 (d)). This behavior
is not only inefficient in terms of travel time, but it also appears “impolite”
from agent 2 towards agent 1. In contrast, with C-Nav, the communication
of intended velocity as well as the proposed reward function allows agent 2 to
evaluate and choose a preferred velocity that does not introduce constraints in
the motion of agent 1, enabling the latter to freely move to its goal (Figures 4
(e) and (f)). Finally, this polite behavior not only respects their original order in
terms of goal distance, but also allows the agents to reach their goals faster than
with ORCA (Figure 4 (g)).

5. Theoretical Analysis

We focus our theoretical analysis on showing the conditions under which
C-Nav agents can avoid livelocks. A livelock corresponds to executing a series of
repeated motions that do not move the agent to its goal. In C-Nav, a livelock
would occur if two or more agents repeatedly switch from goal-oriented motions
to polite motions that move the agents away from their goals, which would
prevent the progress of the agents. We show that there is some value of γ (Eq. 2),
where the probability of livelocks to occur equals zero in scenarios where all
agents share the same goal (e.g., the Congested scenario in Figure 5)

14

For the purpose of this analysis, we assume that after an agent reaches the
goal, it is removed from the environment. Let Aα correspond to the agent that,
at any given time, is closest to the goal.

Lemma 1. At any time, Aα is able to choose an action that maximizes its
progress to the goal, without deferring to the motion of other agents.

Proof: The proof follows from the fact that an agent only accounts for neighbors
that are closer than itself to the goal for the evaluation of constraints and for
motion simulation purposes (Section 4.2). As Aα ignores agents coming from
behind, and there are no agents closer than Aα to the goal, then for all of its
actions a, Rca = 0, which means that Aα will optimize only the value of the
action’s goal progress Rga. To ensure that Aα has an incentive to reach the goal,
Rga must be greater than zero for at least one of the actions. Hence, as long as
γ < 1, Aα will choose the action with the collision-free velocity that maximizes
its progress to the goal.

Lemma 2. Any agent Ai, where Ai 6= Aα and Aα ∈ N (Ai), can choose an
action a′ that moves it backwards from its goal without introducing constraints
into Aα.

Proof: To allow Aα to maximize its progress to the goal, Ai should always choose
an action a′ that does not introduce constraints into Aα (a′ = arg maxa∈ActionsRca).
Such an action a′ always exists; in the worst case, a′ corresponds to the preferred
velocity backwards from the goal. As Ai ignores agents coming from behind
(Section 4.2), it assumes it can freely move in this direction. This backwards
velocity moves Ai away from Aα, minimizing the difference between Aα’s in-
tended velocity and its collision-free velocity. For Ai to choose this action, it
must hold that a′ = arg maxa∈ActionsR. Although there is no single value of
γ that guarantees this condition for all possible values of Rca and Rga, Ai will
eventually choose action a′ as γ → 1 (see Eq.2). As each agent Ai chooses a′, it
will not introduce constraints into Aα’s motion, which will allow Aα to move as
if it was the only agent in the system and to reach the goal. Once this occurs,
another agent takes the role of Aα, until all agents reach the goal.

From Lemmas 1 and 2, the following Theorem holds:

Theorem 1. In environments where agents share a common goal, the probability
of livelocks in C-Nav reaches 0 as γ asymptotically approaches 1. Under these
conditions, all agents are guaranteed to reach their goals.

6. C-Nav evaluation in simulation

6.1. Experimental Setup

We implemented C-Nav in C++. Results were gathered on an Intel Core i7
at 3.5 GHz. Each experimental result is the average over 100 simulation runs.
In all our runs, we updated the positions of the agents every ∆t = 50 ms and

15

set the maximum speed υmax of each agent to 1.5 m/s and its radius to 0.5 m.
Agents could sense other agents within a 15 m radius, and obstacles within 1 m.
To avoid synchronization artifacts, agents are given a small random delay in
how frequently they can update their vpref (with new vpref decisions computed
every 0.2 s on average). This delay also gives ORCA and C-Nav a few timesteps
to incorporate sudden velocity changes before the actions are evaluated. Small
random perturbations were added to the preferred velocities of the agents to
prevent symmetry problems [3]. To simulate the communication of the intended
velocity, we allowed agents to access the preferred velocity of their nearby agents.

6.2. Performance Metric

To evaluate the performance of C-Nav, we use the interaction overhead metric
proposed by Godoy et al. [15], which measures the time that the agents take to
reach their goals compared to their travel time if they could move unconstrained
from their initial to their goals positions (the upper bound of their theoretical
minimum travel time). This metric is independent of the distances between
the agents’ initial and goal positions (which depend on the specific scenario),
and it allows us to compare the time performance of the evaluated methods. It
answers the question of how much time the agents spent reacting to other agents
rather than moving to their goals. It also allows us to compare the complexity
of the different scenarios, as high values of interaction overhead are indication of
scenarios with more complex multi-agent interactions, compared to scenarios
with low values. For completeness, we include the formal definition of interaction
overhead below.
Definition: Interaction Overhead. The interaction overhead is the difference
between the travel time of the set of agents A, as measured by Eq. 6, and their
hypothetical travel time if all the agents could follow their shortest paths to
their goals at maximum speed without interacting with each other, i.e.:

Interaction Overhead = TTime(A)−MinTTime(A) (5)

where TTime(A) accounts for the global travel time of all agents in A. To
evaluate this travel time, we could consider the travel time of the last agent
that reaches its goal in each scenario. However, this value would not provide us
with any information regarding the travel time of all the other agents. Instead,
TTime(A) accounts for the average travel time of all the agents in A and its
spread. Formally:

TTime(A) = µ (TimeToGoal(A)) + 3 σ (TimeToGoal(A)) (6)

where TimeToGoal(A) is the set of travel times of all agents in A from their
start positions to their goals, and µ(·) and σ(·) are the average and the standard
deviation (using the unbiased estimator) of TimeToGoal(A), respectively. If
the travel times of the agents follow a normal distribution, then TTime(A)
represents the upper bound of TimeToGoal(A) for approximately 99.7% of the
agents. Even if the distribution is not normal, at least 89% of the times will fall
within three standard deviations (Chebyshev’s inequality).

16

Following the same reasoning, MinTTime(A) accounts for the average and
spread of the theoretical minimum travel time of the set of agents A, evaluated
as follows:

MinTTime(A) = µ (MinimumGoalT ime(A)))

+ 3σ (MinimumGoalT ime(A)) (7)

where MinimumGoalT ime(A) is the set of travel times for all agents in A, if
they could follow their shortest route to their goals, unconstrained, at maximum
speed.

The interaction overhead metric allows us to evaluate the performance of
C-Nav from a theoretical standpoint in each of the navigation scenarios. An
interaction overhead of zero represents a lower bound on the optimal travel time
for the agents, and it is the best result that any optimal centralized approach
could potentially achieve.

