
Broadening Applicability of Swarm-Robotic Foraging Through
Constraint Relaxation

John Harwell1 and Maria Gini2

Abstract— Swarm robotics (SR) offers promising solutions
to real-world problems that can be modeled as foraging tasks,
e.g. disaster/trash cleanup or object gathering for construction.
Yet current SR foraging approaches make limiting assumptions
that restrict their applicability to selected real-world environ-
ments. We propose an improved self-organized task allocation
method based on task partitioning that removes restrictions
such as: (1) a priori knowledge of object/cache location, and (2)
strict limitations on intermediate cache behavior. We show with
experiments in simulation that improved stochastic decision
making at the level of each individual robot in the swarm
leads to overall performance that for some combinations of
robot capabilities/relaxed environmental conditions meets or
exceeds that of previous works in this area.

I. INTRODUCTION

Swarm robotics (SR) is the study of large-scale robotic
systems consisting of either homogeneous or heterogeneous
robots. SR derives many of its core principles from natural
systems such as bees, ants, and termites [23]:

• Decentralized control: There is no centralized con-
troller/authority to which all agents are subservient.
This greatly reduces, and in many cases eliminates, the
possibility of catastrophic system failure.

• Autonomy: Agents are autonomous, acting without the
intervention of higher powers (overseers, queens, etc).

• Localized sensing and communication: There is no
mechanism for broadcasting information to the entire
system; instead all decisions are made by individual
agents based on locally available information from its
neighbors as well as its own limited sensor data.

• Emergent behavior: The previous characteristics cumu-
latively give rise to collective behaviors of the entire
swarm that cannot be easily predicted from that of
individual agents, i.e. the whole is greater than the sum
of its parts. Studying emergent collective behavioral
patterns through post-mortem/predictive modeling and
analysis, instead of the characteristics of individual
agents, distinguishes SR research distinct from dis-
tributed and/or autonomous robotic systems [16].

Due to the duality between SR and natural systems, SR
researchers are able to draw effective parallels between
naturally occurring problems such as foraging, collective
transport of heavy objects, self-assembly, exploration, and
collective decision making [2], [1], and similar real-world

1Department of Computer Science and Engineering, University of Min-
nesota. harwe006@umn.edu

2Department of Computer Science and Engineering, University of Min-
nesota. gini@umn.edu

applications, such as pursuit-evasion and autonomous con-
struction. Many of the leveraged solutions obtained by
social insects employ task partitioning, i.e. dividing a large
task into simpler subtasks that can be tackled by different
agents/workers [21]. It has been shown that task partitioning
in both natural and SR systems has many well-known
benefits, such as (1) increased performance at group level;
(2) stimulated specialization; (3) parallel task execution;
(4) reduced interference between individuals; (5) improved
exploitation of the environment; (6) improved transport
efficiency [10], [19]. These benefits, coupled with the SR
properties described above, make SR systems ideal for
tackling many problems in dangerous and/or unstable envi-
ronments, such as search-and-rescue, disaster/environmental
cleanup, and space exploration/surveying [22].

A. Motivation

In this paper we focus on a foraging task, where a
group of robots has to collect and transport material from
one or more sources, and bring the collected material
to a known nest location. Intermediate locations called
caches can be utilized or ignored by robots, depending
on what foraging strategy they are employing, and serve
as temporary storage sites where materials can be dropped
and picked up asynchronously. Any robust robotic foraging
approach should be capable of creating and/or utilizing
caches when they provide efficiency gains, and of not doing
so when their use proves costly. Furthermore, such methods
should be capable of strategic cache utilization even under
environmental conditions that are not specifically contrived
to incentivize cache usage.

