2023 IEEE International Conference on Robotics and Automation (ICRA) | 979-8-3503-2365-8/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICRA48891.2023.10161279

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)

May 29 - June 2, 2023. London, UK

SIERRA: A Modular Framework for Accelerating Research and Improving
Reproducibility

John Harwell
Department of Computer Science & Engineering
University of Minnesota
Minneapolis, MN 55455
Email: harwe006 @umn.edu

Abstract— We present SIERRA, a novel framework for ac-
celerating development and improving reproducibility of results
in robotics research. SIERRA accelerates research by automat-
ing the process of generating experiments from queries over
independent variables, executing experiments, and processing
the results to generate deliverables such as graphs and videos.
It shifts the paradigm for testing hypotheses from procedural
(“Do these steps to answer the query”) to declarative (‘“Here is
the query to test—GO!”), reducing the burden on researchers.
It employs a modular architecture enabling easy customization
and extension for the needs of individual researchers, thereby
eliminating manual configuration and processing via throw-
away scripts. SIERRA improves reproducibility of research by
providing automation independent of the execution environ-
ment (HPC hardware, real robots, etc.) and targeted platform
(simulator, real robots, etc.). This enables exact experiment
replication, up to the limit of the execution environment and
platform, as well as making it easy for researchers to test
hypotheses in different computational environments. Though
SIERRA is targeted at robotics research, its design makes it
extendable to other fields.

I. INTRODUCTION

Robotics researchers typically spend time on two types
of tasks: science and engineering. Science tasks consist of
developing new mathematical models, tools, or algorithms,
while engineering tasks consist of configuring and running
experiments for testing the new “thing”, and some aspects of
processing results. Frequently, it is only after science tasks
have been nearly completed for a project that researchers
consider the crucial issue of reproducibility. Challenges in
this domain include repeatability (same team, same experi-
mental setup), replicability (different team, same setup), and
reproducibility (different team, different setup) [1]. Other
factors include imprecise or missing documentation, and a
high barrier to integration with existing solutions [2]. These
issues are non-trivial; recent studies found that less than half
of academic code from papers at recent Al conferences were
runnable—not that they reproduced results, but that they ran
at all—even with the help of the authors [3], [4].

The difficulties of reproducibility are further compounded
by the nature of the tools used to meet the engineering needs
of a project: ad-hoc toolchains and scripts that are thrown
together on a per-project basis, and reused, modified, or
duplicated on the fly. Usually, these toolchains and scripts are
for dealing with “accidental complexities” [5]; that is, with

Maria Gini
Department of Computer Science & Engineering
University of Minnesota
Minneapolis, MN 55455
Email: gini@umn.edu

engineering difficulties unrelated to the challenges of the
science itself. Examples include: handling different configu-
rations for specific platforms, such as ROS [6], or execution
environments, such as SLURM [7] or TORQUE [8] clusters,
or for processing and visualizing experimental results; e.g.,
statistically summarizing data and generating graphs. Clearly,
this approach is prone to errors and to reinventions of the
wheel between research groups and individual researchers.

We present SIERRA, an open source framework for
automating engineering tasks to (a) accelerate the later
stages R&D cycles, and (b) improve reproducibility. SIERRA
automates the process of hypothesis testing and results
processing, and handles details for platforms, execution
environments, data processing, and results visualization to
reduce the burden on researchers allowing them to focus
on the “science” aspects of research: creative exploration of
data, hypothesis testing, and experimental design.

Once researchers are confident in their code’s correctness
from initial small-scale testing, SIERRA accelerates research
progress through automated hypothesis testing in an end-
to-end fashion during the latter parts of the R&D cycle.
Researchers using SIERRA need only inspect the final de-
liverables resulting from testing a hypothesis, and no longer
have to manually “shepherd” a hypothesis of interest through
the process. A comprehensive demonstration of SIERRA’s
capabilities can be found here!, including how it supports
exploration of independent variables and experimental data.