6.3. Simulation scenarios

To evaluate C-Nav we used a variety of scenarios, with different numbers
of agents and, in some cases, static obstacles. Figure 5 shows the different
simulation scenarios. These include:

(a) Intersection: 80 agents in four perpendicular streams meet in an in-
tersection (Fig 5(a)). This scenario, besides its complexity, reflects crowd
congestion that could potentially occur in real life such as at shopping centers
or busy pedestrian crossings;

(b) Crowd: 300 randomly placed agents must reach their randomly assigned
goal positions, while moving inside a squared room (Fig 5(b));

(c) Congested: 32 agents are randomly placed close to the narrow exit of an
open hallway and must escape the hallway through this exit (Fig. 5(c));

(d) Line: 4 agents placed in a line next to a narrow exit must reach the other
side of this exit (Fig 5(d));

(e) Circle: 128 agents walk to their antipodal points on a circle (Fig 5(e));

(f) Bidirectional: two groups of 9 agents each move in opposite directions
inside a corridor (Fig. 5(f)).

6.4. Results

We first study how C-Nav compares against two popular multi-agent nav-
igation frameworks, ORCA [3] and Social Forces [27]. Next, we evaluate how
C-Nav, as a communication-based distributed coordination approach, compares
against a learning-based method for action coordination (ALAN [15]). We then
evaluate the contribution of the constraint-reduction (politeness) component of
C-Nav to its overall performance. We also evaluate C-Nav in a warehouse-like
environment, one of our target domain problems, and lastly we compare the
energy efficiency of C-Nav to ORCA in the different simulation scenarios.

17

(e)

Goal

(c)

(f)

Goal

(d)

(a) (b)

Figure 5: Simulated scenarios:(a) Intersection, (b) Crowd, (c) Congested,
(d) Line, (e) Circle and (f) Bidirectional.

6.4.1. Comparison of C-Nav to other navigation approaches

We evaluated the interaction overhead times in all scenarios depicted in
Figure 5. Results can be seen in Figure 6. The interaction overhead of C-
Nav is significantly lower than ORCA’s in all cases, which indicates that by
considering information about their neighborhood, agents can improve their
time-efficiency. Even in scenarios where agents are constrained by other agents
and static obstacles (such as in the Bidirectional scenario), C-Nav is able to
significantly improve the time-efficiency of the agents. In terms of qualitative
results, we observe an emergent behavior in the Bidirectional and Circle
scenarios, where agents going in the same direction form lanes. Such lanes reduce
the constraints in other agents leading to more efficient simulations. Note that,
in the Intersection scenario, C-Nav agents take only about one third of the
time that ORCA agents need in order to reach their goals.

18

0	

50	

100	

150	

200	

Line	 Bidirec.onal	 Intersec.on	 Circle	 Congested	 Crowd	

In
te
ra
c(
on

	o
ve
rh
ea
d	
(s
)	

ORCA	

Social	Forces	

C-Nav	

N/A	 N/A	

Figure 6: Performance comparison between ORCA, Social Forces and C-Nav. In
all but the Congested scenario, agents using our coordination approach have
the lowest overhead times. The error bars correspond to the standard deviation.

In most scenarios, C-Nav outperforms the Social Forces approach in terms
of interaction overhead times, although less noticeably (but still significantly)
in the Line scenario. The only exception occurs in the Congested scenario,
where the repulsion force among agents [27] creates enough space between them
to allow individual agents to quickly exit the hallway, reaching their goals faster
than the other two methods.

In the Line, Circle and Congested scenarios, the Social Forces approach
outperforms ORCA in interaction overhead time. On the other hand, the Social
Forces approach is unable to move agents to their goals in the Bidirectional
and Intersection scenarios. Here, agents get stuck in a deadlock due to
their conflicting goals. ORCA, however, is able to move the agents to their
goals even in these very constrained environments. Further, the Social Forces
approaches does not provide the collision-free guarantees of ORCA. As multi-
robot navigation is one of the main domain applications of C-Nav, it is critical
to guarantee safe navigation among the robots. Due to all these reasons, we use
ORCA as C-Nav’s underlying navigation framework.

6.4.2. Results of coordination strategy

In previous work, we have studied different coordination methods to increase
the time efficiency of agents in navigation tasks. In one of such methods,
called ALAN [15], agents learn to coordinate their motions via action sampling,
evaluating their individual goal progress without communication. C-Nav, on
the other hand, can be seen as a more “social” method: agents coordinate their
motions via communication of intended velocities, and evaluating the impact
of their actions on their nearby agents. We compare these two approaches
for coordinating the motions of the agents: C-Nav, as a communication-based

19

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

Line	 Bidirec0onal	 Intersec0on	 Circle	 Congested	 Crowd	

In
te
ra
c(
on

	o
ve
rh
ea
d	
(s
)	

ALAN	

C-Nav	

Figure 7: Performance comparison between C-Nav and a learning-based co-
ordinated action selection method (ALAN). In all scenarios, agents using our
distributed coordination approach have the lowest overhead times. The error
bars correspond to the standard deviation.

distributed coordination approach, and ALAN as a learning-based method for
coordinated action selection. Results, which can be observed in Figure 7, show
that C-Nav achieves lower interaction overhead than ALAN in all scenarios.
C-Nav agents redefine the concept of ‘polite’ behavior, as compared to ALAN
[15], to explicitly consider their nearby agents’ intended motions. With this extra
piece of information, each agent determines the optimal action that maximizes
both its own goal progress as well as its neighbors’. Hence, C-Nav agents take
actions that benefit their entire neighborhood. This ‘polite’ behavior minimizes
the occurrence of congestion which, in long term, minimizes the travel time of
all agents.

So far, we have shown that C-Nav outperforms other navigation approaches,
as well as an action selection method based on the same underlying collision
avoidance framework. An interesting evaluation is to determine how much of
C-Nav ’s performance improvement is due to its ‘polite’ behavior component,
and how much of it is due to the reciprocal behavior component of ORCA. To
evaluate this, we removed the reciprocity feature of ORCA (each agent now
exerts full effort to avoid collisions, instead of only half of this effort as in vanilla
ORCA) and compared the interaction overhead of this ‘No-Reciprocity ORCA’
(NR-ORCA) with and without C-Nav running on top. Table 1 summarizes the
interaction overhead times for both approaches, which shows that isolating the
politeness component from the reciprocity of ORCA still results in a significant
performance improvement of C-Nav over this version of ORCA. Differences in

20

Scenario NR-ORCA NR-ORCA with C-Nav
Line 11.9±0.7 5±0.2

Bidirectional 19.1±2.1 7.7±0.8
Intersection 358.6±20.4 78.3±1.1

Circle 31.7±0.6 17.5±0.2
Congested 230.8±4.7 192.1±2.3

Crowd 45.5±0.8 36.2±0.4

Table 1: Interaction overhead (in seconds) for both NR-ORCA (ORCA with
reciprocity removed) and NR-ORCA with C-Nav in all scenarios in Figure 5

over 100 trials.

each case are statistically significant (t-test with p < 0.001).