The proposed method is based on local perception, and
requires no explicit communication between robots. A given
robot stochastically decides what type of foraging strategy to
employ, as well as what subtask to execute (if applicable),
based on its local estimates of the global execution time
of tasks associated with each strategy, which are updated
upon task completion/abortion. Through these individual
decisions the robot swarm can robustly adapt its collective
foraging strategy, employing task partitioning to divide the
foraging task into interdependent subtasks, or to employ
a non-partitioning strategy and tackle the foraging task
holistically. Task partitioning (and cache utilization) only
occurs when it is advantageous. This approach enables
the elimination of the following constraints/assumptions
of previous work regarding task partitioning and cache
usage/behavior:

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2018 IEEE International Conference on Simulation, Modeling,
and Programming for Autonomous Robots . Received January 29, 2018.

• All robots have a priori knowledge of object/cache lo-
cations [4], [19], [8], [9]. This does not model partially
observable/unstable environments, which are some of
the most prominent applications for SR systems.

• All robots that cross over a cache area must pay a usage
penalty[4], even if they do not utilize it. This restriction
models an area of rough terrain that requires extra time
to navigate safely, for which task partitioning is clearly
advantageous.

• All robots executing the unpartitioned task must use a
very long corridor to travel between the source and the
nest [19], [9]. This restriction models environments in
which debris/obstacles block the direct path between
the source and the nest, and it is therefore slower to
execute the unpartitioned task in general.

We show in simulation experiments that even with the
relaxation of the above constraints that there are still many
combinations of swarm sizes, robot capabilities, and envi-
ronmental conditions for which employing task partitioning
(and therefore utilizing an intermediate cache) still provides
performance increases when compared to an unpartitioned
strategy. This work moves SR foraging approaches closer to
a more broadly applicable real-world model, showing them
to be effective even under ideal conditions while continuing
to perform robustly in conditions simulating more volatile
environments.

II. RELATED WORK

In most prior work, a priori task partitioning focuses on
the problem of allocating individuals to subtasks in a way
that maximizes efficiency once the optimal distribution of
tasks to robots is known [5], [3], [14], [13]. Auction-based
approaches, in which robots place competing bids for tasks,
have been successfully applied to the assignment of agents.
However, such approaches rely on: regular communication
of cost functions, a priori information about execution
times, and centralized control. In unstable environments or
those with large numbers of unreliable agents, such as the
ones studied in this work, such requirements are infeasible,
as they do not scale well with the number of robots or
tasks [13]. Correll et al. have shown that SR systems are
competitive with deterministic approaches to task allocation
when communication is tightly constrained or in partially
observable environments; in addition, they scale well and
are robust to multiple failures [5].

Matthey et al. modeled the interactions of agents and their
environment as chemical reactions between molecules [14],
and based their controller synthesis methodology on Markov
Decision Processes. By modeling swarm behavior using the
Chemical Network Reaction (CRN) framework, the reaction
(i.e. task completion) rates can be tuned so that some tasks
can be prioritized over others. This paradigm, while solving
issues of scalability and robustness, still requires a priori
knowledge of the workload for task allocation.

In many cases, task partitioning cannot be done a priori
either because complete information on the environment
is not available, or the environment itself is unstable and

hence optimal a priori allocations cannot be achieved. In
such situations, self-organized task partitioning is a suitable
approach. Most prior work involving self-organized task
allocation or partitioning rarely considered problems that
have interdependencies, much less sequential interdepen-
dencies (with notable exceptions [19], [4], [8], [9]), and
assumed independent tasks not affected by group dynamics
[9], [6]. Division of labor via task partitioning may have
associated costs, such as task switching delays or work
transfer between subtasks. Nevertheless, it is advantageous
in many situations, such as those in which environmental
factors result in a lower cost of performing subtasks vs.
the unpartitioned task, or when reduction in inter-robot
interference due to spatial locality of subtasks compared to
the unpartitioned task reduces average task execution time.