II. MOTIVATION

Our motivation in presenting SIERRA is drawn from our
experiences during a recent PhD thesis in our lab, and
summarized in the following case study from the first author
of this paper. John has developed a new distributed task
allocation algorithm « for use in a foraging task where robots
must coordinate to find objects of interest in an unknown
environment and bring them to a central location. John wants
to implement his algorithm so he can investigate:

o How well « scales with the number of robots, specif-
ically if it remains efficient with up to 100 robots in
several different scenarios.

https://www-users.cse.umn.edu/~harwe006/
showcase/aamas—-2022-demo

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 9111

Authorized licensed use limited to: University of Minnesota. Downloaded on June 02,2024 at 01:11:47 UTC from IEEE Xplore. Restrictions apply.

TABLE I
HETEROGENEITY MATRICES. TOP: ALGORITHMIC. BOTTOM:
COMPUTATIONAL AND ROBOTICS PLATFORM.

Algorithm Has randomness? Outputs data in?
«@ Yes CSV, rosbag
B Yes rosbag
¥ No CSV, rosbag
Research Phase Computational Robotics Platforms
Platforms
Initial development Laptop ARGoS
Scalability experiments SLURM, ARGoS
TORQUE
clusters
Transitioning to ROS Laptop ROS, Gazebo
Real robot experiments Laptop ROS, TurtleBots

« How robust it is with respect to sensor noise.
o« How it compares to other similar state of the art
algorithms on a foraging task: 3, .

John’s research investigations can be broken into the
following 5 stage pipeline: (1) Form hypotheses and generate
experiments, (2) execute experiments, (3) process experimen-
tal data, (4) generate visualizations of processed results, and
(5) perform comparative analysis on generated visualizations
(i.e., “Does this graph show « is better than 3, or not?”’). John
is faced with the algorithm heterogeneity matrix shown in Ta-
ble I (top). John will perform initial algorithmic development
targeting ARGoS [9], then transition to ROS+Gazebo [10] to
simulate the TurtleBot [11] robot, of which he has several
on hand. Finally, he will do experiments with a set of real
TurtleBots to verify his simulation results. John has access
to either a large TORQUE- or SLURM-managed cluster
for simulations. In addition to algorithm heterogeneity, he
is also faced with the computational and robotics platform
heterogeneity matrix shown in Table I (bottom).

Because a unified tooling for the different computation
platforms (local laptop, SLURM) and robotics platforms
(ARGoS, ROS, TurtleBots), is not available, John will have
to manually write scripts to reconfigure his code throughout
his research investigations. Moreover, he will have to write
additional scripts to handle different input formats (e.g.,
XML vs plaintext) or output formats (e.g., rosbag, CSV).
Finally, as he executes experiments, he will need to create
various visualizations (graphs, videos, charts, etc.) from the
processed data, all of which will require additional scripting,
which might not be reusable in the future.

Overall, John’s experiences are emblematic of robotics
research, and provide the main motivation for SIERRA: the
need for better automation. From Table II, we note the fol-
lowing important insight: most stages contain substantial en-
gineering tasks that are performed manually by researchers;
these “accidental complexities” are frequently non-trivial,
and slow down the actual research even with many toolkits
available to help, such as pandas and matplotlib.

Existing automation for simulators only targets parts of
the common research pipeline in Table II [12]; similarly
for real robots [2], [13]. To the best of our knowledge no
automation exists for ARGoS [9], Gazebo [10], and ROS1 [6]
for hypothesis testing and results processing. The partial
automation of Webots [14] done in [12] is a subset of
SIERRA’s capabilities.

SIERRA accelerates research cycles by allowing re-
searchers to focus on the “science” aspects: developing
algorithms and designing experiments to test them. SIERRA
changes the paradigm of the engineering tasks researchers
must perform from manual and procedural to declarative
and automated. That is, from “Do these steps to run the
experiment, process the data and generate graphs” to “Here
is the environment and platform, the deliverables I want to
generate and the data I want to appear on them for my
research query—GO!”.

Essentially, SIERRA handles the “backend” parts of re-
search, such as: random seeds, algorithm stochasticity, con-

TABLE I
FIVE STAGE RESEARCH PIPELINE IN ROBOTICS RESEARCH FROM AN ENGINEERING PERSPECTIVE

Stage Description

Current Practice

1. Experiment
generation developed.
2. Experiment

execution different aspects of the application.