6.4.3. Results of constraint-reduction component

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

Line	 Bidirec0onal	 Intersec0on	 Circle	 Congested	 Crowd	

In
te
ra
c(
on

	o
ve
rh
ea
d	
(s
)	

ORCA	

C-Nav:	Goal	progress	

C-Nav:	Goal	progress	+	
politeness	

Figure 8: Performance comparison between ORCA (in blue), ”selfish” C-Nav
using only the goal progress as reward for the actions (in red), and ”polite”
C-Nav using both the goal progress and constraint-reduction components (in
green). The error bars correspond to the standard deviation.

To evaluate the contribution of C-Nav ’s constraint-reduction component, Rca,
to C-Nav’s performance, we compared the interaction overhead obtained with
just the goal-progress component, Rga (Eq. 3), which we call “selfish” C-Nav,
to the one obtained using both the goal-progress and the constraint-reduction
(politeness) components of the full reward function shown in Eq.2, which we
call “polite” C-Nav’s. Agents in both versions of C-Nav’s have the option to

21

choose preferred velocities other than the goal-oriented ones which can lead
to more promising collision-free velocities, as measured by the corresponding
reward functions. We compared these two versions of C-Nav’s against ORCA
where, unlike “selfish” C-Nav, the agents’ vintent is always equal to their vgoal.
Results for all scenarios can be seen in Figure 8.

In all scenarios, “polite” C-Nav agents that try to reduce the motion con-
straints of their neighbors were able to reach their goals faster, on average, than
“selfish” agents that only considered their goal progress when making action deci-
sions. This difference is most noticeable in the Intersection, Bidirectional
and Circle scenarios, where the distributed coordination achieved by C-Nav ’s
constraint-reduction component (see Eq. 4) translates into a significant reduction
of congestion and the consequent reduction of interaction overhead.

It is worth noting that even with “selfish” agents (using only the goal-
oriented component), C-Nav outperformed ORCA in four out of six scenarios,
and exhibited the same performance with ORCA in the Bidirectional and
Congested scenarios. In these two cases, as agents have to move through
obstacle-constrained areas for at least part of the navigation task (the corridor in
the Bidirectional and the narrow exit in the Congested), the extra actions
of C-Nav are unable to find alternative goal paths that would reduce their travel
time. On the other hand, in scenarios such as the Circle and the Crowd where
agents have more space to maneuver, even pure selfish behavior is enough to
move the agents to their goals faster than with ORCA.

6.4.4. Results in warehouse-like environment

One of the target domains of C-Nav is automated warehouses, where multiple
robots have to navigate to dedicated goals in order to accomplish their tasks. To
assess the potential advantages of our approach in such a domain, we evaluated
C-Nav in the warehouse-like environment shown in Figure 9 and compared
its performance to ORCA. The environment was obtained from [39] (used for
benchmarking multi-agent path finding methods).

Figure 9: Warehouse-like scenario, of dimensions 10 × 30 meters, from [39],
indicating the initial positions of the agents.

We initially placed 4 agents in the left and the right open areas in the
environment (in total, 8 agents), and set their goals in the opposite positions in

22

the environment (which also corresponds to the initial position of another agent).
To reach its goal, each agent must interact with another agent approaching from
the opposite direction, in corridors that allow only one agent to pass at a time.
It is worth noting that the agents lack any global roadmap and only rely on their
local navigation framework to reach to their goals. As a result, they can easily
get stuck behind static obstacles. We run 100 iterations of ORCA and C-Nav,
and the resulting interaction overhead times are 1169.2 s ±23.3 s for ORCA and
368.4 s ±36.4 s for C-Nav. This noticeable difference shows that the politeness
component of our approach has a significant effect in the agents’ interactions.
Further, in 18 of the 100 trials run, ORCA agents were not able to reach their
goals, while C-Nav was able to successfully move the agents to their destinations
in all of the trials run. This highlights the complexity of the environment and
the benefits of using our proposed approach to solve complex situations.

Using the same environment, we also evaluated how C-Nav performed when
agents had more than one goal. Specifically, we gave each agent one subgoal:
the opposite position in the environment as before, and one final goal: its initial
position. Therefore, each agent had to navigate back and forth in the warehouse
through the corridors. Each experiment was run for 100 trials. In this setup,
ORCA agents arrived to their goal positions in only 8 of the 100 trials run,
having an interaction overhead of 1731.4 s ±29.5 s, as compared to 100% goal
reachability with C-Nav and 284.7 s ±23.4 s of interaction overhead. This shows
that the advantages of using C-Nav also translate to real-world domains.

6.4.5. Results in energy efficiency

Energy efficiency is critical in robot applications. To assess how C-Nav
performed in this context, we used the metric proposed in [16] that measures
the amount of energy consumed by the agents while navigating. Specifically,
we approximate the power expected to be consumed by an agent i, while it is
moving, as follows:

Energy(i) = b+ c · ‖vnew
i ‖2. (8)

In Equation 8, b corresponds to the power consumed by the agent due its
processing and sensing capabilities, while c · ‖vnew

i ‖2 corresponds to the kinetic
energy spent by the agent while moving, proportional to the agent’s speed
squared. Given that

√
b/c denotes the optimal agent speed in terms of energy

per second expended, in our implementation we set b = 2.25 and c = 1 resulting
in an optimal speed equal to vmax. The results in Table 2 show the total
instantaneous energy, averaged over all agents for both C-Nav and ORCA, over
100 trials. In all but the Congested scenario, C-Nav agents expend less energy
than agents using ORCA (t-test with p < 0.001). In the Congested scenario,
C-Nav agents backtrack often to alleviate congestion developing near the narrow
exit, spending more energy on backwards motions than ORCA agents, which do
not show this behavior. This result highlights another advantage of using C-Nav
in multi-robot navigation tasks.

23

Scenario ORCA C-Nav
Line 553.9 378.3

Bidirectional 2761.2 2170.7
Intersection 6602.1 3498.9

Circle 16365.6 15832.4
Congested 6770.6 7091.3

Crowd 1920.2 1706.9

Table 2: A comparison of the average energy (in J ·Kg−1 · s−1) expended by
the C-Nav agents in all scenarios in Figure 5. Smaller numbers denote less

energy expended by the agents.

Scenario ORCA C-Nav
Line 2.5 3.0

Bidirectional 5.2 6.1
Intersection 2.2 3.3

Circle 6 6.4
Congested 1.3 1.2

Crowd 2.8 3.2

Table 3: A comparison of the energy efficiency (in J ·meters ·Kg−1 · s−2) of
ORCA and C-Nav agents in all scenarios in Figure 5. Larger numbers denote

more energy efficient agents.