In the context of a foraging task, the choice of employing
task partitioning is equivalent to deciding the object transfer
method. If partitioning is not employed, then no transfer
occurs, and a single robot carries the object from the source
to the nest. If partitioning is employed, then object transfer
can be direct (robotic object handoff) [4] or indirect [9],
[19], and use caches as asynchronous pickup/drop points.
This asynchronous transfer can be beneficial because it can
reduce material losses due to imbalances between foraging
and processing rates [11]. It can also serve as a means of
traffic control, regulating congestion by enabling spatially
disjoint task execution.

The rest of the paper is organized as follows. In Section III
we describe the problem and detail the proposed method. In
Section IV we describe the experimental framework used.
In Section VI we report and discuss the results. Finally,
in Section VII we summarize our contribution and present
directions for future research.

III. PROBLEM STATEMENT AND PROPOSED METHOD

A. Problem Statement

A task T is a unit of work that can be completed by
a task sequence composed of one or more atomic and/or
partitionable tasks. Atomic tasks are non-divisible tasks that
can be executed by a robot k. A partitionable task can either
be executed holistically by a robot k as an unpartitioned
task, or subdivided into disjoint atomic tasks. A Binary
Partitionable Task T can be partitioned into exactly two
disjoint halves, τ1 and τ2. Subtasks τ1 and τ2 of parent task
T are sequentially interdependent if one subtask must be
completed before the other starts, represented by τ1 � τ2.
T is completed iff both τ1 and τ2 have been completed in
order.

We refer to such subtasks as being adjacent, and to share
a task interface Π, where robots working on different sub-
tasks interact. These interactions can include the exchange
of task-related information (via direct communication or
stygmergically) and the direct transfer of objects between
agents [4]. A robot k executing a given subtask has two
opportunities to change its partitioning strategy: at a task
interface Πi (possibly giving up the task due to waiting

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2018 IEEE International Conference on Simulation, Modeling,
and Programming for Autonomous Robots . Received January 29, 2018.

for a dependent task to finish), and at task completion.
Not all tasks have task interfaces; robots executing tasks
that do not can only change their partitioning strategy upon
task completion (such tasks therefore cannot be aborted).
The task set Φ for a given partitioning strategy is the
total set of tasks available for a robot k to execute. This
may be equivalent to the task sequence φ corresponding to
the robot’s chosen partitioning. In this work, the statement
φ ⊆ Φ always holds true. Finally, the active task is the task
a robot k is currently executing.

All robots that complete a task τi that ends at a task
interface Πi must pay an associated interface cost πi [4],
[19], which is usually modeled as a time cost. Common
examples of interface costs in real systems are costs due to
tool changes, spatially dispersed subtasks, inherent costs due
to specialization (or lack thereof) in a subtask [4], or object
transfer/manipulation costs. For Binary Partitionable Tasks,
each subtask will have exactly one task interface, which is
the point in the parent task at which it was partitioned. For
example, if this point involved picking up from/dropping a
block into a cache, then the task interface cost would be the
cost of doing so.

B. The Proposed Method

1) Depth 0 Partitioning Strategy:

Φ0 = φ0 = {τgeneralist} (1)

The simplest possible task set Φ0 (Eqn. 1) for a foraging
task contains a single atomic task in which executing robots
will look for a block (by some strategy), and then bring the
located block back to the nest. This strategy has no task
interface. We implement two variants of this model: one
in which robots remember blocks that they have seen as
they move around, which we term the Stateful Generalist
strategy, and one in which they do not, which we term the
Stateless Generalist. We use these simple strategies as a
baseline to compare our proposed method against.

In the Stateful Generalist strategy, robots employ vir-
tual pheromones [15], [12] to track the relevance of their
environmental information. The pheromones of different
robots do not influence each other, commensurate to the
strictly stymergic interactions, such as collisions and com-
petition over object selection, that are common in SR. The
pheromone level of different objects seen in the environment
is stored as a probabilistic occupancy grid. Every timestep
when a robot sees an object at location (i, j) within the
arena, it deposits a unit quantity of pheromone on the
corresponding location within its occupancy grid; every
timestep that a robot does not see an object, the pheromone
(and object relevance) decays (Eqn. 2). ρ (0 < ρ < 1) is the
pheromone decay parameter that controls the rate of decay.