3. Experiment
results

processing and its strengths.

4. Deliverable
generation
them camera-ready.

5. Deliverable

comparison for inclusion in publications and reports.

A researcher designs an experiment to test something they have

The researcher runs batch experiments, collecting data about

The researcher processes the collected data to generate statistical

insights about the performance of their software, its limitations,

The researcher generates visualizations from processed data, such
as graphs and videos; deliverables are manually polished to make

The researcher generates comparative visualizations of their work

Researchers utilize custom and/or throw-away scripts or other-
wise manually set parameters defining the experiments [5].

Researchers use custom scripts to configure their execution
environment and run their experiments on it. There is often tight
coupling between the execution environment and the targeted
platform in the scripts, which makes reuse difficult.

Researchers use libraries for processing experiment data, such as
pandas. Scripts for analysis are frequently written for a specific
research investigation and are not reusable.

Researchers utilize custom and/or throwaway scripts to generate
graphs from processed data using matplotlib or other toolk-
its.

Researchers utilize custom scripts to generate comparative visu-
alizations.

9112

Authorized licensed use limited to: University of Minnesota. Downloaded on June 02,2024 at 01:11:47 UTC from IEEE Xplore. Restrictions apply.

Pipeline

Execution Flow

!
User/File
Inputs

File Outputs

SIERRA Architecture and Execution Path

1. Generating

3. Processing

: 2. Running ;
Experimental A Experimental
Inputs EXPEUIEnts Results

Input template
(-argos,.launch,...),
Project .yaml config

Experimental
runs (.argos,
.launch,...)

Experimental
Results (.csv,...)

Experimental
runs (.argos,
.launch,...)

Experimental Run
Data (.csv,...)

Statiskical
Distributions (.csv),

Images from (.csv,...)

4. Generating
Deliverables

Statistical distributions,

Project config

Graphs, videos
(-png,-mp4,...),
Batch exp.

5. Combining
Deliverables
For Comparison

Batch exp.
summary (.csv)

Graphs (.png,...)

-

Execution

Host machine,
Local cluster,

SLURM cluster,
PBS cluster,
Real Robots

Environments

Fig. 1.

summary (.csv)

Host
machine

Host
machine

Architecture of SIERRA, organized by pipeline stage, implementing the research pipeline shown in Table II. Pipeline stages are listed left to

right, with an approximate joint architectural/functional stack from top to bottom for each stage. “()” indicate areas where SIERRA utilizes plugins to
perform environment specific actions in an agnostic manner. “...” indicates areas where SIERRA is configurable or extensible with plugins. “Host machine”

indicates the machine SIERRA was invoked on.

figuration for a given execution environment or platform,
generating statistics from experimental results, and generat-
ing visualizations from processed results. By using declara-
tive specifications it eliminates manual re-configuration when
changing platforms or execution environments, effectively
decoupling platforms from environments; that is, any pair
(platform, execution environment) can be selected in a mix-
and-match fashion. It also removes the need for throw-away
scripts for data processing and deliverable generation by
providing rich, extensible faculties for those tasks. An ar-
chitectural overview of how SIERRA implements the stages
listed in Table II is shown in Fig. 1.

SIERRA is designed to have minimal barriers to adoption
by researchers across disciplines through in situ integra-
tion with existing code implementations, while also being
extensively customizable for advanced users; i.e., it is a
“low threshold, no ceiling” tool [15], and meets the fol-
lowing criteria from [3], [5]: (a) has an easy to understand
configuration, (b) has easy to reuse custom configuration
and functionality across projects and researchers, (c) has
plug-and-play facilities that do not require recompilation or
repackaging to incorporate new functionality, and (d) has
high-quality documentation and many examples. It is de-
signed to be customizable, in order to support rapid adoption
by researchers, and to accommodate potentially unknown
future needs.

It accomplishes this in two ways. First, it is written in the
python programming language, which is “write once, run
anywhere” and has a human readable syntax. Second, it is
organized into a reusable core and a plugin manager, which
supports any number of plugins of any type that can be used
to customize nearly every aspect of its implementation of the
research pipeline shown in Table II. Thus, adding support
for a new platform or execution environment is as simple as
implementing a python interface, and placing the resulting

file(s) on SIERRA’s plugin path. Plugins can be written in
any language; only the bindings must be written in python.
Finally, SIERRA is open source, allowing researchers to
modify it according to their needs.