While Table 2 focuses on the total instantaneous energy expenditure of the
agents, it does not communicate the amount of energy expended by an agent
while attempting to move toward its goal. To address this, we borrow ideas from
our previous work in [16] and measure the ratio between the progress of the
agent towards its goal, and the amount of energy expended, per second:

EnergyEff(i) =
Progress(i)

Energy(i)
, (9)

where Progress(i) is defined as:

Progress(i) = vnew
i · gi − pi

‖gi − pi‖
. (10)

Therefore, Eq. 9 measures the ratio between the progress of the agent towards
its goal and the energy that the agent spent in such motion. We summed the
EnergyEff(i) of each agent during its lifespan, and then computed the average
energy efficiency across all agents over 100 trials. The results, shown in Table 3,
indicate that, again, in all but the Congested scenario, C-Nav agents are more
efficient than ORCA agents, moving closer to their goals per energy expended at
each second (t-test with p < 0.001).

24

7. Analysis

In this section, we analyze various aspects of the proposed C-Nav approach.
We begin by analyzing the role of C-Nav in minimizing the total travel time
of the agents. Then, we focus on its runtime complexity as well as on how it
scales with the number of agents present in the environment. We also perform
sensitivity analysis of C-Nav with respect to the value of the coordination factor
(γ) used. Finally, we evaluate the sensibility of the results with respect to
the number k of constrained neighbors considered by each agent during action
evaluation.

7.1. Runtime Complexity

The runtime performance of C-Nav is dominated by its action-selection
routine (Alg. 1, lines 5-9), as it is necessary to simulate the motion of the agent
and its neighbors for each possible action, for the small time horizon considered
(T = 2 in all experiments). At each simulated timestep, the runtime complexity
of an agent is linear in the number of neighbors [3]. Therefore, if an agent has n
neighbors and needs O(n) time to simulate each one of them for each of the q
actions, the runtime complexity of C-Nav is O(qn2) per agent.

The complexity added by the one-way communication in C-Nav is negligible
because a single message is communicated regardless of the number of neighbors.
Therefore, this only requires a constant and small amount of resources (each
message is formed by a 2D real number plus the ID of the agent). In time units,
ORCA takes approx. 1.5× 10−5 seconds to compute a new collision-free velocity,
while C-Nav takes approx. 7 × 10−5 to evaluate and select a new preferred
velocity for the next timestep. All in all, C-Nav takes approx. 8.5 × 10−5 of
processing time for each agent, which allows us to simulate large scale navigation
tasks in real time.

7.2. Scalability

We analyzed the scalability of our approach in the Crowd and Congested
scenarios by varying the number of simulated agents and evaluating the inter-
action overhead time. The results, depicted in Figure 10 show that, in both
scenarios, the overhead time of C-Nav increases more or less linearly as more
agents are added, allowing us to simulate up to 300 agents in real time (in the
Crowd scenario). At the same time, the overhead time introduced by each
added agent in the system is not larger in our approach than in ORCA.

7.3. Effect of the coordination factor

We evaluated how the balance between the goal-oriented and the constraint-
reduction components of our reward function (Eq. 2), controlled by the coordination-
factor γ, affects the performance of C-Nav in all scenarios. Note that we did
not test scenarios using a γ value of 1, as with this value the agents have no
motivation to move towards their goal.

The results, shown in Figure 11, indicate that using values of γ smaller than
0.5 produces more contention in crowded situations, as agents prioritize their

25

0	

10	

20	

30	

40	

50	

60	

50	 100	 150	 200	 250	 300	 350	

In
te
ra
c(
on

	o
ve
rh
ea
d	
(s
)	

#	of	agents	

C-Nav	

ORCA	

(a)

0	
100	
200	
300	
400	
500	
600	
700	
800	

0	 50	 100	 150	

In
te
ra
c(
on

	o
ve
rh
ea
d	
(s
)	

#	of	agents	

C-Nav	

ORCA	

(b)

Figure 10: Interaction overhead of C-Nav and ORCA, in the (a) Crowd and
(b) Congested scenarios, with different number of agents.

own goal progress to their neighbors’. Overall, the best performance is achieved
with γ = 0.8. This indicates that, for a time-efficient global navigation, agents
should mainly aim at reducing the constraints of their neighbors. At the same
time, they still need to account for their own goal progress, as the travel time
starts increasing again in most scenarios with γ > 0.8. Two interesting cases
can be observed in the Congested and Line scenarios (which share the same
obstacle configuration), where the performance is improved when γ = 0.9. Here,
all agents must go through the narrow exit to reach their goals (see Figure 5(c)
and (d)). Consequently, as the value of γ approaches 1, agents are more likely
to always defer to the agents closer to the single goal (regardless of the cost
in terms of their own goal progress). In these scenarios, this extremely polite
behavior creates an ordering between agents for passing through the narrow exit,
as no two agents will defer to each other at the same time. Ultimately, this
translates into better overall performance.

7.4. Effect of number of constrained neighbors

We also evaluated how the number of constrained neighbors, k, in the
constraint-reduction component of the reward function (Eq. 4) affects the per-
formance of our approach. Results for all scenarios can be observed in Figure 12.
When k=0, the results are equivalent to the “selfish” C-Nav agents (see Figure 8).

We can observe that, in most scenarios, polite behavior towards even a
single agent translates into a significant decrease in interaction overhead. In
the Crowd scenario, though, this shift from 0 to 1 constrained neighbor (k)
translates into an increase of interaction overhead, before reducing again when
k ≥ 2. In this scenario, the global benefit of deferring to a single neighbor is
not enough to compensate for the extra travel time incurred by the polite agent.
Only when agents are polite to groups of at least two neighbors it does make
sense to “pay” the cost in terms of the travel time needed to reach their own
goals.

In the Bidirectional, Circle, Intersection and Crowd scenarios, the
performance improves as each agent evaluates the constraints of more neighbors.

26

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	

In
te
ra
c(
on

	o
ve
rh
ea
d	
(s
)	

Coordina(on	factor	

Bidirec3onal	 Circle	
Congested	 Crowd	
Line	 Intersec3on	

Figure 11: Performance comparison in all scenarios in C-Nav, with different
values of the coordination factor. The error bars correspond to the standard
deviation.

In these scenarios, as agents account for more neighbors upon computing a new
velocity, their motion becomes more coordinated and the travel time of the entire
system of agents is reduced (but the more neighbors each agent considers, the
higher is the runtime complexity). However, adding more neighbors generally
translates into smaller improvements. The reason is that as we add more
neighbors, the influence of a specific neighbor’s motion constraints in the reward
function of the agent is reduced, as it is averaged with the other k − 1 neighbors
(Eq. 4). As such, the agent ends up prioritizing its own goal-progress versus the
average progress of its k constrained neighbors. In all of the evaluated scenarios,
we found the optimal threshold for k to be between 3 or 4 neighbors, with the
exception of the Congested scenario. Here, only one neighbor is needed to
achieve the best results: considering more neighbors in this scenario translates
into agents being very polite for a longer time (to allow agents in front to pass
through the narrow doorway) which translates into larger delays in their own
travel time. In all our simulation experiments, we used k = 4.