τij(t+ n) = ρτij(t) +

m∑
k=1

∆τkij (2)

After depositing a block in the nest, a robot k will decide
what block to acquire next by looking at its occupancy

Fig. 1: A depth 1 task set definition. Dotted lines indicate
transitions in which partitioning was employed, and solid lines
indicate transitions in which it was not. Transitions from children
to parent tasks due to task abortion are omitted for clarity. Depth
0 definitions are in black, depth 1 are in blue. Each robot can
choose to partition a task T , with its chosen depth inducing the
task set φ from which it can select its active task.

grid, and choosing the block with the highest utility µkb (t)
(Eqn. 3). This block utility definition encourages gathering
blocks that are further from the nest before those that are
closer, while also accounting for the nearness of a block
to the current location of robot k, as well as its perceived
relevance. In the degenerate case in which a robot does not
know of any blocks, a Stateful Generalist devolves into a
Stateless Generalist.

µkb (t) =

∥∥kij(t) + nestij
∥∥∥∥kij(t) + bij
∥∥ e

τkbij
(t) (3)

2) Depth 1 Partitioning Strategy: Here, we formalize the
more robust foraging model first presented by [8], [4], [19],
which is depicted in Fig. 1. This strategy’s task set Φ1 is:

Φ1 = {τharvest, τcollect}
φ1 = τharvest � τcollect

• Harvester: Acquire a free block (one not in a cache)
and bring it to a cache (a static cache is assumed,
similar to previous work [19], [4], [18], [9]). The task
interface Πharvest is the time spent acquiring a cache
for block drop after a block has been picked up.

• Collector: Acquire a block from a cache and bring it to
the nest. The task interface Πharvest is defined as the
portion of the task before a block is acquired in which
the robot looks for a cache.

πi = πc + πd (4)

The execution of φ1 (possibly by different robots) cor-
responds to a single execution of the overall task T .
Robots engaged in either of the tasks in Φ1 will incur
a flat cache usage cost (πc) in Eqn. (4) due to block
drop/pickup, in addition to delay due to group dynamics

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2018 IEEE International Conference on Simulation, Modeling,
and Programming for Autonomous Robots . Received January 29, 2018.

such as congestion/collision avoidance at the cache, or out-
of-date information about arena contents (πd). πi contributes
to the robot’s overall estimation of τ̂i (Eqn. 5), as well as
its abort probability (Eqn. 11).

The execution time of a task τi after j times is estimated
using an exponential moving average:

ˆtτj+1
= (1− α) ˆtτj−1

+ αtj (5)

where α is the exponential weight factor and tj is how
long it took to execute task on the j-th iteration.

When a robot finishes a non-partitionable task (Harvester,
Collector), then the parent of its current task (in this case,
a Stateful Generalist) is used for the partitioning decision.
The probability Pp of employing partitioning after task τi
has been completed (or aborted) is calculated as [19]:

θp =


Ωpr(

ˆtφNP
ˆtφ1

+ ˆtφ2

− Ωpo) if ˆtφNP > (ˆtφ1 + ˆtφ2)

Ωpr(1−
(ˆtφ1

+ ˆtφ2
)

ˆtφNP
) else

(6)

Pp = (1 + e−θp)−1 (7)

where ˆtτNP is an estimate (Eqn. 5) of the average time
tτNP required to complete the unpartitioned task (i.e. the
cost of the “no partition” strategy) and ˆtτ1 and ˆtτ2 are
estimates of times tτ1 and tτ2 required to perform each of
the two sub-tasks (i.e. the cost of the “partition” strategy).
Ωpr is a steepness factor that influences the probability
associated with partitioning; larger values cause small dif-
ferences between the two estimates to increase/decrease the
probability more quickly (i.e. robots are more reactive to
environmental changes). Ωpo is an offset factor used to
determine how much the difference between the cost of
the partition/no partition strategies will be allowed to grow
before the probability of employing partitioning begins to
grow exponentially. A piecewise definition ensures that as
the difference between the cost of the partition/no partition
strategy estimates grows (in either direction), |Pp| < 1.