III. SIERRA PIPELINE AUTOMATION

SIERRA is designed to automate research queries ex-
pressed in a researcher-defined command line syntax. Ex-
amples of research queries include: “How will this algorithm
perform in this scenario with this range of inputs?”, “What
are the practical limits of this algorithm?”, and “How does
this algorithm compare to other similar algorithms?” Re-
search queries are different than scientific hypotheses, which
are possible explanations for an observed phenomenon or
answers to a posed research query.

Each “value” of the independent variable in this range
forms the basis for an experiment. In SIERRA terminology,
this is the univariate barch criterion used to define a batch
experiment. SIERRA also supports bivariate batch criterion,
in which researchers are interested in how system behavior
changes in response to the values of two independent vari-
ables jointly varying; in such cases, the state space for the
batch experiment is a 2D grid instead of a one-dimensional
line. SIERRA handles both types of batch criteria transpar-
ently.

The syntax for expressing research queries is entirely
arbitrary, and can be set according to each researcher’s
needs; researchers also define parsers for their syntax. In
our case study, John defined many different variables to pass
as ——batch-criteria, some of which are:

e system_size.Logl28, representing univariate ex-
periments with {1,2,4,8,...,128} robots.

e task_alloc.z100, representing univariate experi-
ments with one of a hard-coded set of task allocation

9113

Authorized licensed use limited to: University of Minnesota. Downloaded on June 02,2024 at 01:11:47 UTC from IEEE Xplore. Restrictions apply.

sierra-cli \
——platform=platform.argos \
—-batch-criteria system_size.Logl28 \
——exp-setup=exp_setup.T1000.K100 \
——n-runs=4

Fig. 2. A partial SIERRA command for a batch experiment containing 7
sets of experiments, one for each system size € {1, 2,4, 8,16, 32, 64, 128}.
The total # of ARGoS simulations is then 7 (logy 128 = 7) times —n-runs,
for a total of 28 ARGoS simulations. Experiments will be 1,000 seconds
long, with robot controllers running at 100 Hz. Many details such as which
controller to run, the input file to use, etc., are omitted for clarity—for
complete, functional example commands, see the online demo referenced
earlier.

policies of interest {«, 3,~}, with the number of robots
fixed to 100 for all runs.

e systeml00 saa_noise.C10, representing bivari-
ate experiments with {1,2,3,...,100} robots and 10
different levels of Sensor and Actuator (SAA) noise
applied to both robot sensors and actuators.

We provide details of the provided automation for each
pipeline stage in the rest of this section, using our motivating
case study from Section II as context. To more concretely
demonstrate SIERRA’s capabilities we will reference the
partial SIERRA command in Fig. 2 throughout. We note
that running stages {1,2,3,4,5} from Fig. 1 in sequence
is not required; any topologically ordered subset can be
executed. For example, suppose John has just changed the
configuration for what deliverables to generate. He could
then instruct SIERRA to run stages {3,4} only by adding
-—-pipeline 3 4 to Fig. 2.

A. Stage 1: Experimental Input Generation

To generate the batch experiment, researchers provide a
template XML file containing all configuration necessary to
answer the research query. Any XML element SIERRA is
not directed to change through a batch criterion or other
plugin will remain unchanged, allowing researchers to set
common configuration options that should remain the same
for all experiments and all experimental runs. SIERRA
currently requires that the template input file be XML, which
was chosen because many major robotics platforms already
support it, such as ARGoS, ROS, and WeBots. If a researcher
wants to target a platform that does not support XML,
SIERRA’s modular architecture makes it easy to do so.

The XML template input file is modified according to
the research query, with one experiment generated for
each “value” of the independent variable(s). Each “value”
may correspond to a single change to the template, such
as system_size.Log32 for changing the number of
robots, or it can correspond to multiple changes, such as
saa_noise.all.C10 for changing the level of noise
applied to multiple sensors and actuators in each experiment.
SIERRA also supports changing additional parts of the tem-
plate input file uniquely for each experiment, or uniformly

for all experiments, providing unparalleled expressiveness to
support research automation through experiment generation.