7.5. Effect of reduction of livelocks

In Section 5, we demonstrated that as the value of the coordination factor
γ asymptotically approaches 1, the probability of livelocks with C-Nav, in
environments with a single goal, reaches 0. Here, we evaluate how such relation
translates into lower interaction overhead times. Specifically, we evaluated the
interaction overhead in the Congested scenario, with 32, 64 and 96 agents, as
we increase the coordination factor in the range between 0.9 and 1. Results can

27

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

0	 1	 2	 3	 4	

In
te
ra
c(
on

	o
ve
rh
ea
d	
	(s
)	

#	neighbors	

Bidirec/onal	 Circle	
Congested	 Crowd	
Line	 Intersec/on	

Figure 12: Performance comparison in all scenarios in C-Nav, with different
number of neighbors considered in the politeness computation. The error bars
correspond to the standard deviation.

be seen in Table 4.
In all three cases, we can observe that the interaction overhead values

progressively decrease as the value of γ approaches 1. The higher the value of
γ, the less likely is that agents impose constraints in the motions of neighbors
that are closer to the (only) goal of the scenario, which helps increase the flow
of agents through the narrow opening, reducing the overall travel time of the
entire system of agents.

We also evaluated the difference between the preferred velocity, vpref , and
the collision-free velocity, vnew, for the agent that is, at each timestep, closest to
the goal during the entire navigation task. The motion constraints imposed on
this agent, unlike other agents farther from the goal, are a more clear indication
of the effect of C-Nav ’s polite behavior. The results, shown in Table 5, indicate
that this value also decreases as γ asymptotically approaches 1 in all cases.

Although not directly measuring livelocks, these results indicate that with
values of γ approaching 1, C-Nav agents lower the amount of motion constraints
introduced into their neighbors, especially the agent closest to the goal. These
results provide empirical evidence that supports the theoretical properties of
C-Nav, described in Section 5.

8. C-Nav evaluation in multi-robot experiments

Here, we show how the advantages of accounting for polite behavior, as
implemented in C-Nav, translate into multi-robot navigation tasks with non-
holonomic constraints. To account for such constraints, we extended C-Nav to

28

Coord. factor 32 agents 64 agents 96 agents
0.9 90.73 231.01 365.68
0.95 74.64 183.85 304.55
0.99 66.1 157.32 254.82
0.999 65.18 155.6 244.51
0.9999 63.21 151.33 243.78

Table 4: Interaction overhead (in seconds) for C-Nav agents in the Congested
scenario, with 32, 64 and 96 agents, with values of the coordination factor

approaching 1.

Coord. factor 32 agents 64 agents 96 agents
0.9 0.96 1.11 1.15
0.95 0.79 0.96 1.03
0.99 0.69 0.82 0.87
0.999 0.65 0.77 0.83
0.9999 0.65 0.76 0.82

Table 5: Difference between the preferred velocity, vpref , and the collision free
velocity, vnew, for the agent closest to the goal at each timestep, averaged

through the duration of the navigation task in the Congested scenario, with
values of the coordination factor approaching 1.

the non-holonomic version of ORCA (NH-ORCA) [1], as implemented in [28]
for ROS. We compared C-Nav to NH-ORCA in three real world navigation
environments involving three Turtlebot 2 robots.

8.1. Experimental setup

We used ROS Indigo and Ubuntu 14.04 as the software platform for the
robot experiments. In the ROS implementation of NH-ORCA [28], robots share
their positions and collision-free velocities via ROS topics. We extended this
implementation by allowing robots to also share their preferred velocities, as
required by C-Nav. As the robots were equipped only with Kinect-type sensors
that provide a narrow field of view, to allow them to accurately determine the
positions and shapes of the obstacles, we hand-coded the obstacle positions
in C-Nav ROS code (visible as black tape in Figures 16 and 17 and in the
supplementary video). This reduced the source of potential perception errors in
the navigation, and allowed the robots to focus on agent interactions.

We consider three real world scenarios, as depicted in Figure 13, involving
three Turtlebot 2 robots as follows:

• Corridor: Two robots cross paths with a single robot moving in the
opposite direction in a narrow corridor bounded by virtually impassible
obstacles (Fig 13(a)).

29

(a) (b) (c)

Figure 13: Three real world scenarios were used to evaluate C-Nav with robots:
(a) Corridor, (b) 2vs1 and (c) SmallIntersection.

• 2vs1: Similar to the Corridor but with extra space for maneuvering in
one side of the environment (Fig 13(b)).

• SmallIntersection: Two robots are located on one side of a narrow
doorway and another robot on the other side, and all of them must travel
to the other side of the doorway (Fig 13(c)).

All experiments were performed at the Applied Motion Lab in the Department
of Computer Science at the University of Minnesota. Stills of the experiments
are shown in Figures 16 and 17. The resulting robots’ behaviors can be seen in
the supplementary video.

8.2. Results

Tables 6 and 7 report quantitative results for all scenarios, in terms of the
average travel time and maximum travel time of the robots, respectively. In the
Corridor scenario, NH-ORCA was not able to move all robots to their goal
positions: the two robots moving in the same direction pushed the third robot
back, away from its goal (Figure 14(b)). When reaching their goals, these two
robots block the way for the last robot, rendering it unable to reach its goal
(see Figure 14(c) and the supplementary video). In the same scenario, C-Nav
robots coordinate with each other in a distributed manner to reach their goals
(Figure 14(d) and (e)).

In the 2vs1 scenario, both C-Nav and NH-ORCA robots were able to reach
their goals, with C-Nav being considerably faster than NH-ORCA at this task.
The sole NH-ORCA robot exhibits conservative behavior waiting for the other
two robots to pass around it before taking any action and move forward resulting
in large travel time. On the other hand, in the SmallIntersection scenario,
the polite behavior displayed by C-Nav robots leads to a slight increase in travel

30

Method Corridor 2vs1 SmallIntersection
NH-ORCA ∞ 25 21

C-Nav 21 17 22

Table 6: Travel times (in seconds) for the last robot to reach its goal in the
three scenarios of Figure 13, for NH-ORCA and C-Nav.