If a robot chooses to employ task partitioning, it must
choose what subtask to execute. If the last executed task was
non-partitionable, then employing partitioning just means
repeating the same task (see Fig. 1). If the last executed
task τi was partitionable then the next task is chosen from
subtasks {τi1, τi2} as follows, where τi1 was the most
recently executed subtask of τi (if neither subtask has been
executed before, random selection is employed):

Pij =
1

1 + e−Θss
γ (8)

Θss =
1

K

(τ̂i2
r(τ̂i1, τ̂i2)

−M
)

(9)

r(τ̂i1, τ̂i2) =


ˆτi2

2

ˆτi1
if τ̂i1 > τ̂i2

τ̂i2 else
(10)

This method is similar to [4], with the important dif-
ference that the time estimates are for overall execution
time of a task, rather than interface time. This means that
robots should always choose the subtask with a lower time
estimate, rather than the higher time estimate implied by the
method developed by Brutschy et al.

Finally, the probability of aborting a task τi at Πi is:

Pa(τi) = (1 + eθa)−1 (11)

θa =

Ωar(Ωoa − δi
ˆtΠi

) if δi
ˆtΠi
≤ Ωao

Ωar(
δi
ˆtτi
− Ωao) else

(12)

where δi is the incremental interface wait time for a task
τi, and Ωao is an offset factor that determines how far be-
yond the estimate of the interface time Π̂i (calculated using
Eqn. 5) a robot will wait before the abort probability begins
to grow rapidly, and Ωar defines the rate of growth after
this threshold is exceeded. This differs from the definition
in [19], as it is driven by deviation from the estimated task
execution time, rather than deviation from estimated task
interface time.

In the model described here, robots stochastically choose
a partitioning strategy for their next task allocation by
calculating Pp (Eqn. 7) after finishing/aborting a task, and
then possibly use Eqn. (8) to allocate themselves a subtask.
If applicable, they use Eqn. (11) at the task interface to
determine whether their active task should be aborted.

IV. EXPERIMENTAL FRAMEWORK

The experiments described in this paper were carried
out in the ARGoS [17] simulator, which allows real-time
simulation of large swarms of robots. For this work, we
chose a dynamic model of robots in a three-dimensional
space, using a model of an s-bot, a real robotic platform
developed in the Swarm-bots project [7].

All experiments carried out in this work assume:
• Homogeneous robots.
• Robots cannot communicate.
• Robots have infinite battery life.
• Robots can self localize in relation to a light source

which they know is located directly above the nest.
• Robots initially know arena size, but not its contents.
• Robots cannot directly transfer objects to other robots.
• The environment is flat, open, and without obstacles

(in contrast to [19], [20], [9], [8]).
• Robots start randomly distributed in the environment.
• The nest and cache have unlimited storage capacity.
• All blocks to be transported to the nest are clustered

in a single source (See Fig. 2).
• Robots move more slowly when carrying a block.
• Robots are only penalized if they utilize a cache

(relaxing the condition present in [4]).
As depicted in Fig. 2, abstracted blocks in simulation are

represented as black squares detectable by the s-bot’s ground
sensors. Caches are abstracted similarly, with each cache

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2018 IEEE International Conference on Simulation, Modeling,
and Programming for Autonomous Robots . Received January 29, 2018.

Fig. 2: Foraging scenario where all objects are clustered at one
end of the arena (single source foraging), with a cache in the
middle.

maintaining a list of which blocks it currently contains, and
appearing only as a medium gray square in the arena. The
nest appears as a light gray. Whether or not a robot carries a
block is also stored internally in the simulator, simplifying
the complex physics involved in picking up/dropping blocks.