SIERRA provides support for research that requires mul-
tiple experimental runs in each experiment, which may be
required due to randomness in the robots, e.g., imperfect
sensors/actuators on real robots, or algorithm stochastic-
ity. SIERRA manages this complexity transparently for re-
searchers. For example, it can save generated random seeds,
ensuring that if all platform and researcher code respects the
random seed, then stage 2 of the pipeline is idempotent; that
is, the same SIERRA invocation for stage 2 always produces
the same outputs in each experiment.

In our case study, John can put common parame-
ter options in the XML template file in a <common>
section and then unique subsections for each algorithm:
<alpha>,<beta>, etc. He could also give each algorithm
its own XML file and duplicate the common section for
each, according to his preference. To handle the stochas-
ticity of «, 3, he sets ——n—-runs=4 as shown in Fig. 2.
John can then generate experimental inputs for each plat-
form from the same research query as easily as changing
—-—platform. {argos, roslgazebo}.

B. Stage 2: Running Experiments

After a batch experiment has been operationalized and
written to the filesystem, SIERRA can execute all experi-
ments in the batch, or some arbitrary subset. For example, if
experiments #10—12 keep crashing, John can enable more
debugging in his code and then re-run the problematic
experiments by adding ——-exp-range=10:12 to Fig. 2.
We note that SIERRA’s automation for this pipeline stage
enables it to provide concurrent execution of experimental
runs for platforms that do not support it natively, such as
Gazebo [10], and to utilize intrinsic parallelism for platforms
that do support it, such as NetLogo [15].

Experimental run inputs are executed using GNU paral-
lel [16] on a selected execution environment and targeted
platform (see online docs for SIERRA’s current support
matrix). SIERRA handles the necessary configuration for all
supported platforms and execution environments, allowing
researchers to transparently switch between them with mini-
mal code changes; cross-compiling or re-architecting may be
necessary depending on the nature of researcher code, and
the selected platform. This effectively makes the question of
“Where can I run my experiment?” logistical and declarative,
rather than technical and procedural.

In our case study, after John is sure his code is
correct, he can run medium-scale experiments on
his laptop via —--exec—env=hpc.local. Once
satisfied with the results, he only has to pass
—-—exec—-env={hpc.slurm, hpc.pbs} to tell SIERRA
to run his code on a SLURM cluster, or TORQUE
cluster, as appropriate. He will only have to submit a job
containing his SIERRA invocation with a given set of
resources and SIERRA will figure out everything else.
Similarly, for his TurtleBot experiments, he will only
need to pass --exec-env=robots.turtlebot3

9114

Authorized licensed use limited to: University of Minnesota. Downloaded on June 02,2024 at 01:11:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Left: Screenshot from running an ARGoS experiment generated with
SIERRA. Right: The six robot swarm of real TurtleBots used in foraging
experiments, driven by SIERRA and using the same research query.

and —-platform=platform.rosrobot to SIERRA.
Examples of executing experiments generated and run using
the same research query are shown in Fig. 3—SIERRA
handles all of the messy details of platform switching.

C. Stage 3: Processing Experimental Results

After a batch experiment has been completed (or even part
of it has), SIERRA can process outputs from arbitrary subsets
of experiments in the batch using the —--exp-range,
analogous to stage 2. To process results, researchers specify
which experimental outputs and types of statistics they are
interested in, and SIERRA does the rest. SIERRA currently
supports several types of results processing; additional types
of processing can be added via plugins. First, statistical
distribution generation across experimental runs for the se-
lected experiments in the batch (intra-experiment statistics),
as well as across experiments in a batch (inter-experiment
statistics). This includes generating statistics suitable for
plotting mean, 95% confidence interval, and box and whisker
plots during deliverable generation during stage 4, specified
via ——dist-stats={mean, conf95,bw}. Second, con-
verting output CSV files into heatmap images (see Fig. 4) that
can be stitched together into videos during stage 4.