Method Corridor 2vs1 SmallIntersection
NH-ORCA ∞ 19 16

C-Nav 18.7 14.3 18

Table 7: Average travel times (in seconds) among all three robots, in the three
scenarios of Figure 13, for NH-ORCA and C-Nav.

time, as compared to NH-ORCA (see Figures 15 and 17). Specifically, using
NH-ORCA, the single robot attempting to reach the other side of the narrow
area is forced to move aside to allow the two incoming robots to pass to the other
side (Figure 15(b)), and can only resume its goal-oriented motion once the other
robots are in their goal positions (Figure 15(c)). With C-Nav, the two robots
make way for the single robot to pass through the doorway (Figure 15(d)), and
move towards their goals only after the single robot is no longer in their path
(Figure 15(e)).

9. Limitations of C-Nav

C-Nav has some limitations that arise from the nature of the interactions
in crowded environments. As noted, agents are not always able to take actions
that reduce the constraints of their neighbors (given that the agent itself might
be constrained). A C-Nav agent makes optimistic action decisions by assuming
that agents that are farther from its goal than itself will defer to its motion. As
this is not always the case, and agents are often pushed against their intended
motions, the positive effects of our approach can be limited in certain cases.

The constraint-reduction component of a C-Nav agent takes into account
neighboring agents that are closer to the goal than itself. This is ideal for
situations in which agents share a single goal (such as in the Congested
scenario), but it might result in unnecessarily polite behavior in other cases, as
agents will try to avoid imposing any constraints to each other. This behavior
explains the slight increase in interaction overhead times for most scenarios
where agents do not share the same goal (see γ = 0.9 in Figure 11).

Further, C-Nav agents do not make any distinction between their neighbors
beyond the degree of constraints in their motion. This prevents C-Nav from
identifying groups of agents moving in similar directions. To address this,
agents could take into account the relation between their neighbors’ intended
velocities and adapt their politeness accordingly. For example, agents could

31

(a)

(b)

(d)

1 2

3

1 2

3

1

2
3

(e)

1 2

3

1 2

3

(c)

ORCA

C-Nav

Figure 14: Trajectories of robots in the Corridor scenario, with NH-ORCA
and C-Nav : (a) Initial positions. (b) With NH-ORCA, robots 1 and 2 move to
their goals pushing robot 3 away from its goal oriented path. (c) Final positions
with NH-ORCA. Robots 1 and 2 reach their goals, resulting in robot 3 getting
stuck, unable to reach its goal. (d) C-Nav robot 2 decides to follow robot 1,
creating space for robot 3 to move to its goal. (e) Final positions with C-Nav.
All robots are able to reach their goals.

behave more politely towards neighbors with similar intended velocities, than
towards neighbors moving against them.

Finally, C-Nav assumes that all agents share the same underlying collision
avoidance method. Should this not be the case, the predictions computed by the
SimMotion procedure, when trying to assess how constrained is a neighbor in

32

(a)

(b)

(d) (e)

(c)

3

1 2

1

23

12

3

1
23

2

3

1

ORCA

C-Nav

Figure 15: Trajectories of robots in the SmallIntersection scenario, with
NH-ORCA and C-Nav : (a) Initial positions. (b) With NH-ORCA, robots 1
and 2 move to their goals, forcing robot 3 to wait before continuing its goal
oriented motion. (c) Final positions with NH-ORCA, along with the robots’
trajectories. (d) C-Nav robots 1 and 2 decide to make room for robot 3 to pass
through the narrow opening. (e) Final positions with C-Nav, along with the
robots’ trajectories.

response to an action, might be inaccurate. C-Nav also assumes that agents can
broadcast their intended velocities. If this is not the case (i.e., non-communicative
agents), our approach would still work, though agents would only optimize their
motions based on their own goal progress and the performance gain might not
be as significant (as shown in Section 7). To address this limitation, an idea is
to explore methods to predict the agents’ preferred velocities from a sequence of
observed velocities, such as in [18], or through deep learning methods, such as
in [9].

33

(a) (b)

Figure 16: (a) Robots in the 2vs1 scenario. (b) Robots in the Corridor
scenario. Black tape represents an impassible (virtual) obstacle.

(a) (b)

Figure 17: Different behaviors of robots using (a) NH-ORCA and (b) C-Nav in
the SmallIntersection scenario. Black tape represents an impassible (virtual)
obstacle.

34

10. Conclusions and Future Work

In this paper, we showed how introducing politeness into multi-agent nav-
igation tasks results in more efficient and coordinated global motion. To do
this we proposed C-Nav, a distributed coordination method for multi-agent
navigation. In C-Nav, agents share their intended velocities via broadcast, and
use this information (from their neighbors) to compute motions that reduce
the constraints imposed on each other’s intended motion, helping their entire
neighborhoods to move closer to their goals. We prove that, in environments
where the agents share a single goal, it is possible to guarantee the absence of
livelocks as the coordination factor γ approaches 1.

We evaluated C-Nav in simulation in a variety of scenarios with different
number of agents, showing that the distributed coordination achieved using C-Nav
allows agents to reach their goals much faster and spending less energy than using
only collision avoidance to plan their motions, or using a learning-based approach
to select polite actions. We further evaluated C-Nav in multi-robot navigation
tasks, demonstrating its advantage even if the agents are non-holonomic and
subject to acceleration and kinematic constraints. C-Nav is highly scalable to
hundreds of agents, and the communication method (broadcast) does not involve
a significant extra computation to ORCA.

Looking forward, there are many possible avenues for future research. Cur-
rently, C-Nav agents do not distinguish between agents moving in a similar
direction and agents moving in opposite directions. If taken into account, this
distinction may allow agents to adapt their coordination strategy accordingly
(for example, being more polite towards agents moving with them than towards
them), which might increase the efficiency of their motions. Another interesting
question is what components of an agent’s state should be broadcast if we allow
for limited one-way communication. Here, we assume that the intended velocity
(i.e. the agent’s preferred velocity) is the most important one, but perhaps there
are other state and/or latent variables that can further improve coordination.
Recent work in [29] may provide interesting insights towards answering this
question. Finally, we are interested in combining C-Nav with a global planning
approach, which might prove useful in environments where obstacles block the
direct goal path for the agents (for example, in warehouse-like environments).

Acknowledgements

This work was partially funded by CONICYT under Grant FONDECYT
INICIACION 11191197 and the University of Concepcion under Grant VRID
INICIACION 218.093.018-1.0IN.

References

[1] Alonso-Mora, J., Breitenmoser, A., Rufli, M., Beardsley, P., Siegwart, R.,
2013. Optimal reciprocal collision avoidance for multiple non-holonomic

35

robots, in: Distributed Autonomous Robotic Systems. Springer, pp. 203–
216.

[2] Bayazit, O., Lien, J.M., Amato, N., 2003. Better group behaviors in complex
environments using global roadmaps, in: 8th International Conference on
Artificial life, pp. 362–370.

[3] van den Berg, J., Guy, S.J., Lin, M., Manocha, D., 2011. Reciprocal n-body
collision avoidance, in: Proc. International Symposium of Robotics Research.
Springer, pp. 3–19.