V. EXPERIMENTS

All controllers (Depth 0 Stateless/Stateful Generalist,
Depth 1) were tested on the scenario in Fig. 2, with swarm
size S = [4 . . . 80], step size of 4. An “always partition”
variant of the Depth 1 controller was also tested, in order
to provide one of the boundary performance cases for the
proposed method; the other “never partition” approach is the
same as a Stateful Generalist. An arena of size 20m x 5m
was used, and robot speed was set to a maximum of 5 cm/s.
This low speed is due to the limited sensing range of the
s-bot, and gives robots more time to gracefully maneuver
around other robots without triggering obstacle avoidance.
To avoid bias in the robot’s behavior, ˆτharvest, ˆτcollect,
and ˆτNP are randomly initialized: ˆτharvest and ˆτcollect are
uniformly sampled in [1000, 2000], ˆτNP in [2000, 4000].

We tested combinations of environmental conditions and
robot capabilities in three different sets of experiments. In
the first, environmental conditions were ideal, with πc=100,
throttle=10%. πc cannot realistically be 0 even under ideal
conditions; to pickup/drop an object always requires a non-
zero time interval. A similar argument can be made for
non-zero throttle due to block carry. In the second set,
πc=10 was held constant, and the speed throttling on block
carry was varied: {10%, 20%, 40%, 80%}, which explores
variation in robot strength vs. object weight during the
application of the proposed method. In the third set, the
speed throttling on block carry was held constant at 10% and
the cache usage cost was varied πc = {100, 200, 400, 800},
which explores the performance of the proposed method as
the cache becomes more costly to use (terrain variations,
irregular objects, etc.).

VI. RESULTS

For each experiment set described above, we calculate the
total number of robots engaged in each strategy and in each
task every ∆t = 200 seconds. We use swarm performance
P , defined as the number of blocks collected every ∆t
seconds [4], to evaluate the quality of the self-organized
task allocation strategy deployed by the swarm overall. We

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9 10 11

S
w

a
rm

 P
e
rf

o
rm

a
n
c
e
 P

Arena Ratio

Swarm Performance in Ideal Conditions

Depth0 Stateless
Depth0 Stateful

Depth1 Dynamic
Depth1 Always Partition

Fig. 3: Swarm performance across all controllers in ideal envi-
ronmental conditions (πc = 100, throttle 10%). Peak performance
is achieved near the same arena ratio as [4] (5%).

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9 10 11

S
w

a
rm

 P
e
rf

o
rm

a
n
c
e
 P

Arena Ratio

Swarm Performance With Speed Throttling

Depth0 Stateless 10%
Depth0 Stateless 20%
Depth0 Stateless 40%
Depth0 Stateless 80%

Depth0 Stateful 10%
Depth0 Stateful 20%
Depth0 Stateful 40%
Depth0 Stateful 80%

Depth1 10%
Depth1 20%
Depth1 40%
Depth1 80%

Fig. 4: Swarm performance by all controllers with πc = 10, and
varying the throttle applied on block carry. The adaptive task
partitioning model tracks the simpler Stateful Generalist model
very well for lower swarm densities, but breaks down due to
the large numbers of robots overwhelming the cache’s ability to
regulate traffic.

use the arena ratio (ratio of robots to arena size [4], [19])
to compare swarm performance across different scenarios.

Results in Fig. 3 indicate that the while it is advantageous
for agents to have pheromone-based memory (i.e. Stateful
Generalists far outperform Stateless Generalists), it is not
always advantageous for them to employ task partitioning
under ideal conditions. For lower swarm densities (< 3), the
cache’s ability to regulate traffic patterns within the arena
increases performance by restricting Collector/Harvester
robots to spatially disjoint portions of the arena, thereby
reducing overall congestion. For higher swarm densities, it
is not advantageous, likely due to the number of robots
overwhelming the cache, which is relatively small. We
observe that while the Stateless Generalist is the lowest
performing foraging approach, it is also the most scalable,
and does not appear to approach an asymptotic limit as the
arena ratio increases. Intuitively, as swarm size increases, so
does congestion, leading to randomized motion as the most
efficient way to navigate.