In our case study, John could generate statistics for all sim-
ulations by telling SIERRA that his data are stored in CSV
format by adding —-storage-medium=storage.csv
to Fig. 2. If he wants standard deviation information, he could
further add —-dist-stats=conf95. For his TurtleBot
experiments, he can write a plugin converting rosbag files
into pandas dataframes, and tell SIERRA to use it.

D. Stage 4: Generating Deliverables

SIERRA has a rich model plugin framework. It allows
researchers to generate data from first principles or from
experimental results (or both), and plot the generated data
alongside empirical results; this is commonly used for
plotting model predictions. Models can be written in any
language; only the bindings must be written in python. An
example of this capability is shown in Fig. 5.

Visualizations of processed experimental results (deliver-
ables) are included in published research, and will often need
to be processed/tweaked multiple times to be camera-ready.
In SIERRA, deliverables can include graphs or videos show-
ing different aspects of the system’s response to the research
query; which graphs or videos are generated is controlled by

Block Acquisition Locations Swarm Blocks Collected

Y Sensor And Actuator Noise

Fig. 4. Example of graphical deliverable generation in stage 4. Left: Intra-
experiment heatmap showing the average locations where objects are in
the environment (nest in the center). Right: Summary performance heatmap
showing how the foraging behavior varies under a bivariate batch criterion
with changing system size and different levels of sensor and actuator noise.

YAML configuration, allowing researchers to easily disable
deliverables not of interest. SIERRA’s automation in this
stage makes it easy to modify a specific graph or video.
For some example graphs generated by SIERRA, see Fig. 4.

In our case study, suppose that John did not like the initial
axes labels on the heatmap generated in Fig. 4. He could
change these labels in his YAML configuration, and then
re-run SIERRA to regenerate the graph.

E. Stage 5: Deliverable Comparison

After deliverable generation, multiple deliverables can be
combined to provide side-by-side graphical comparisons;
that is, SIERRA can take any data from two graphs of any
type from any two batch experiments and replot them on a
single figure. This comparison can take two forms. First,
intra-scenario comparison, in which graphs from experi-
ments evaluating different algorithms in the same context
(scenario) are combined, as shown in Fig. 5(a). Second, inter-
scenario comparison, in which graphs from batch experi-
ments evaluating the same algorithm in different contexts
(scenarios) are combined, as shown in Fig. 5(b). Such high-
level comparisons are useful for demonstrating where/how
a given algorithm is better or different than other methods.
In our case study, suppose that John did not like the side-
by-side heatmaps showing differences in algorithm perfor-
mance, because they did not show which differences were
statistically significant. He could ask SIERRA to generate a
set of linegraphs instead, showing summary statistics such
as confidence intervals or box and whisker plots graphically.

IV. DISCUSSION

We have given a brief tour of some of SIERRA’s features
using a motivating case study to show how SIERRA can
be used to address two pressing needs in robotics research
simultaneously: accelerating R&D cycles through automa-
tion of engineering tasks, and increasing reproducibility of
results. Specifically, John used SIERRA to generate, run,
and process 100s of GB of simulation results autonomously,
making repeated R&D cycles and figure generation for [17]
seamless; i.e., a “set-it-and-forget-it” mentality for going
from raw inputs to camera-ready graphs. The transition

9115

Authorized licensed use limited to: University of Minnesota. Downloaded on June 02,2024 at 01:11:47 UTC from IEEE Xplore. Restrictions apply.

30| —e— RN
RN Prediction

—— PL

20 PL Prediction

Agents Doing A Task

o

0.0078
0.0195
0.0273
0.0391
0.0469

0586
0.0664

0.0781
0.0898
0.0977

o

Population Density
Foraging scenario#1 Foraging scenario#2

Population Size
Avg Object Collection Rate

w

Q. 3 [
Task Allocation Policy

Y v

Ral 3 f
Task Allocation Policy

Fig. 5. Example of graphical deliverable comparison using both univariate
and bivariate batch criteria. Top: Inter-scenario comparison of a single
algorithm (). An analytical model was developed for «, and the resulting
predictions plotted alongside actual data. Bottom: Intra-scenario comparison
of several task allocation algorithms on two different scenarios.

from ROS+Gazebo to ROS+TurtleBots was equally seam-
less: SIERRA handled all of the messy details of platform
switching, enabling John to focus on investigating research
questions. We believe that adoption of a tool such as SIERRA
to provide a near-universal pipeline for robotics research
that supports reproducibility and reusability is paramount
to continuing to make meaningful progress as systems and
approaches become more complex. Finally, we note that his
successful usage of SIERRA was predicated on his code’s
correctness; SIERRA does not provide verification support.