[4] Cheng, H., Zhu, Q., Liu, Z., Xu, T., Lin, L., 2017. Decentralized navigation
of multiple agents based on ORCA and model predictive control, in: 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE. pp. 3446–3451.

[5] Cohen, L., Uras, T., Koenig, S., 2015. Feasibility study: using highways for
bounded-suboptimal multi-agent path finding, in: Eighth Annual Sympo-
sium on Combinatorial Search.

[6] Curtis, S., Guy, S.J., Zafar, B., Manocha, D., 2011. Virtual Tawaf: A case
study in simulating the behavior of dense, heterogeneous crowds, in: Proc.
Workshop at Int. Conf. on Computer Vision, pp. 128–135.

[7] Ding, W., Li, S., Qian, H., Chen, Y., 2018. Hierarchical reinforcement learn-
ing framework towards multi-agent navigation, in: 2018 IEEE International
Conference on Robotics and Biomimetics (ROBIO), IEEE. pp. 237–242.

[8] Everett, M., Chen, Y.F., How, J.P., 2018. Motion planning among dy-
namic, decision-making agents with deep reinforcement learning, in: 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE. pp. 3052–3059.

[9] Fan, T., Long, P., Liu, W., Pan, J., 2018. Fully distributed multi-robot
collision avoidance via deep reinforcement learning for safe and efficient
navigation in complex scenarios. arXiv preprint arXiv:1808.03841 .

[10] Fehr, E., Fischbacher, U., 2004. Social norms and human cooperation.
Trends in cognitive sciences 8, 185–190.

[11] Fiorini, P., Shiller, Z., 1998. Motion planning in dynamic environments
using Velocity Obstacles. The Int. J. of Robotics Research 17, 760–772.

[12] Fridman, N., Kaminka, G.A., 2010. Modeling pedestrian crowd behavior
based on a cognitive model of social comparison theory. Computational and
Mathematical Organization Theory 16, 348–372.

[13] Funge, J., Tu, X., Terzopoulos, D., 1999. Cognitive modeling: knowledge,
reasoning and planning for intelligent characters, in: 26th Annual Conference
on Computer Graphics and Interactive Techniques, pp. 29–38.

36

[14] Garcimart́ın, A., Pastor, J.M., Mart́ın-Gómez, C., Parisi, D., Zuriguel, I.,
2017. Pedestrian collective motion in competitive room evacuation. Scientific
reports 7, 10792.

[15] Godoy, J., Chen, T., Guy, S.J., Karamouzas, I., Gini, M., 2018. ALAN:
adaptive learning for multi-agent navigation. Autonomous Robots 42, 1543–
1562.

[16] Godoy, J., Karamouzas, I., Guy, S.J., Gini, M., 2014. Anytime naviga-
tion with progressive hindsight optimization, in: IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems.

[17] Godoy, J., Karamouzas, I., Guy, S.J., Gini, M., 2016a. Implicit coordination
in crowded multi-agent navigation., in: Proc. AAAI Conf. on Artificial
Intelligence.

[18] Godoy, J., Karamouzas, I., Guy, S.J., Gini, M., 2016b. Moving in a crowd:
Safe and efficient navigation among heterogeneous agents., in: Proc. Int.
Joint Conf. on Artificial Intelligence.

[19] Gupta, J.K., Egorov, M., Kochenderfer, M., 2017. Cooperative multi-agent
control using deep reinforcement learning, in: International Conference on
Autonomous Agents and Multiagent Systems, Springer. pp. 66–83.

[20] Guy, S., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., Dubey,
P., 2009a. Clearpath: highly parallel collision avoidance for multi-agent
simulation, in: ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pp. 177–187.

[21] Guy, S., Kim, S., Lin, M., Manocha, D., 2011. Simulating heteroge-
neous crowd behaviors using personality trait theory, in: Proc. ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 43–52.

[22] Guy, S.J., Chhugani, J., Curtis, S., Pradeep, D., Lin, M., Manocha, D.,
2010. PLEdestrians: A least-effort approach to crowd simulation, in: ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 119–
128.

[23] Guy, S.J., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., Dubey,
P., 2009b. Clearpath: highly parallel collision avoidance for multi-agent simu-
lation, in: Proc. ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pp. 177–187.

[24] Haghani, M., Sarvi, M., 2018. Crowd behaviour and motion: Empirical
methods. Transportation research part B: methodological 107, 253–294.

[25] He, L., Pan, J., Wang, W., Manocha, D., 2016. Proxemic group behaviors
using reciprocal multi-agent navigation, in: Proc. IEEE Int. Conf. on
Robotics and Automation.

37

[26] Helbing, D., Farkas, I., Vicsek, T., 2000. Simulating dynamical features of
escape panic. Nature 407, 487–490.

[27] Helbing, D., Molnar, P., 1995. Social force model for pedestrian dynamics.
Physical review E 51, 4282.

[28] Hennes, D., Claes, D., Meeussen, W., Tuyls, K., 2012. Multi-robot collision
avoidance with localization uncertainty, in: Proc. Int. Conf. on Autonomous
Agents and Multi-Agent Systems.

[29] Hildreth, D., Guy, S.J., 2019. Coordinating multi-agent navigation by
learning communication. Proceedings of the ACM on Computer Graphics
and Interactive Techniques 2. doi:10.1145/3340261.

[30] Hönig, W., Kumar, T.S., Cohen, L., Ma, H., Xu, H., Ayanian, N., Koenig,
S., 2016. Multi-agent path finding with kinematic constraints, in: Proc.
Int’l Conf. on Automated Planning and Scheduling.

[31] Hoy, M., Matveev, A.S., Savkin, A.V., 2015. Algorithms for collision-free
navigation of mobile robots in complex cluttered environments: a survey.
Robotica 33, 463–497.

[32] Jansen, M., Sturtevant, N., 2008. Direction maps for cooperative pathfind-
ing, in: Proc. Artificial Intelligence and Interactive Digital Entertainment
(AIIDE), pp. 185–190.

[33] Karamouzas, I., Guy, S.J., 2015. Prioritized group navigation with formation
velocity obstacles, in: Proc. IEEE Int. Conf. on Robotics and Automation,
pp. 5983–5989.

[34] Karamouzas, I., Overmars, M., 2012. Simulating and evaluating the local
behavior of small pedestrian groups. IEEE Trans. Vis. Comput. Graphics
18, 394–406.

[35] Khatib, O., 1986. Real-time obstacle avoidance for manipulators and mobile
robots. Int. J. Robotics Research 5, 90–98.

[36] Knepper, R.A., Rus, D., 2012. Pedestrian-inspired sampling-based multi-
robot collision avoidance, in: Proc. IEEE Int. Symp. on Robot and Human
Interactive Communication, pp. 94–100.