In the second set of experiments (Fig. 4), for swarm

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2018 IEEE International Conference on Simulation, Modeling,
and Programming for Autonomous Robots . Received January 29, 2018.

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9 10 11

S
w

a
rm

 P
e
rf

o
rm

a
n
c
e
 P

Arena Ratio

Swarm Performance With Penalties

Depth0 Stateful
Depth1 100
Depth1 200
Depth1 400
Depth1 800

Fig. 5: Swarm performance of the Depth 1 controller, compared
against the Stateful Generalist. Throttle = 10%, and the cache
usage cost πc is varied. Increasing usage penalties helps to further
regulate traffic at lower densities, but also reduces performance by
increasing the duration of a block’s trip from source to nest, and
degrades performance at higher densities.

densities < 5%, there are some points in the parameter space
for which adaptive task partitioning is advantageous, and
some for which it is not. Beyond this threshold, it appears to
be advantageous to employ a strictly unpartitioned strategy.
Finally, in the third set of experiments (Fig. 5), we see that
for arena ratios of ~3%, the usage of a task partitioning
strategy is much more advantageous than an unpartitioned
strategy, even under constraint relaxation.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an adaptive, self-organized task parti-
tioning approach to robotic foraging, and shown that even
in ideal conditions it can still be advantageous to employ a
partitioning strategy instead of an unpartitioned one. Under
non-ideal conditions, we have relaxed some of environ-
mental constraints present in previous work, and shown
that there are numerous combinations of robot capabilities,
swarm size, and cache behavior for which employing parti-
tioning is still advantageous.

One direction for future work is to extend the task
partitioning method “recursively”, in which the Collector
and Harvester sub-tasks are further partitioned. This ex-
tension would enable dynamic cache creation in the arena,
thereby increasing swarm performance in scenarios where
objects are randomly scattered around the arena, rather than
clustered together. Another avenue to is to consider per-
robot estimation of current swarm density, and to incorporate
that into the strategy selection, as different strategies are
more effective at different densities.

In order to facilitate future research and collaboration,
the code for this work is open source, and can be found at
https://github.com/swarm-robotics/fordyca.git.

REFERENCES

[1] Levent BAYINDIR and Erol SAHIN. A Review of Studies in Swarm
Robotics . Turk J Elec Engin, 15(2):115–147, 2007.

[2] Gerardo Beni. From swarm intelligence to swarm robotics. In Erol
Sahin and William Spears, editors, Swarm Robotics. 2004.

[3] Spring Berman, Ádám Halász, M. Ani Hsieh, and Vijay Kumar.
Optimized stochastic policies for task allocation in swarms of robots.
IEEE Transactions on Robotics, 25(4):927–937, aug 2009.

[4] Arne Brutschy, Giovanni Pini, Carlo Pinciroli, Mauro Birattari, and
Marco Dorigo. Self-organized task allocation to sequentially interde-
pendent tasks in swarm robotics. Autonomous Agents and Multi-Agent
Systems, 28(1):101–125, 2014.

[5] Nikolaus Correll. Parameter estimation and optimal control of swarm-
robotic systems: A case study in distributed task allocation. In IEEE
International Conference on Robotics and Automation, pages 3302–
3307. IEEE, may 2008.

[6] Torbjørn S. Dahl, Maja Matarić, and Gaurav S. Sukhatme. Multi-
robot task allocation through vacancy chain scheduling. Robotics
and Autonomous Systems, 57(6-7):674–687, 2009.

[7] Marco Dorigo. Swarm-bot: An experiment in swarm robotics. Proc.
IEEE Swarm Intelligence Symposium, 2005:199–207, 2005.