SIERRA was developed for robotics research with the
needs of robotics researchers in mind, so its direct applicabil-
ity to other domains may be limited. It is currently restricted
to use cases where experimental inputs are specified in
XML; that is, as a single XML file containing all input
parameters. This is not a major limitation in robotics, as
most of the major platforms support XML inputs. Outside
robotics, platforms of interest might not support XML. In the
worst case, researchers would have to write XML bindings
for their chosen platform to translate the generated XML
inputs into a form their platform understands.

In addition, the translation from automating robotics re-
search to broader intelligent systems research involving ma-
chine learning, deep learning, or other non-robot approaches
may not fit the pipeline in Table II. For example, training runs
for neural networks, or qualitative coding of Human-Robot
Interaction studies may be difficult to fit into SIERRA’s
paradigm. In general, if researchers (a) mainly develop
algorithms that do not contain elements of randomness, or
(b) work in a field with a single platform/simulator that
everyone uses, or (c) work on applications requiring only a
single execution environment, then SIERRA may not provide
benefits. Nevertheless, for fields for which SIERRA may be
difficult to use or not provide benefits, we would hope that
it would serve as inspiration to build similar tools.

A. History and community acceptance

SIERRA has been under development since 2016. Early
versions of SIERRA have been used to automate experi-
ments using ARGoS and ROS1 on TORQUE and SLURM
HPC clusters, and with real TurtleBots at the University
of Minnesota [17]-[19]. Version 1.3 is available as a
stable release that comes with extensive documentation and
tutorials. An earlier version was presented as a demonstra-
tion [20] at the AAMAS conference. The version presented
here contains several new features not present in the earlier
paper: extensible model plugin framework, integration with
ROS+real robots, support for OSX as a host OS, among
others. SIERRA is open source, and is available on PyPI>.
SIERRA receives about 100 downloads/week, a sign of its
relevance as a researcher tool.

V. CONCLUSIONS

We have presented SIERRA, a new tool that addresses
the need for better automation of engineering tasks that
many researchers perform. As a “low threshold, no ceiling”
tool, it substantially lowers the barrier to collaboration be-
tween researchers across disciplines without compromising
customizability for advanced users. Thus, SIERRA is not
only relevant for the current needs of robotics researchers,
but also for their future needs, and we strongly argue for
its inclusion in any researcher’s toolbox. Further improve-
ments to SIERRA include: (a) removing the restriction that
experimental inputs be specified in XML, (b) expanding the
execution environments and platforms it supports natively,
(c) improving configurability during deliverable generation
to expose more of the underlying matplotlib, and (d)
adding new visualizations such as parsing experiment logs
to generate 2D or 3D “field” graphs of system behavior,
messages exchanged, etc., live or post-hoc.

Acknowledgments: Partial support for this work was pro-
vided by the MnDRIVE initiative, the Minnesota Robotics
Institute, and the University of Minnesota Informatics In-
stitute. The Minnesota Supercomputing Institute provided
computing resources.

2https://pypi.org/sierra—research

9116

Authorized licensed use limited to: University of Minnesota. Downloaded on June 02,2024 at 01:11:47 UTC from IEEE Xplore. Restrictions apply.

[1]

[2

—

[3]

[6

=

[7]

[8]

[9

—

[10]

REFERENCES

M. Mora-Cantallops, S. Sdnchez-Alonso, E. Garcia-Barriocanal, and
M.-A. Sicilia, “Traceability for trustworthy Al: A review of models
and tools,” Big Data and Cognitive Computing, vol. 5, no. 2, 2021.
[Online]. Available: https://www.mdpi.com/2504-2289/5/2/20

A. Portner, M. Hoffmann, S. Zug, and M. Knig, “Swarmrob: a docker-
based toolkit for reproducibility and sharing of experimental artifacs
in robotics research,” in Proc. IEEE Int’l Conf. on Systems, Man, and
Cybernetics (SMC), 2018, pp. 325-332.