[37] Koh, W.L., Zhou, S., 2011. Modeling and simulation of pedestrian behaviors
in crowded places. ACM Transactions on Modeling and Computer Simulation
(TOMACS) 21, 20.

[38] Kretzschmar, H., Spies, M., Sprunk, C., Burgard, W., 2016. Socially
compliant mobile robot navigation via inverse reinforcement learning. The
International Journal of Robotics Research 35, 1289–1307.

38

[39] Li, J., Harabor, D., Stuckey, P.J., Ma, H., Koenig, S., 2019. Disjoint splitting
for multi-agent path finding with conflict-based search, in: Proceedings of
the International Conference on Automated Planning and Scheduling, pp.
279–283.

[40] Lin, M.C., Sud, A., Van den Berg, J., Gayle, R., Curtis, S., Yeh, H., Guy,
S., Andersen, E., Patil, S., Sewall, J., et al., 2008. Real-time path planning
and navigation for multi-agent and crowd simulations, in: International
Workshop on Motion in Games, Springer. pp. 23–32.

[41] Long, P., Liu, W., Pan, J., 2017. Deep-learned collision avoidance policy for
distributed multiagent navigation. IEEE Robotics and Automation Letters
2, 656–663.

[42] Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O.P., Mordatch, I., 2017.
Multi-agent actor-critic for mixed cooperative-competitive environments,
in: Advances in Neural Information Processing Systems, pp. 6379–6390.

[43] Martinez-Gil, F., Lozano, M., Fernández, F., 2015. Strategies for simu-
lating pedestrian navigation with multiple reinforcement learning agents.
Autonomous Agents and Multi-Agent Systems 29, 98–130.

[44] Martinez-Gil, F., Lozano, M., Fernandez, F., 2017. Emergent behaviors and
scalability for multi-agent reinforcement learning-based pedestrian models.
Simulation Modelling Practice and Theory 74, 117–133.

[45] Masoud, S.A., Masoud, A.A., 2002. Motion planning in the presence of
directional and regional avoidance constraints using nonlinear, anisotropic,
harmonic potential fields: a physical metaphor. IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and Humans 32, 705–723.

[46] Mavrogiannis, C.I., Thomason, W.B., Knepper, R.A., 2018. Social momen-
tum: A framework for legible navigation in dynamic multi-agent environ-
ments, in: Proceedings of the 2018 ACM/IEEE International Conference
on Human-Robot Interaction, pp. 361–369.

[47] Nicolas, A., Bouzat, S., Kuperman, M.N., 2017. Pedestrian flows through
a narrow doorway: Effect of individual behaviours on the global flow and
microscopic dynamics. Transportation Research Part B: Methodological 99,
30–43.

[48] Olfati-Saber, R., Fax, J.A., Murray, R.M., 2007. Consensus and cooperation
in networked multi-agent systems. Proceedings of the IEEE 95, 215–233.

[49] Olfati-Saber, R., Murray, R.M., 2004. Consensus problems in networks
of agents with switching topology and time-delays. IEEE Trans. Autom.
Control 49, 1520–1533.

39

[50] Ondřej, J., Pettré, J., Olivier, A.H., Donikian, S., 2010. A synthetic-vision
based steering approach for crowd simulation. ACM Trans. Graphics 29,
123.

[51] Park, J.J., Johnson, C., Kuipers, B., 2012. Robot navigation with model
predictive equilibrium point control, in: 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE. pp. 4945–4952.

[52] Pastor, J.M., Garcimart́ın, A., Gago, P.A., Peralta, J.P., Mart́ın-Gómez,
C., Ferrer, L.M., Maza, D., Parisi, D.R., Pugnaloni, L.A., Zuriguel, I.,
2015. Experimental proof of faster-is-slower in systems of frictional particles
flowing through constrictions. Physical Review E 92, 062817.

[53] Patil, S., Van den Berg, J., Curtis, S., Lin, M.C., Manocha, D., 2011.
Directing crowd simulations using navigation fields. IEEE Trans. Vis.
Comput. Graphics 17, 244–254.

[54] Pelechano, N., Allbeck, J., Badler, N., 2007. Controlling individual agents in
high-density crowd simulation, in: Proc. ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pp. 99–108.

[55] Pendleton, S.D., Andersen, H., Du, X., Shen, X., Meghjani, M., Eng, Y.H.,
Rus, D., Ang, M.H., 2017. Perception, planning, control, and coordination
for autonomous vehicles. Machines 5, 6.

[56] Pentheny, G., 2015. Advanced techniques for robust, efficient crowds. Game
AI Pro 2: Collected Wisdom of Game AI Professionals , 173.

[57] Popelová, M., B́ıda, M., Brom, C., Gemrot, J., Tomek, J., 2011. When a
couple goes together: walk along steering, in: Motion in Games, Springer.
pp. 278–289.

[58] Reynolds, C.W., 1987. Flocks, herds and schools: A distributed behavioral
model. ACM SIGGRAPH Computer Graphics 21, 25–34.

[59] Reynolds, C.W., 1999. Steering behaviors for autonomous characters, in:
Game Developers Conference, pp. 763–782.

[60] Rimon, E., Koditschek, D.E., 1992. Exact robot navigation using artificial
potential functions. Departmental Papers (ESE) , 323.

[61] Shao, W., Terzopoulos, D., 2007. Autonomous pedestrians. Graphical
Models 69, 246–274.

[62] Siméon, T., Leroy, S., Lauumond, J.P., 2002. Path coordination for multiple
mobile robots: A resolution-complete algorithm. IEEE Transactions on
Robotics and Automation 18, 42–49.

[63] Sisbot, E.A., Marin-Urias, L.F., Alami, R., Simeon, T., 2007. A human
aware mobile robot motion planner. IEEE Transactions on Robotics 23,
874–883.

40

[64] Sud, A., Andersen, E., Curtis, S., Lin, M.C., Manocha, D., 2008. Real-time
path planning in dynamic virtual environments using multiagent navigation
graphs. IEEE transactions on visualization and computer graphics 14,
526–538.

[65] Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I., Korjus, K., Aru, J.,
Aru, J., Vicente, R., 2017. Multiagent cooperation and competition with
deep reinforcement learning. PloS one 12, e0172395.

[66] Trautman, P., Ma, J., Murray, R.M., Krause, A., 2015. Robot navigation
in dense human crowds: Statistical models and experimental studies of
human–robot cooperation. The Int. J. of Robotics Research 34, 335–356.

[67] Yu, C., Zhang, M., Ren, F., Luo, X., 2013. Emergence of social norms
through collective learning in networked agent societies, in: Proc. Int. Conf.
on Autonomous Agents and Multi-Agent Systems, pp. 475–482.

[68] Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A., 2012. Ordering in
bidirectional pedestrian flows and its influence on the fundamental diagram.
Journal of Statistical Mechanics: Theory and Experiment 2012, P02002.

41