[8] Eliseo Ferrante, Ali Emre Turgut, Edgar Duéñez-Guzmán, Marco
Dorigo, and Tom Wenseleers. Evolution of Self-Organized Task
Specialization in Robot Swarms. PLoS Computational Biology,
11(8):1–21, 2015.

[9] Marco Frison, Nam Luc Tran, Nadir Baiboun, Arne Brutschy, Gio-
vanni Pini, Andrea Roli, Marco Dorigo, and Mauro Birattari. Self-
organized Task Partitioning in a Swarm of Robots. In Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), volume
6234 LNCS, pages 287–298, 2010.

[10] Adam G. Hart, Carl Anderson, and Francis L.W. Ratnieks. Task
partitioning in leafcutting ants. Acta Ethologica, 2002.

[11] Adam G Hart and Francis L W Ratnieks. Leaf caching in Atta
leafcutting ants: discrete cache formation through positive feedback.
Animal Bahavior, 59:587–591, 2000.

[12] Joshua P. Hecker and Melanie E. Moses. Beyond pheromones: evolv-
ing error-tolerant, flexible, and scalable ant-inspired robot swarms.
Swarm Intelligence, 9(1):43–70, 2015.

[13] M. Ani Hsieh, Ádám Halász, Spring Berman, and Vijay Kumar.
Biologically inspired redistribution of a swarm of robots among
multiple sites. Swarm Intelligence, 2(2-4):121–141, 2008.

[14] Löic Matthey, Spring Berman, and Vijay Kumar. Stochastic strategies
for a swarm robotic assembly system. Proc. IEEE International
Conference on Robotics and Automation, pages 1953–1958, 2009.

[15] Yan Meng and Jing Gan. A distributed swarm intelligence based
algorithm for a cooperative multi-robot construction task. IEEE
Swarm Intelligence Symposium, 2008.

[16] Kazuhiro Ohkura, Toshiyuki Yasuda, and Yoshiyuki Matsumura.
Coordinating adaptive behavior for swarm robotics based on topology
and weight evolving artificial neural networks. Trans. of the Japan
Society of Mechanical Engineers Series C, 77(775):966–979, 2011.

[17] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne
Brutschy, Manuele Brambilla, Nithin Mathews, Eliseo Ferrante,
Gianni Di Caro, Frederick Ducatelle, Timothy S. Stirling, Álvaro
Gutiérrez, Luca Maria Gambardella, and Marco Dorigo. ARGoS: A
pluggable, multi-physics engine simulator for heterogeneous swarm
robotics. IRIDIA – Technical Report Series, (December 2010), 2011.

[18] G. Pini, a. Brutschy, C. Pinciroli, M. Dorigo, and M. Birattari.
Autonomous task partitioning in robot foraging: an approach based
on cost estimation. Adaptive Behavior, 21(2):118–136, 2013.

[19] Giovanni Pini, Arne Brutschy, Marco Frison, Andrea Roli, Marco
Dorigo, and Mauro Birattari. Task partitioning in swarms of robots:
An adaptive method for strategy selection. Swarm Intelligence, 5(3-
4):283–304, 2011.

[20] Giovanni Pini, Matteo Gagliolo, Arne Brutschy, Marco Dorigo, and
Mauro Birattari. Task partitioning in a robot swarm: A study on the
effect of communication. Swarm Intelligence, 7(2-3):173–199, 2013.

[21] F.L.W. Ratnieks and C. Anderson. Task partitioning in social insects.
Insectes Sociaux, 46(2):95–108, 1999.

[22] Christopher Rouff. TR: FS-07-06: Papers from the 2007 AAAI Fall
Symposium. pages 112–115, 2007.

[23] Amanda J.C. Sharkey. Swarm robotics and minimalism. Connection
Science, 19(3):245–260, 2007.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2018 IEEE International Conference on Simulation, Modeling,
and Programming for Autonomous Robots . Received January 29, 2018.