0. E. Gundersen, S. Shamsaliei, and R. J. Isdahl, “Do machine learning
platforms provide out-of-the-box reproducibility?” Future Generation
Computer Systems, vol. 126, pp. 34-47, 2022.

A. Bellogin and A. Said, “Improving accountability in recommender
systems research through reproducibility,” User Modeling and User-
Adapted Interaction, vol. 31, no. 5, pp. 941-977, Nov 2021.

A. Afzal, D. S. Katz, C. Le Goues, and C. S. Timperley, “Simulation
for robotics test automation: Developer perspectives,” in 2021 14th
IEEE Conference on Software Testing, Verification and Validation
(ICST), 2021, pp. 263-274.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “ROS: an open-source robot operating
system,” ICRA Workshop on Open Source Software, 01 2009.

A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: simple linux
utility for resource management,” in Job Scheduling Strategies for
Farallel Processing, D. Feitelson, L. Rudolph, and U. Schwiegelshohn,
Eds. Springer, 2003, pp. 44-60.

G. Staples, “Torque resource manager,” in Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, ser. SC '06. New York,
NY, USA: Association for Computing Machinery, 2006, p. 8-es.
[Online]. Available: https://doi.org/10.1145/1188455.1188464

C. Pinciroli et al., “ARGoS: a modular, parallel, multi-engine simulator
for multi-robot systems,” Swarm Intelligence, vol. 6, pp. 271-295, 12
2012.

N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International

(1]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

9117

Conference on Intelligent Robots and Systems (IROS), vol. 3.
2004, pp. 2149-2154.

R. Amsters and P. Slaets, “Turtlebot 3 as a robotics education
platform,” in Robotics in Education, M. Merdan, W. Lepuschitz,
G. Koppensteiner, R. Balogh, and D. Obdrzalek, Eds. Springer
International Publishing, 2020, pp. 170-181.

M. Franchi, “Webots.HPC: A parallel robotics simulation pipeline
for autonomous vehicles on high performance computing,”
arXiv:2108.00485v1 [cs.DC], 2021.

D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and
M. Egerstedt, “The robotarium: A remotely accessible swarm robotics
research testbed,” arXiv:1609.04730v1 [cs.RO], 2016.

O. Michel, “Webots: Professional mobile robot simulation,” Journal
of Advanced Robotics Systems, vol. 1, no. 1, pp. 39-42, 2004.

S. Tisue, “NetLogo: Design and implementation of a multi-agent
modeling environment,” in Proc. Agents 2004 Conference, Oct. 2004.
O. Tange, “GNU parallel - the command-line power tool,” ;login: The
USENIX Magazine, vol. 36, no. 1, pp. 42-47, Feb. 2011. [Online].
Available: http://www.gnu.org/s/parallel

J. Harwell, A. Sylvester, and M. Gini, “Characterizing the limits of
linear modeling of non-linear swarm behaviors,” arXiv:2110.12307v2
[cs.RO], 2022.

J. Harwell, L. Lowmanstone, and M. Gini, “Demystifying emergent
intelligence and its effect on performance in large robot swarms,”
in Proc. Int’l Conf. on Autonomous Agents and Multi-Agent Systems
(AAMAS), 5 2020, pp. 474-482.

J. Harwell and M. Gini, “Swarm engineering through quantitative
measurement of swarm robotic principles in a 10,000 robot swarm,”
in Proc. 28th Int’l Joint Conf. on Artificial Intelligence (IJCAI-19), 7
2019, pp. 336-342.

J. Harwell, L. Lowmanstone, and M. Gini, “SIERRA: a modu-
lar framework for research automation,” in Proc. Int’l Conf. on
Autonomous Agents and Multiagent Systems (AAMAS), 2022, p.
1905-1907.

IEEE,

Authorized licensed use limited to: University of Minnesota. Downloaded on June 02,2024 at 01:11:47 UTC from IEEE Xplore. Restrictions apply.

